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Abstract. We provide a characterization of J-class and Jmix-class unilateral
weighted shifts on l∞(N) in terms of their weight sequences. In contrast to the
previously mentioned result we show that a bilateral weighted shift on l∞(Z)
cannot be a J-class operator.
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1. Introduction

During the last years the dynamics of linear operators on infinite dimensional
spaces has been extensively studied, see the survey articles [4], [7], [8], [9], [10],
[12] and the recent book [1]. Let us recall the notion of hypercyclicity. Let X be
a separable Banach space and T : X → X be a bounded linear operator. The
operator T is said to be hypercyclic provided there exists a vector x ∈ X such
that its orbit under T , Orb(T, x) = {T nx : n = 0, 1, 2, . . .}, is dense in X . If X
is Banach space (possibly non-separable) and T : X → X is a bounded linear
operator then T is called topologically transitive (topologically mixing) if for every
pair of non-empty open subsets U, V of X there exists a positive integer n such that
T nU ∩ V �= ∅ (T mU ∩ V �= ∅ for every m ≥ n respectively). It is well known, and
easy to prove, that if T is a bounded linear operator acting on separable Banach
space X then T is hypercyclic if and only if T is topologically transitive.

A first step to understand the dynamics of linear operators is to look at par-
ticular operators as for example the weighted shifts. Salas [11] was the first who
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characterized the hypercyclic weighted shifts in terms of their weight sequences.
We would like to point out that l∞(N) and l∞(Z) do not support hypercyclic op-
erators since they are not separable Banach spaces. In fact they do not support
topologically transitive operators as it was shown by Bermúdez and Kalton in
[2]. Recently Bès, Chan and Sanders [3] showed that there exists a weak* hyper-
cyclic weighted shift T on l∞(N), i.e there exists a vector x ∈ l∞(N) whose orbit
Orb(T, x) is dense in the weak* topology of l∞(N). In fact they give a characteri-
zation of the weak* hypercyclic weighted shifts in terms of their weight sequences.
In [5] we studied the dynamics of operators by replacing the orbit of a vector
with its extended limit set. To be precise, let T : X → X be a bounded linear
operator on a Banach space X (not necessarily separable) and x ∈ X . A vector
y belongs to the extended limit set J(x) of x if there exist a strictly increasing
sequence of positive integers {kn} and a sequence {xn} ⊂ X such that xn → x
and T knxn → y. If J(x) = X for some non-zero vector x ∈ X then T is called
J-class operator. Roughly speaking, the use of the extended limit set “localizes”
the notion of hypercyclicity. The last can be justified by the following: J(x) = X
if and only if for every open neighborhood U of x and every non-empty open set
V ⊂ X there exists a positive integer n such that T nU ∩ V �= ∅.

The purpose of this paper is to study the dynamical behavior of weighted
shifts on the spaces of bounded sequences of complex numbers l∞(N) and l∞(Z)
through the use of the extended limit sets. Our main result is the following (see
Theorem 3.1).

Theorem. Let T : l∞(N) → l∞(N) be a backward unilateral weighted shift with
positive weights (αn)n∈N. The following are equivalent.

(i) T is a J-class operator.

(ii) lim
n→+∞

(
inf
j≥0

n∏
i=1

αi+j

)
= +∞.

In particular, if T is a J-class operator then the sequence of weights (αn)n∈N

is bounded from below by a positive number and we have the following complete
description of the set of J-vectors.

{x ∈ l∞(N) : J(x) = l∞(N)} = c0(N),

where c0(N) = {x = (xn)n∈N ∈ l∞(N) : limn→+∞ xn = 0}.
Observe that if T is a J-class backward unilateral weighted shift on l∞(N)

then in view of the above theorem and Salas’ characterization of hypercyclic
weighted shifts, see [11], we conclude that T is hypercyclic on lp(N) for every
1 ≤ p < +∞. However, as we show in section 3, the converse is not always true.

On the other hand the situation is completely different in the case of bilateral
weighted shifts. In particular we show that a bilateral weighted shift on l∞(Z)
cannot be a J-class operator, see Theorem 3.3. In addition, we prove similar results
for Jmix-class weighted shifts (see Definitions 2.1 and 2.2).
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2. Preliminaries

Definition 2.1. Let T : X → X be a bounded linear operator on a Banach space
X . For every x ∈ X the sets

J(x) = {y ∈ X : there exist a strictly increasing sequence of positive

integers{kn} and a sequence {xn} ⊂ X such thatxn → x and

T knxn → y},
Jmix(x) = {y ∈ X : there exists a sequence {xn} ⊂ X such that

xn → x and T nxn → y}
will be called the extended limit set of x under T and the extended mixing limit
set of x under T respectively.

Definition 2.2. A bounded linear operator T : X → X acting on a Banach space
X will be called a J-class (Jmix-class) operator if there exists a non-zero vector
x ∈ X such that J(x) = X (Jmix(x) = X respectively).

Definition 2.3. Let T be a bounded linear operator acting on a Banach space X .
A vector x ∈ X will be called a J-vector (Jmix-vector) if J(x) = X (Jmix(x) = X
respectively).

Remark 2.4. Observe that
(i) an operator T : X → X is topologically transitive if and only if J(x) = X

for every x ∈ X ,
(ii) an operator T : X → X is topologically mixing if and only if Jmix(x) = X

for every x ∈ X ,
see [5]. Hence every hypercyclic operator (topologically mixing) is a J-class oper-
ator (Jmix-class operator). However the converse is not true. To see that consider
the operator 3I⊕2B : C⊕ l2(N) → C⊕ l2(N) where I is the identity map on C and
B is the backward shift on the space of square summable sequences l2(N). Consider
any non-zero vector x ∈ l2(N). We shall prove that Jmix

3I⊕2B(0 ⊕ x) = C ⊕ l2(N).
Let y ∈ l2(N) and λ ∈ C. There exists a sequence {xn} in l2(N) such that
(2B)nxn → y. Define the vectors λ

3n ⊕ xn. Then we have λ
3n ⊕ xn → 0 ⊕ x and

(3I ⊕ 2B)n( λ
3n ⊕xn) → λ⊕ y. Hence 3I ⊕ 2B is a Jmix-class operator which is not

hypercyclic. In fact it is not even supercyclic, see [6].
Let us also give an example of a backward weighted shift, acting on a non-

separable space, which is a J-class operator but not topologically transitive. Con-
sider the operator 2B : l∞(N) → l∞(N) where B is the backward shift and l∞(N) is
the space of bounded sequences. Theorem 3.6 implies that 2B is a Jmix-class oper-
ator. On the other hand the space l∞(N) does not support topologically transitive
operators, see [2].

The next lemma, which will be of use to us, also appears in [5]. For the
convenience of the reader we give its proof.
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Lemma 2.5. Let T : X → X be a bounded linear operator on a Banach space X
and {xn}, {yn} be two sequences in X such that xn → x and yn → y for some
x, y ∈ X.

(i) If yn ∈ J(xn) for every n = 1, 2, . . ., then y ∈ J(x).
(ii) If yn ∈ Jmix(xn) for every n = 1, 2, . . ., then y ∈ Jmix(x).

Proof. (i) For n = 1 there exists a positive integer k1 such that

‖xk1 − x‖ <
1
2

and ‖yk1 − y‖ <
1
2
.

Since yk1 ∈ J(xk1) we may find a positive integer l1 and z1 ∈ X such that

‖z1 − xk1‖ <
1
2

and ‖T l1z1 − yk1‖ <
1
2
.

Therefore,
‖z1 − x‖ < 1 and ‖T l1z1 − y‖ < 1.

Proceeding inductively we find a strictly increasing sequence of positive integers
{ln} and a sequence {zn} in X such that

‖zn − x‖ <
1
n

and ‖T lnzn − y‖ <
1
n

.

This completes the proof of assertion (i).
(ii) For n = 1 there exists a positive integer k1 such that

‖xk1 − x‖ <
1
2

and ‖yk1 − y‖ <
1
2
.

Since yk1 ∈ Jmix(xk1) we may find a positive integer l1 and a sequence {zn} ⊂ X
such that

‖zn − xk1‖ <
1
2

and ‖T nzn − yk1‖ <
1
2

for every n ≥ l1. Therefore,

‖zn − x‖ < 1 and ‖T nzn − y‖ < 1

for every n ≥ l1. Proceeding in the same way we may find a positive integer l2 > l1
and a sequence {wn} ⊂ X such that

‖wn − x‖ <
1
2

and ‖T nwn − y‖ <
1
2

for every n ≥ l2. Set vn = zn for every l1 ≤ n < l2, hence

‖vn − x‖ < 1 and ‖T nvn − y‖ < 1.

Proceeding inductively we find a strictly increasing sequence of positive integers
{nk} and a sequence {vn} in X such that if n ≥ nk then

‖vn − x‖ <
1
k

and ‖T nvn − y‖ <
1
k

.
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Take any ε > 0. There exists a positive integer k0 such that 1
k0

< ε. Hence for
every n ≥ nk0 we get

‖vn − x‖ <
1
k0

< ε and ‖T nvn − y‖ <
1
k0

< ε.

This completes the proof of assertion (ii). �

3. Main results

Theorem 3.1. Let T : l∞(N) → l∞(N) be a backward unilateral weighted shift with
positive weights (αn)n∈N. The following are equivalent.

(i) T is a J-class operator.

(ii) lim
n→+∞

(
inf
j≥0

n∏
i=1

αi+j

)
= +∞.

In particular, if T is a J-class operator then the sequence of weights (αn)n∈N

is bounded from below by a positive number and we have the following complete
description of the set of J-vectors.

{x ∈ l∞(N) : J(x) = l∞(N)} = c0(N),

where c0(N) = {x = (xn)n∈N ∈ l∞(N) : limn→+∞ xn = 0}.
Proof. Let us prove that (i) implies (ii). There exists a non-zero vector x ∈ l∞(N)
such that J(x) = l∞(N). Consider the vector y = (1, 1, . . .). Then there exists a
strictly increasing sequence {kn} of positive integers and a sequence {yn} ∈ l∞(N),
yn = (ynm)∞m=1, such that

‖yn − x‖∞ → 0 and ‖T knyn − (1, 1, . . .)‖∞ → 0.

Observe that

‖T knyn − (1, 1, . . .)‖∞ = sup
j≥0

∣∣∣∣∣
(

kn∏
i=1

αi+j

)
yn(kn+j+1) − 1

∣∣∣∣∣→ 0

as n → ∞. Fix 0 < ε < 1. There exists a positive integer n1 such that

‖yn − x‖∞ < ε for every n ≥ n1 (3.1)

and

sup
j≥0

∣∣∣∣∣∣

kn1∏

i=1

αi+j


 yn1(kn1+j+1) − 1

∣∣∣∣∣∣ < ε.

Therefore ∣∣∣∣∣∣

kn1∏

i=1

αi+j


 yn1(kn1+j+1)

∣∣∣∣∣∣ > 1 − ε for every j ≥ 0. (3.2)
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On the other hand, using (3.1), we have∣∣∣∣∣∣

kn1∏

i=1

αi+j


 yn1(kn1+j+1)

∣∣∣∣∣∣ ≤

kn1∏

i=1

αi+j


 ‖yn1‖∞

<


kn1∏

i=1

αi+j


 (ε + ‖x‖∞)

(3.3)

for every j ≥ 0. By (3.2) and (3.3) it follows that
m1∏
i=1

αi+j >
1 − ε

ε + ‖x‖∞ for every j ≥ 0,

where m1 := kn1 . For every l = 2, 3, . . . consider the vector (l, l, . . .). Since
(l, l, . . .) ∈ J(x) and working as before we inductively construct a strictly in-
creasing sequence {ml} of positive integers such that

ml∏
i=1

αi+j >
l − ε

ε + ‖x‖∞ for every j ≥ 0 and every l ≥ 1.

The last implies that

lim
l→+∞

(
inf
j≥0

ml∏
i=1

αi+j

)
= +∞

which in turn yields

lim sup
n→+∞

(
inf
j≥0

n∏
i=1

αi+j

)
= +∞.

It remains to show that

lim
n→+∞

(
inf
j≥0

n∏
i=1

αi+j

)
= +∞.

Let us first show that the sequence (αn)n∈N is bounded from below by a positive
number. Fix a positive number M > 1. There exists a positive integer N such that

N∏
i=1

αi+j > M for every j ≥ 0.

If N = 1 there is nothing to prove. Assume that N > 1. For every j ≥ 0 and since
‖T ‖ = supn αn, we have

αj+1‖T ‖N−1 ≥ αj+1

(
N∏

i=2

αi+j

)
> M.

Proceeding inductively we conclude that

αn ≥ M

‖T ‖N−1
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for every n ∈ N. Take any positive integer n > N . There exist positive integers
pn, vn such that n = Npn + vn and 0 ≤ vn ≤ N − 1. Since (αn)n∈N is bounded
from below by M

‖T‖N−1 it follows that

n∏
i=1

αi+j > Mpn C for every j ≥ 0,

where

C = min

{(
M

‖T ‖N−1

)N−1

, 1

}
.

From the last and the fact that M > 1 it clearly follows that

lim
n→+∞

(
inf
j≥0

n∏
i=1

αi+j

)
= +∞.

We shall now prove that (ii) implies (i). Fix a vector x = (x1, x2, . . .) in
l∞(N) with finite support. There exists a positive integer n0 such that xn = 0 for
every n ≥ n0 and infj≥0

∏n
i=1 αi+j > 0 for every n ≥ n0. Consider any vector

y = (y1, y2, . . .) ∈ l∞(N). We set

yn =
(

x1, x2, . . . , xn0−1, 0, . . . , 0,
y1∏n

i=1 αi
,

y2∏n
i=1 αi+1

,
y3∏n

i=1 αi+2
, . . .

)
for every n ≥ n0, where the 0’s fill all the coordinates from the n0-th up to n-th
position. Then for every n ≥ n0 we have

‖yn − x‖∞ = sup
j≥0

∣∣∣∣ yj+1∏n
i=1 αi+j

∣∣∣∣ ≤ ‖y‖∞
infj≥0

∏n
i=1 αi+j

,

hence yn → x. Observe also that T nyn = y, so y ∈ J(x). Thus T is a J-class
operator and this completes the proof that (ii) implies (i).

It remains to show that the set of J-vectors is c0(N). From the proof that (ii)
implies (i) we have that if x is a vector with finite support then J(x) = l∞(N).
Since the closure of the set of all vectors with finite support is c0(N), by Lemma
2.5, we conclude that

c0(N) ⊂ {x ∈ l∞(N) : J(x) = l∞(N)}.
To prove the converse inclusion, take a vector x such that J(x) = l∞(N). Consider
the zero vector and let ε be a positive number. There exist positive integers n0, n1

and a vector yn0 = (yn0k)k∈N such that

‖yn0 − x‖∞ < ε, ‖T n1yn0‖∞ < ε and
n1∏
i=1

αi+j > 1 for every j ≥ 0.

Hence we have ∣∣∣∣∣
(

n1∏
i=1

αi+j

)
yn0(n1+j+1)

∣∣∣∣∣ < ε
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for every j ≥ 0. The last and the previous bound on the weights imply that

|yn0(n1+j+1)| <
ε∏n1

i=1 αi+j
< ε

for every j ≥ 0. Hence it follows that

|xn1+j+1| ≤ ‖yn0 − x‖∞ + |yn0(n1+j+1)| < 2ε

for every j ≥ 0. Thus x belongs to c0(N). This completes the proof of the theorem.
�

Remark 3.2. As we promised in the introduction, we provide below an example of
a hypercyclic backward unilateral weighted shift on the space of square summable
sequences l2(N), which is not a J-class operator on l∞(N). Consider the backward
unilateral weighted shift T with weight sequence

(α1, α2, . . .) = (
1
2
, 2, 2,

1
2
,
1
2
, 2, 2, 2,

1
2
,
1
2
,
1
2
, 2, 2, 2, 2,

1
2
,
1
2
,
1
2
,
1
2
, . . .).

It is easy to check that T is hypercyclic on l2(N). On the other hand we have that

inf
j≥0

n∏
i=1

αi+j ≤ 1
2n

for every n = 1, 2, . . . .

Hence,

lim
n→+∞

(
inf
j≥0

n∏
i=1

αi+j

)
= 0.

Theorem 3.1 implies that T is not a J-class operator on l∞(N).
To complete our study on J-class backward unilateral weighted shifts we

would like to mention the following result from [5]: a backward unilateral weighted
shift T is a J-class operator on lp(N) if and only if T is hypercyclic on lp(N), for
1 ≤ p < +∞. A similar result holds for bilateral shifts, see [5].

Theorem 3.3. Let T : l∞(Z) → l∞(Z) be a backward bilateral weighted shift with
positive weights (αn)n∈Z. Then T is not a J-class operator.

Proof. Following a similar line of reasoning as in the proof that (i) implies (ii)
in Theorem 3.1 and using the vectors (. . . , l, l, l, . . .) ∈ l∞(Z) for l = 1, 2, . . . we
conclude that the sequence (αn)n∈Z is bounded from below by a positive number
and

lim
n→+∞

(
inf
j∈Z

n∏
i=1

αi+j

)
= +∞ and lim

n→+∞

(
inf
j∈Z

n∏
i=1

αj−i

)
= +∞.

Assume that there exists a non-zero vector x = (xj)j∈Z ∈ l∞(Z) such that J(x) =
l∞(Z). Since x �= 0 there is some j ∈ Z such that xj �= 0. By our assumption
0 ∈ J(x) hence there exist a sequence of positive integers kn and vectors yn =
(ynm)m∈Z such that

‖yn − x‖∞ → 0 and ‖T knyn‖∞ → 0.
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Therefore, taking the −kn + 1 + j-th coordinate of the vector T knyn we conclude
that ∣∣∣∣∣

(
kn∏
i=1

αj−i

)
ynj

∣∣∣∣∣→ 0.

Since
∏kn

i=1 αj−i → +∞ then xj = lim
n→+∞ ynj = 0, a contradiction. �

Corollary 3.4. Let T be a backward unilateral (bilateral) weighted shift with weight
sequence (αn)n∈N ((αn)n∈Z respectively). The following are equivalent

(i) J(0) = l∞(N) (J(0) = l∞(Z)).

(ii) lim
n→+∞

(
inf
j≥0

n∏
i=1

αi+j

)
= +∞, ( lim

n→+∞

(
inf
j∈Z

n∏
i=1

αi+j

)
= +∞).

Remark 3.5. By the previous corollary and Theorem 3.1 it follows that if T is a
backward unilateral weighted shift and J(0) = l∞(N) then T is J-class operator.
However, for backward bilateral weighted shifts this is no longer true. For example
consider the backward bilateral weighted shift T : l∞(Z) → l∞(Z) with weight
sequence (αn)n∈Z, αn = 2 for n ≥ 1 and αn = 1 for n ≤ 0. Corollary 3.4 gives that
J(0) = l∞(Z) and Theorem 3.3 implies that T is not a J-class operator.

Using similar arguments as in the proof of Theorem 3.1 we obtain the follow-
ing.

Theorem 3.6. Let T : l∞(N) → l∞(N) be a backward unilateral weighted shift with
positive weights (αn)n∈N. The following are equivalent.

(i) T is a Jmix-class operator.

(ii) lim
n→+∞

(
inf
j≥0

n∏
i=1

αi+j

)
= +∞.

In addition, if T is a Jmix-class operator we have the following complete description
of the set of Jmix-vectors.

{x ∈ l∞(N) : Jmix(x) = l∞(N)} = c0(N).

Combining Theorems 3.1 and 3.6 we obtain the following.

Corollary 3.7. Let T : l∞(N) → l∞(N) be a backward unilateral weighted shift with
positive weights (αn)n∈N. The following are equivalent.

(i) T is a Jmix-class operator.
(ii) T is a J-class operator.
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[2] T. Bermúdez and N.J. Kalton, The range of operators on von Neumann algebras,
Proc. Amer. Math. Soc. 130 (2002), 1447–1455.

[3] J. Bès, K.C. Chan and R. Sanders, Weak* Hypercyclicity and Supercyclicity of Shifts
on l∞, Integral Equations and Operator Theory 55 (2006), 363–376.
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