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In this note we give an example of a one-dimensional manifold with two connected
components and a complete metric whose group of isometries has an orbit which is not
closed. This answers a question of S. Gao and A.S. Kechris.
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1. Preliminaries and the construction of the example

In [3, p. 35] S. Gao and A.S. Kechris asked the following question. Let (X,d) be a locally compact complete metric
space with finitely many pseudo-components or connected components. Does its group of isometries have closed orbits?
This is the case if X is connected since then the group of isometries acts properly by an old result of van Dantzig and
van der Waerden [1] and hence all of its orbits are closed. The above question arose in the following context. Suppose a
locally compact group with a countable base acts on a locally compact space with a countable base. Then the action has
locally closed orbits (i.e. orbits which are open in their closures) if and only if there exists a Borel section for the action (see
[4,2]) or, in other terminology, the corresponding orbit equivalence relation is smooth. For isometric actions it is easy to see
that an orbit is locally closed if and only if it is closed. In this note we give a negative answer to the question of Gao and
Kechris. Our space is a one-dimensional manifold with two connected components, one compact isometric to S1, and one
non-compact, the real line with a locally Euclidean metric. It has a complete metric whose group of isometries has non-
closed dense orbits on the compact component. In the course of the construction we give an example of a 2-dimensional
manifold with two connected components one compact and one non-compact and a complete metric whose group G of
isometries also has non-closed dense orbits on the compact component. The difference is that G contains a subgroup of
index 2 which is isomorphic to R.

Let (Y ,d1) be a metric space. Later on Y will be a torus with a flat Riemannian metric. Let Z = Y ∪ (Y ×R). We fix two
positive real numbers R and M . We endow Z with the following metric d depending on R and M .
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d(y1, y2) = d1(y1, y2)

d
(
(y1, t1), (y2, t2)

) = d1(y1, y2) + min
(|t1 − t2|, M

)

d
(

y1, (y2, t2)
) = d

(
(y2, t2), y1

) = d(y1, y2) + R,

for y1, y2 ∈ Y and t1, t2 ∈ R. It is easy to check that d is a metric on Z if 2R � M . The metric space Z has the following
properties:

1.1. (a) For a given point (y, r) ∈ Y ×R there is a unique point in Y which is closest to (y, r), namely y.
(b) Given a point y ∈ Y the set of points in Y ×R which are closest to y is the line {y} ×R.
(c) For every point (y, r) ∈ Y ×R and every y′ ∈ Y there is a unique point on the line {y′}×R which is closest to (y, r),
namely (y′, r).
(d) Let gY be an isometry of Y and let gR be an isometry of the Euclidean line R. Define a map g = g(gY , gR) : Z → Z
by g|Y := gY and g(y, r) = (gY (y), gR(r)) for (y, r) ∈ Y ×R. Then g is an isometry of Z .
(e) Every isometry of Z is of the form given in (d) if Y is compact.

Proof. (a) through (d) are easily checked. To prove (e) let g be an isometry of Z . Then g(Y ) = Y and g(Y ×R) = Y ×R, since
Y is compact and Y ×R consists of non-compact components. Then gY := g|Y is an isometry of Y . The map g(gY , id)−1 ◦ g ,
where id denotes the identity map, is an isometry of Z which fixes Y , hence maps every line {y} × R to itself, by (b). Let
hy : R → R be defined by g(y, t) = (y,hy(t)). Then hy is an isometry of the Euclidean line R for every y ∈ Y and all the
hy ’s are the same, by (c), say hy = gR . Thus g = (gY , gR). �
1.2. Let now Y be a 2-dimensional torus with a flat Riemannian metric. Y is also an abelian Lie group whose composition
we write as multiplication. Every translation Lx of Y , Lx(y) = x · y, is an isometry. Let g(t), t ∈R, be a dense one parameter
subgroup of Y . Let H ⊂ Y ×R be its graph, H = {(g(t), t); t ∈ R}. Our example is X = Y ∪ H with the metric induced from
Z = Y ∪ (Y ×R).

1.3. (a) If gR is an isometry of the Euclidean line R then there is a unique isometry g of X such that g(y, t) ∈ Y × {gR(t)}.
If gR is the translation by a, so gR = La with La(t) = t + a, then g is the restriction of g(Lg(a), La) to X . If gR is the
reflection at the origin, gR = −1, then g is the restriction of g(inv,−1) to X , where inv : Y → Y , inv(y) = y−1. The
reflection in a ∈R is the composition L−2a ◦ (−1) = −1 ◦ L2a .
(b) Every isometry of X is of the form in (a). It follows that the group of isometries of X has dense non-closed orbits
on Y and the other component H is one orbit.

(c) H is locally isometric to the real line with the Euclidean metric, actually d((g(t), t), (g(s), s)) = (1 + ‖•
g(0)‖) |t − s|

for small |t − s|, where
•
g(0) is the tangent of the one-parameter group g(t), t ∈ R, and ‖ · ‖ is the norm on the tangent

space of Y at the identity element derived from the Riemannian tensor.

Proof. (c) follows from the definition of the metric d on Y ×R. The maps given in (a) are isometries of Z and map X to X ,
hence are isometries of X . To prove the uniqueness claim in (a) it suffices to prove it for gR = id. But then g is the identity
on the image of the one-parameter group g(t), t ∈R, by 1.1(a) and hence on all of Y . Hence g has the form given by 1.1(d).
To show (b) it suffices to show that every isometry h of H is of the form given in (a). This follows from (c). �
1.4. Remark. In our example the space has dimension 2 and the group of orientation preserving isometries is of index 2 in
the group of all isometries and is isomorphic to R. We can reduce the dimension of our space to 1 to obtain a group of
isometries with closed orbits on the non-compact component, which is diffeomorphic and locally isometric to R, and non-
closed dense orbits on the compact component, which is isometric to S1. The example is as follows. Take a one-dimensional
subtorus Y1 of Y containing the identity element of Y . Define X1 = Y1 ∪ H ⊂ Y ∪ H . Then the group of isometries of X1
consists of those maps ga = g(Lg(a), La) restricted to Y1 with g(a) ∈ Y1, and of the maps g(inv ◦ Lg(2a),−1 ◦ La) restricted to
Y1 with g(2a) ∈ Y1. The proof follows from the proof of 1.3.
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