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Splitting a simple homotopy equivalence
along a submanifold with filtration

A. Bak and Yu.V. Muranov

Abstract. A simple homotopy equivalence f : Mn → Xn of manifolds
splits along a submanifold Y ⊂ X if it is homotopic to a map that is
a simple homotopy equivalence on the transversal preimage of the sub-
manifold and on the complement of this preimage. The problem of splitting
along a submanifold with filtration is a natural generalization of this prob-
lem. In this paper we define groups LSF ∗ of obstructions to splitting along
a submanifold with filtration and describe their properties. We apply the
results obtained to the problem of the realization of surgery and splitting
obstructions by maps of closed manifolds and consider several examples.

Bibliography: 36 titles.

§ 1. Introduction

The classical surgery theory [1]–[5] has a natural generalization to the case
of stratified manifolds [6]–[11]. A pair of closed manifolds is the simplest case of
a stratified manifold [5]. The surgery theory of a manifold pair and the problem
of splitting a (simple) homotopy equivalence along a submanifold (see [2], [4], [5],
[12]–[15]) provide effective methods of the solution of many problems in geometric
topology (see [13]–[22]). The splitting problem is closely related to the classifica-
tion of manifolds of a fixed homotopy type, (see [16], [20]–[22]), the computation
of the Wall groups and natural maps between them (see [23] and [24]), problems of
the classification of involutions and group actions on manifolds (see [2], [12]–[14]),
and the realization of elements of the Wall group by normal maps of closed mani-
folds (see [10], [14]–[16], [18] and [19]).

The problem of splitting a simple homotopy equivalence along a submanifold with
filtration is a natural generalization of the problem of splitting along a submanifold.
In this paper we define groups LSF ∗ of obstructions to splitting along a submanifold
with filtration and investigate their properties. We consider topological manifolds
and the surgery obstruction groups L∗ = Ls

∗ [4], [5]. The orientation homomorphism
of the fundamental group of a manifold coincides with the homomorphism given by
the first Stiefel-Whitney class.

Let π be a group equipped with an orientation homomorphism w : π → {±1}.
We denote by L∗(π) = Ls

∗(π,w) the Wall group of obstructions to surgery up to
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a simple homotopy equivalence and by C∗(π) ⊂ L∗(π) the subgroup generated
by the elements that can be realized by normal maps of closed manifolds. Let
Cp
∗ (π) ⊂ Lp

∗(π) be the image of the subgroup C∗(π) in the projective group Lp
∗

under the natural map Ls
∗ → Lp

∗.
Let Xn be a closed topological manifold of dimension n > 5 with fundamental

group π1(X) = π and Y n−q ⊂ Xn a submanifold of codimension q. A simple
homotopy equivalence

f : Mn → Xn (1.1)

of n-dimensional manifolds splits along the submanifold Y if the homotopy class of
the map f contains a map g transversal to Y with N = g−1(Y ) for which the
restrictions

g
∣∣
N

: N → Y andg
∣∣
M\N

: M \N → X \ Y

are simple homotopy equivalences.
A manifold pair Y n−1 ⊂ Xn is called a Browder-Livesay pair if Y is a one-sided

submanifold and the inclusion maps induce isomorphisms π1(Y ) ∼= π1(X) and
π1(∂U) → π1(X \ Y ), where ∂U is the boundary of a tubular neighbourhood of Y
in X. In this case the map π1(X \ Y ) → π1(X) is an inclusion of index 2 and the
Browder-Livesay splitting obstruction group LNn−1

(
π1(X\Y ) → π1(X)

)
is defined

(see [2], [5], [12]–[15]). Let RPN be a real projective space of high dimension N > n.
For an arbitrary subgroup ρ → π of index 2 consider a map

φ : Xn → RPN ,

inducing the epimorphism of fundamental groups with kernel ρ. Let Y n−1 ⊂ Xn

be the transversal preimage of RPN−1. Using surgery inside the manifold X (see
[2] and [15]) we can assume that the pair Y ⊂ X is a Browder-Livesay pair and the
group of obstructions to splitting along Y is equal to LNn−1(ρ → π). For the inclu-
sion ρ → π of index 2 we have the rooted transfer map ∂ : Ln(π)→LNn−2(ρ→π)
(see [2], [5], [14], [17], [23]–[25]), which is called the Browder-Livesay invariant. The
map ∂ gives the first obstruction to the realization of elements of the group Ln(π)
by normal maps of closed manifolds [14].

In [15] Hambleton constructed the second Browder-Livesay invariant and proved
that it is sufficient to use these invariants for detecting the group Cp

∗ (π) in the
case of an arbitrary finite 2-group π. From the geometric point of view, the second
Browder-Livesay invariant arises in the case of the consecutive consideration of two
splitting problems for the Browder-Livesay pairs: first, for the pair Y ⊂ X and,
afterwards, for the pair Z ⊂ Y . These manifolds fit in the triple

Z ⊂ Y ⊂ X (1.2)

giving a filtration X of the manifold X. We shall call the triple (1.2) a Browder-
Livesay triple if the pairs (X, Y ) and (Y,Z) are Browder-Livesay pairs. The filtra-
tion (1.2) is a stratified manifold in the sense of Browder-Quinn [6]–[8]; hence the
Browder-Quinn stratified surgery obstruction groups

LBQ
n−2(X ) = LTn−2(X, Y, Z).

are defined.
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In the general case of a manifold with filtration we present the definition of the
Browder-Quinn groups below, at the end of § 2.

Let (X, Y, Z) be a triple of manifolds. The groups LSPn−2(X, Y, Z) of obstruc-
tions to splitting a simple homotopy equivalence f : Mn → Xn along the pair of
submanifolds (Z ⊂ Y ) are defined in [11]. The obstruction σ(f) ∈ LSFn−2(X, Y, Z)
is trivial if and only if the homotopy class of the map f contains a map g split along
every pair of manifolds in the triple (X, Y, Z). The Browder-Quinn groups and the
LSP∗-groups fit in the exact sequence [11]

· · · → LTn−q(X, Y, Z) −→ Ln(π1(X))
∂p−→ LSPn−q+1(X, Y, Z) → · · · . (1.3)

For the Browder-Livesay triple (1.2) the map

Ln(π1(X))
∂p−→ LSPn−2(X, Y, Z), n− 2 > 5, (1.4)

from the exact sequence (1.3) gives an invariant forbidding the realization of
elements of the group Ln(π1(X)) by normal maps of closed manifolds (see [11]
and [26]). This invariant is equivalent to the pair of Browder-Livesay invariants
constructed in [15] (see [11] and [26]).

Iterated Browder-Livesay invariants forbidding realization of elements of the
Wall groups by normal maps of closed manifolds were defined by Kharshiladze (see
[18], [23], [27], and [28]). Kharshiladze’s construction uses a filtration of a mani-
fold X by a system of submanifolds in which every pair of adjacent manifolds is
a Browder-Livesay pair for the fixed inclusion ρ → π = π1(X) of index 2.

Consider a filtration X :

Xk ⊂ Xk−1 ⊂ · · · ⊂ X2 ⊂ X1 ⊂ X0 = X (1.5)

of a closed topological manifold X by closed locally flat submanifolds.
In this paper we define groups LSF ∗(X ) of obstructions to splitting a simple

homotopy equivalence f in (1.1) along the subfiltration Y :

Xk ⊂ Xk−1 ⊂ · · · ⊂ X2 ⊂ X1. (1.6)

For dim Xk = nk > 5, the obstruction σk(f) ∈ LSFnk
(X ) is trivial if and only

if the homotopy class of the map f contains a map g that is split for all pairs of
submanifolds appearing in the filtration X . The introduced groups are a natural
generalization of the groups LS∗ and LSP∗.

In this paper we describe relations between the LSF ∗-groups, the classical sur-
gery obstruction groups, and the Browder-Quinn groups. The main relations are
given by commutative diagrams and braids of exact sequences. We obtain also rela-
tions between the groups LSF ∗ and various structure sets for the filtration (1.5). We
use the algebraic surgery theory of Ranicki (see [4], [7]–[11] and [28]–[31]) yielding
realization of obstruction groups, structure sets and natural maps on the spectrum
level. The groups LSF ∗(X ) are also realized by the spectra LSF (X ).

We call a filtration X a Browder-Livesay filtration if every pair of manifolds
(Xi, Xi+1) from (1.5) is a Browder-Livesay pair with respect to the inclusion
π1(Xi \ Xi+1) → π1(Xi) of index 2. In this case the spectra LSF (X ) are closely
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related to the surgery spectral sequence of Hambleton-Kharshiladze [32]. For the
case of a Browder-Livesay filtration we obtain a map into the group LSF ∗(X ) that
is equivalent to the system of iterated Browder-Livesay invariants given by the filtra-
tion X . After that we apply the groups LSF ∗ to the investigation of the realization
of splitting obstructions by simple homotopy equivalences of closed manifolds (see
[13], [28] and [33]). We give several explicit results for the groups LN∗(ρ → π).

§ 2. Algebraic surgery theory and manifolds with filtration

In this paper we use the algebraic surgery theory of topological manifolds and
manifolds with filtration (see [2], [4], [7]–[9], [17], [29]–[31] and [34]). In the present
section we recall necessary preliminary facts about the realization of groups and
maps on the spectrum level. In the homotopy category of spectra the concepts
of push-out and pull-back squares are equivalent (see [10], [31] and [35]); hence
we shall call them push-out squares. All obstruction groups under consideration
are equipped with the decoration ‘s’; for example, LS∗(F ) = LSs

∗(F ) (see [2], [4]
and [5]).

Let X be a connected topological space with fundamental group π = π1(X) and
orientation homomorphism w : π → {±1}. Let

L(π) = L(π,w) = {L−k(π) : k ∈ Z}

be the Ω-spectrum constructed in [4] (see [2], [5] and [12]). The spectrum L(π) is
4-periodic and its homotopy groups are isomorphic to Wall groups:

Lm(π) ' Lm+4(π), Ln(π) = πn(L(π)).

We denote by L• the 1-connected cover of the spectrum L(1). Then L•0 ' G/TOP
and there is a cofibration of spectra (see [4])

X+ ∧ L• → L(π) → S(X). (2.1)

Let
Sm(X) = πm(S(X)).

The homotopy long exact sequence of the cofibration (2.1) yields the algebraic
surgery exact sequence [4]

· · · → Lm+1(π) → Sm+1(X) → Hm(X;L•) → Lm(π) → · · · , (2.2)

where Hm(X;L•) = πm(X+ ∧ L•).
For a closed n-dimensional topological manifold X the left-hand part (m > n)

of the exact sequence (2.2) coincides with the surgery exact sequence (see [2], [4],
[5] and [10]). Under this identification Hn(X;L•) = [X, G/TOP] = T TOP(X) is
the set of normal invariants of the manifold X and Sn+1(X) = S TOP(X) is the
set of classes of s-cobordance of simple homotopy equivalences f : Mn → X.

An orientation-preserving group homomorphism g : π → π′ induces a cofibration
of spectra

L(π) → L(π′) → L(g). (2.3)
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The homotopy long exact sequence of the cofibration (2.3) is the relative exact
sequence of L-groups with πn(L(g)) = Ln(g) (see [2], [4], [29] and [31]).

The transfer map and its relative groups are also realized on the spectrum
level [29]. The disc bundle

(Dq, Sq−1) → (E, ∂E)
p→ X

over a closed manifold X induces the homotopy commutative diagram of spectra
(see [2], [5], [10], [29] and [31])

L(π1(X))
p]

//

p]
1 ((RRRRRRRRRRRRRR
ΩqL

(
π1(∂E) → π1(E)

)
δ]

��
Ωq−1L(π1(∂E))

(2.4)

in which p] and p]
1 are the transfer maps and δ] is the connecting map in the cofibra-

tion exact sequence of L-spectra that is induced by the natural map π1(∂E) →
π1(E) of fundamental groups.

Recall (see [4]) that a closed manifold pair (Xn, Y n−q, ξ) of codimension q is given
by a locally flat submanifold Y n−q of the manifold Xn together with a normal block
bundle

ξ = ξY⊂X : Y → B̃TOP(q), X = E(ξ) ∪S(ξ) Z, Z = X \ E(ξ).

In addition, the pair (E(ξ), S(ξ)) fits in the associated (Dq, Sq−1) fibration (see [4],
§ 7.2)

(Dq, Sq−1) → (E(ξ), S(ξ)) → Y. (2.5)

We assume in what follows that all pairs of manifolds of filtrations (1.2) and (1.5)
are manifold pairs in the sense of this definition.

Let
(f, b) : Mn → Xn (2.6)

be a topological normal map (t-triangulation) (see [4], [5; § 7], [8] and [10]), where b
is a map of topological normal bundles covering the map f . The map (2.6) defines
a t-triangulation (

(f, b), (g, c)
)
: (M,N) → (X, Y ) (2.7)

of the manifold pair (X, Y, ξ) (see [5]) if the following conditions are satisfied:
a) the map f is transversal to Y with N = f−1(Y );
b) the pair (M,N) is a manifold pair with normal block bundle

ν : N
f |N−→ Y

ξ−→ B̃TOP(q), M = E(ν) ∪S(ν) P, P = M \ E(ν);

c) the restriction
(g, c) = (f, b)

∣∣
N

: N → Y

is a t-triangulation of the manifold Y ;
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d) the restriction

(h, d) = (f, b)
∣∣
P

: (P, S(ν)) → (Z, S(ξ))

is a t-triangulation of the pair (Z, S(ξ)) for which the restriction

(h, d)
∣∣
S(ν)

: S(ν) → S(ξ)

coincides with the induced map

(g, c)!
∣∣
S(ν)

: S(ν) → S(ξ)

and (f, b) = (g, c)! ∪ (h, d).
By [5], Proposition 7.2.3, the set of concordance classes T TOP(X, Y, ξ) of t-

triangulations of a manifold pair (X, Y, ξ) coincides with the set of normal invariants
T TOP(X) of the manifold X.

By definition [5] a t-triangulation (2.7) of a manifold pair (X, Y, ξ) is an s-
triangulation if the above-defined maps

f : M → X, g : N → Y, (P, S(ν)) → (Z, S(ξ)) (2.8)

are simple homotopy equivalences (s-triangulations). We denote by S TOP(X, Y, ξ)
the set of concordance classes of s-triangulations of a manifold pair (X, Y, ξ) (see [5]).
By definition a simple homotopy equivalence f : M → X splits along the submani-
fold Y if it is homotopic to an s-triangulation of the pair (X, Y ). The natural
forgetful maps

S TOP(X, Y, ξ) → S TOP(X), S TOP(X, Y, ξ) → S TOP(Y ) (2.9)

are well defined (see [5], § 7.2).
For a manifold pair (X, Y, ξ) we denote by ∂U = S(ξ) the boundary of a tubular

neighbourhood U = E(ξ) of the submanifold Y in X and by X \ Y the closure
X \ U . Let

F =

π1(∂U) → π1(X \ Y )
↓ ↓

π1(Y ) → π1(X)

 (2.10)

be the square of fundamental groups with orientations. The maps in (2.10) are
induced by maps of the corresponding spaces. The groups LS∗(F ) of obstructions
to splitting of the simple homotopy equivalence (1.1) along the submanifold Y are
defined in [2], § 11. These groups depend on n− q (mod 4) and, functorially, on the
square F . We denote by Θ the map

S TOP(X) → LSn−q(F ), (2.11)

assigning an obstruction to splitting.
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For the normal map (2.6) the groups LPn−q(F ) of obstructions to surgery on
the manifold pair (X, Y, ξ) are defined (see [2] and [5]). The groups LPn−q(F ) also
depend only on n− q (mod 4) and, functorially, on the square F . We denote by σ
the map

T TOP(X) → LPn−q(F ) (2.12)

assigning the corresponding obstruction.
The groups LS∗(F ) and LP∗(F ) are realized by the spectra LS(F ) and LP (F ).

There exists a commutative diagram of spectra (see [10] and [31])

ΩL(π1(Y ))
Ωp]

// Ωq+1L
(
π1(X \ Y ) → π1(X)

)
//

Ωδ]

��

LS(F )

��
ΩL(π1(Y ))

Ωp]
1 // ΩqL(π1(X \ Y )) // LP (F )

(2.13)

in which the left-hand square follows from the diagram (2.4). The right-hand square
of the diagram (2.13) is a push-out. The homotopy long exact sequences of the maps
in this square give us the commutative braid of exact sequences (see [2], [3] and [31])

// Ln(π1(X \ Y )) //

))SSSSSSS
Ln(π1(X)) //

''OOOOOO
LSn−q−1(F ) //

''OOOOOOOO88qqqqqqqq

&&MMMMMMMM LPn−q(F )

))RRRRRR

66llllll
Lrel

n

((QQQQQQQ

66mmmmmmm

// LSn−q(F ) //

55kkkkkk
Ln−q(π1(Y )) //

77oooooo
Ln−1(π1(X \ Y )) //

77oooooooo

(2.14)
where Lrel

n = Ln

(
π1(X \ Y ) → π1(X)

)
. Note that the maps

LPn−q(F ) → Ln(π1(X)) and LPn−q(F ) → Ln−q(π1(Y ))

in (2.14) are the natural forgetful maps [2].
The map (2.12) is realized by the map of spectra (see [2], [4], [5], § 7.2, [7], [10]

and [31])
X+ ∧ L• → ΣqLP (F ),

fitting in a cofibration

X+ ∧ L• → ΣqLP (F ) → S(X, Y, ξ). (2.15)

Let Si(X, Y, ξ) = πi(S(X, Y, ξ)); then by § 7.2 of [5] there exists an isomorphism

Sn+1(X, Y, ξ) ∼= STOP(X, Y, ξ).

The maps from (2.9), (2.11) and (2.12) are also realized on the spectrum level
by maps fitting in a homotopy commutative diagram of spectra (see [5], § 7.2, [10]
and [31]):

ΩS(X, Y, ξ) // ΩS(X) //

��

ΣqLS(F )

��
ΩS(X, Y, ξ) // X+ ∧ L• // ΣqLP (F ),

(2.16)
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in which the right-hand square is a push-out. The homotopy cofibres of the vertical
map in the right-hand square in (2.16) are equal to L(π1(X)).

The homotopy long exact sequences of maps in the right-hand square in (2.16)
give us the commutative braid of exact sequences (see [5], Proposition 7.2.6)

// Ln+1(π1(X)) //

))RRRRRR
LSn−q(F ) //

((QQQQQQ
Sn(X, Y, ξ) //

%%KK
KKK

KK88qqqqqqq

&&MMMMMMM Sn+1(X)

((QQQQQQ

66mmmmmm
LPn−q(F )

((RRRRRR

66llllll

// Sn+1(X, Y, ξ) //

55llllll
Hn(X;L•) //

66mmmmmm
Ln(π1(X)) //

99sssssss

(2.17)
We now present necessary facts on the surgery on manifolds with filtration

in a form suitable for the development of splitting theory (see [6]–[9], [11], [26]
and [28]).

Let (X, Y, Z) be a triple of topological manifolds (1.2) with n = dim X, n− q =
dim Y , n−q−q′ = dim Z > 5. Let ξ be the normal bundle of Y in X, η the normal
bundle of Z in Y and ν the normal bundle of Z in X.

Similarly to (2.5) we obtain the associated fibrations

(Dq, Sq−1) → (E(ξ), S(ξ)) → Y,

(Dq′ , Sq′−1) → (E(η), S(η)) → Z,

(Dq+q′ , Sq+q′−1) → (E(ν), S(ν)) → Z.

We assume that the space E(ν) of the normal bundle ν is identified with the space
E(ξ|E(η)) of the restriction of the bundle ξ to the space E(η) of the normal bundle η
so that

E(ν) = E(ξ|E(η)), S(ν) = S(ξ|E(η)) ∪ E(ξ|S(η)) (2.18)

(see [6]–[8], [11], [26] and [28]).
Note that for the filtration X given by (1.2) there exists a commutative braid

of exact sequences (see [11])

// Sn+1(X ) //

((QQQQQQ
Hn(X;L•) //

**TTTTTTT
Ln(π1(X)) //

##H
HH

HH
H

%%KK
KKK

KK

99sssssss Sn+1(X)

**TTTTTTT

44jjjjjjj
LTn−q−q′

((PP
PPPP

66nnnnnn

// Ln+1(π1(X)) //

66mmmmmm
LSPn−q−q′(X, Y, Z) //

44jjjjjjj
Sn(X ) //

;;vvvvvv

(2.19)
which is realized on the spectrum level. The diagram (2.19) is a natural general-
ization of the diagram (2.17).

Consider the filtration (1.5). In what follows we suppose that conditions similar
to (2.18) hold for any triple of manifolds from this filtration. Then the filtra-
tion (1.5) is a stratified manifold in the sense of Browder-Quinn [6], [7]. Let nj

(n0 = n) be the dimension of the manifold Xj , qj = nj−1−nj (1 6 j 6 k) the codi-
mension of the submanifold Xj in Xj−1, and sj the codimension of Xj in X0 = X.
We assume that nk > 5. Let Fi (for 0 6 i 6 k − 1) be the square of fundamental
groups in the splitting problem for the pair of manifolds (Xi, Xi+1).
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We denote by X the filtration(
Xk−1 \Xk, ∂(Xk−1 \Xk)

)
⊂ · · · ⊂

(
X \Xk, ∂(X \Xk)

)
(2.20)

of the manifold X \Xk with boundary ∂(X \Xk). Every pair of manifolds in (2.20)
is a pair of manifolds with boundaries in the sense of Ranicki’s definition (see [5]).
The boundaries of manifolds in the filtration (2.20) give us the filtration ∂X :

∂(Xk−1 \Xk) ⊂ ∂(Xk−2 \Xk) ⊂ · · · ⊂ ∂(X \Xk) (2.21)

of the closed manifold ∂(X \Xk). For 0 6 j 6 k we denote by Xj the subfiltration

Xj ⊂ Xj−1 ⊂ · · · ⊂ X2 ⊂ X1 ⊂ X0 = X (2.22)

of the filtration X . As above, the filtrations Xj and ∂Xj are defined.
Recall the inductive definition of the spectrum LBQ(X ) for the Browder-Quinn

groups LBQ
∗ (X ) (see [6]–[8] and [28]). Note that in our definition the subscript ∗

for the obstruction group LBQ
∗ (X ) is equal to the dimension nk of the smallest

manifold in the filtration X and

πn(LBQ(X )) = LBQ
n (X ). (2.23)

Let
LBQ(X0) = L(π1(X0)). (2.24)

We defined the spectrum LBQ(X1) as the homotopy fibre of the composition

L(π1(X1))
p]
1−→ Ωq1−1L

(
π1(∂(X0 \X1))

)
−→ Ωq1−1L(π1(X0 \X1)),

where the first map is the transfer and the second map is induced by the inclusion
∂(X0 \X1) ⊂ (X0 \X1). We point out (see (2.13)) that

LBQ(X1) ' LP (F0). (2.25)

Assume that the spectra LBQ(Xj−1) are already defined for 0 6 j 6 k. We
define the spectrum LBQ(Xj) as the homotopy fibre of the composition

L(π1(Xj)) → Ωqj−1LBQ(∂Xj) → Ωqj−1LBQ(Xj), (2.26)

where the first map is the transfer (see [7], § 6) and the second map is induced by
the natural inclusion of filtrations ∂Xj → Xj .

Directly from the definition we obtain the cofibrations

LBQ(Xj) → L(π1(Xj)) → Ωqj−1LBQ(Xj), 1 6 j 6 k, (2.27)

and the homotopy long exact sequences

· · · → LBQ
n (Xj) → Ln(π1(Xj)) → LBQ

n+qj−1(Xj) → · · · . (2.28)
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For 0 6 j 6 k there exist cofibrations (see [7], §§ 6, 7) and [8])

X+ ∧ L• → Σn0−nj LBQ(Xj) → S(Xj). (2.29)

For j = 0 the cofibration (2.29) coincides with (2.1), and for j = 1 the cofibra-
tion (2.29) coincides with (2.15) for the pair (X, X1).

Let Si(Xj) = πi(S(Xj)). Then there exist isomorphisms (see [7], [8])

Sn+1(Xj) = S TOP(Xj), 0 6 j 6 k,

where the set S TOP(Xj) consists of the concordance classes of s-triangulations of
the filtration Xj (see [7], [8]).

For 0 6 i 6 j 6 k we denote by X i
j the subfiltration

Xj ⊂ Xj−1 ⊂ · · · ⊂ Xi (2.30)

of the filtration X . We shall write the filtration X i
k as X i, and X 1

k = Y
(see (1.6)).

Let

Gi = π1(Xi), 0 6 i 6 k, G0 = G, ρi = π1(Xi \Xi+1), 0 6 i 6 k − 1.

By [8] there are the following push-out squares of spectra:

LBQ(X i
j ) //

��

Ωqj LBQ(X i
j−1)

��
LBQ(X i+1

j ) // Ωqj LBQ(X i+1
j−1 )

0 6 i < i + 1 < j 6 k, (2.31)

and
LBQ(X i

i+1) //

��

Ωqi+1LBQ(X i
i )

��
LBQ(X i+1

i+1 ) // Ωqi+1L(ρi → Gi)

0 < i + 1 6 k. (2.32)

Note that the square (2.32) coincides with the square

LP (Fi) //

��

Ωqi+1L(Gi)

��
L(Gi+1) // Ωqi+1L(ρi → Gi)

(2.33)

which realizes the central square in the diagram (2.14) for the pair (Xi,Xi+1).
The horizontal maps in the diagram (2.31) correspond to the map of forgetting

the submanifolds Xj , and the vertical maps correspond to the map of forgetting
the submanifold Xi. In the diagram (2.31) the homotopy fibre of the vertical maps
is equal to Ωsj L(ρi) and the homotopy fibre of the horizontal maps is equal to
LS(Fj−1).
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§ 3. Splitting along a submanifold with filtration

In this section we consider a filtration X (see (1.5)). We define the spectra
LSF (Xi), 1 6 i 6 k, and the groups

πn(LSF (Xi)) = LSFn(Xi), (3.1)

where Xi is the subfiltration defined in (2.22). The group LSFnk
(X ), where nk

is the dimension of the smallest manifold Xk of the filtration X , is the group
of obstructions to splitting a simple homotopy equivalence (1.1) along the sub-
filtration Y = X 1 from (1.6). We describe relations between the groups LSF ∗,
the Browder-Quinn groups, and various structure sets for the filtration X . We
preserve the notation and the agreements of the previous section.

The subfiltration X i
i+1 of the filtration X is given by the manifold pair Xi+1⊂Xi

(0 6 i < i + 1 6 k). By definition, let

LSF (X i
i+1) = LS(Fi). (3.2)

Consider the composition

LBQ(X 1
2 ) → Ωq2L(X 1

1 ) → Ωq1+q2L
(
π1(X \X1) → π1(X)

)
, (3.3)

in which the first map is the forgetting map from the diagram (2.32) (for i = 1)
and the second is the q2-looped map of the transfer p] for the pair (X0, X1) (see
the diagrams (2.4) and (2.13)). Denote by

LSF (X2) = LSF (X 0
2 ) = LSP (X0, X1, X2)

the homotopy fibre of the composition (3.3) (see [11]). The diagram (2.31) and this
notation give rise to the following homotopy commutative diagram of spectra [11]):

LBQ(X 1
2 ) // Ωs2L

(
π1(X \X1) → π1(X)

)
//

��

Ω−1LSF (X2)

��
LBQ(X 1

2 ) // Ωs2−1L(π1(X \X1)) // Ω−1LBQ(X2)

(3.4)

where s2 = q1 + q2. The rows in the diagram (3.4) are cofibrations and the right-
hand square is a push-out.

The upper row of the diagram (2.31) yields a sequence of maps of spectra:

LBQ(X 1
k ) → ΩqkLBQ(X 1

k−1) → · · · → Ωsk−q1L(X 1
1 ) = Ωsk−q1L(G1). (3.5)

For 1 6 j 6 k consider the composition

LBQ(X 1
j ) → Ωsj−q1L(G1) → Ωsj L

(
π1(X \X1) → π1(X)

)
(3.6)

in which the first map follows from (3.5) by means of the corresponding delooping
and the second map is similar to the map in (3.3). We define the spectrum LSF (Xj)
as the homotopy fibre of the composition (3.6). Then we obtain a cofibration

LBQ(X 1
j ) → Ωsj L

(
π1(X \X1) → π1(X)

)
→ Ω−1LSF (Xj). (3.7)

Now, (3.1) defines the groups LSFn(Xj), 1 6 j 6 k, of the filtration Xj . It follows
from the definition that the groups LSFn depend on n (mod 4).
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Proposition 1. The following commutative diagram of spectra holds :

LBQ(X 1
j ) // Ωsj L

(
π1(X \X1) → π1(X)

)
//

��

Ω−1LSF (Xj)

��
LBQ(X 1

j ) // Ωsj−1L(π1(X \X1)) // Ω−1LBQ(Xj)

(3.8)

in which the horizontal rows are cofibrations and the right-hand square is a push-
out. The homotopy fibre of the vertical maps of the right-hand square is equal to
Ωsj L(π1(X)).

Proof. This follows from the diagrams (2.31), (3.5) and the definition of the spec-
trum LSF (Xj).

Corollary 1. The groups LSF ∗ = LSF ∗(X ) fit in the commutative braid of exact
sequences

// Ln(ρ0) //

''NNNNN
Ln(G0) //

((QQQQQQ
LSFm−1

//

##G
GGGGG

!!C
CC

CC
C

=={{{{{
LBQ

m (X )

''OOOOO

77ooooo
Ln(ρ0 → G0)

((RRRRRR

66llllll

// LSFm
//

77ppppp
LBQ

m (Y )

66mmmmmm
// Ln−1(ρ0) //

;;wwwwww

(3.9)

where ρ0 = π1(X \X1), G0 = π1(X) and m = n− sk.

Proof. The homotopy long exact sequences of the maps in the right-hand square
in (3.8) give us the diagram (3.9).

The diagram (3.9) is a natural generalization of the diagram (2.14).

Corollary 2. Let X1 be a submanifold of X of codimension q1 > 3. Then

LSFn(X ) ∼= LBQ
n (Y )

for all n.

Proof. In the case under consideration Ln(ρ0 → G0) = 0 since the map ρ0 → G0 is
an isomorphism. The result now follows from the diagram (3.9).

Theorem 1. For 2 6 j 6 k there exists a push-out square of spectra

LSF (Xj) //

��

LBQ(X 1
j )

��
Ωqj LSF (Xj−1) // Ωqj LBQ(X 1

j−1)

(3.10)

in which the homotopy fibre of the vertical maps is equal to LS(Fj−1) and the
homotopy fibre of the horizontal maps is equal to

Ωsj+1L
(
π1(X \X1) → π1(X)

)
.
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The square (3.10) gives rise to the braid of exact sequences

// LSn(Fj−1) //

''PPPPPPP
LBQ

n (X 1
j ) //

((QQQQQQ
Lrel

m
//

$$JJ
JJJ

JJJ

##G
GGG

GGG

;;wwwwwww LSFn(Xj)

((QQQQQQQ

66mmmmmm
LBQ

l (X 1
j−1)

((RRRRRR

66llllllll

// Lrel
m+1

//

77nnnnnnn
LSF l(Xj−1) //

66mmmmmm
LSn−1(Fj−1) //

::tttttttt

(3.11)
where m = n + sj , l = n + qj and Lrel

∗ = L∗
(
π1(X \X1) → π1(X)

)
.

Proof. The definition of the spectrum LSF and the upper map for i = 1 in the
diagram (2.31) yield the homotopy commutative diagram of spectra

LSF (Xj) //

��

LBQ(X 1
j ) //

��

Ωsj L
(
π1(X \X1) → π1(X)

)

Ωqj LSF (Xj−1) // Ωqj LBQ(X 1
j−1) // Ωsj L

(
π1(X \X1) → π1(X)

) (3.12)

in which the left-hand vertical map is induced by the other two vertical maps
(see [35]). The homotopy fibre of the map LBQ(X 1

j ) → Ωqj LBQ(X 1
j−1) is equal to

LS(Fj−1) as follows from the diagram (2.31). The left-hand square is a push-out
since the cofibres of the horizontal maps are naturally homotopy equivalent.

Theorem 2. There exists a push-out square of spectra

ΩS(X) //

��

X+ ∧ L•

��
Ω−skLSF (X ) // Ω−skLBQ(X )

(3.13)

in which the homotopy cofibre of the horizontal maps is equal to L(π1(X)) and the
homotopy cofibre of the vertical maps is equal to S(X ).

The square (3.13) gives rise to the braid of exact sequences

// Sn+1(X )

((QQQQQQQ
// Hn(X,L•) //

((PPPPPP
Ln(π1(X)) //

$$HH
HHH

HH99sssssss

%%KKKKKKK Sn+1(X)

66nnnnnn

((PPPPPP
LBQ

nk
(X )

77nnnnnn

''PPPPPP

// Ln+1(π1(X)) //

66mmmmmmm
LSFnk

(X ) //

66nnnnnn
Sn(X ) //

::vvvvvvv

(3.14)

Proof. The required result follows from the homotopy commutative diagram

ΩS(X) //

��

X+ ∧ L• //

��

L(π1(X))

��
Ω−skLSF (X ) // Ω−skLBQ(X ) // L(π1(X))

(3.15)
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in which the maps in the right-hand square are defined in (2.29) and (3.5), the upper
row follows from the cofibration (2.1), the bottom row is defined in Proposition 1,
and the left-hand vertical map is induced by the other two vertical maps.

The commutative diagram (3.14) generalizes the diagrams from [5], Proposi-
tion 7.2.6, iv, and [11], Proposition 3.2. The map

Θk : Sn+1(X) −→ LSFnk
(X ) (3.16)

in the diagram (3.14) fits in the exact sequence

· · · → Sn+1(X ) −→ Sn+1(X) −→ LSFnk
(X ) → · · ·

and corresponds algebraically to the map assigning the obstruction to splitting
a simple homotopy equivalence f : M → X along the subfiltration Y .

Theorem 3. For 2 6 j 6 k there exists a push-out square of spectra

LSF (Xj) //

��

Ωsj S(Xj)

��
Ωqj LSF (Xj−1) // Ωsj S(Xj−1)

(3.17)

in which the homotopy cofibre of the horizontal maps is equal to Ω−1LS(Fj−1) and
the homotopy cofibre of the vertical maps is equal to Ωsj S(X ).

The square (3.17) gives rise to the braid of exact sequences

// Sm+1(X) //

((PP
PPPP

LSFm−sj−1(Xj−1) //

((QQQQQQ
LSm−sj−1(Fj−1) //

&&NNNNNNN99rrrrrrr

%%LLLLLL LSFm−sj
(Xj)

55llllll

))SSSSSS
Sm(Xj−1)

77nnnnn

((PPPPPP

// LSm−sj (Fj−1) //

66nnnnn
Sm(Xj) //

66mmmmmm
Sm(X)

88ppppppp
//

(3.18)

Proof. Consider a homotopy commutative diagram of spectra

ΩS(X) //

��

Ω−sj LSF (Xj) //

��

S(Xj)

��
ΩS(X) // Ω−sj−1LSF (Xj−1) // S(Xj−1)

(3.19)

in which the maps of the right-hand square follow from (3.15) and (3.17). The
description of the cofibres of the horizontal maps follows from Theorem 2. By The-
orem 1 the cofibre of the middle vertical map in (3.19) is equal to Ω−1−sj LS(Fj−1).

Theorem 4. There exists a homotopy commutative diagram of spectra

ΩS(X) //

��

ΣskLSF (X ) //

��

. . . // Σs2LSF (X2) //

��

Σs1LS(F0)

��
X+ ∧ L• // ΣskLBQ(X ) // . . . // Σs2LBQ(X2) // Σs1LP (F0)

(3.20)
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in which all the squares are push-outs and the cofibres of all the vertical maps are
naturally homotopy equivalent to the spectrum L(π1(X)).

Proof. The diagram (3.20) follows from the diagrams (2.29), (2.31), (3.15) and (3.17).

Corollary 3. For 2 6 j 6 k there are braids of exact sequences

// Lm+1(G) //

''NNNNNN
LSFm−sj−1(Xj−1) //

((QQQQQQQ
LSm−sj−1(Fj−1) //

%%LLLLLLLL

$$II
III

III

::uuuuuuuu LSFm−sj
(Xj)

((QQQQQQQ

66mmmmmmm
LBQ

m−sj−1(Xj−1)

((PPPPPPP

66nnnnnnn

// LSm−sj
(Fj−1) //

77pppppp
LBQ

m−sj
(Xj) //

66mmmmmmm
Lm(G) //

99ssssssss

(3.21)
which are realized on the spectrum level.

Proof. This follows from the diagram (3.20).

Corollary 4. For 2 6 j 6 k there are braids of exact sequences

// Lm+1(G) //

((PPPPPPP
LSm−s1(F0)

τj //

&&NNNNNN
LSFm−sj−1(X 1

j ) //

&&LLLLLLLL

$$J
JJJJJJ

::tttttttt LSFm−sj
(Xj)

''OO
OOO

O

77ooooooo
LPm−s1(F0)

((QQQQQQQ

66mmmmmmm

// LSFm−sj (X
1

j ) //

66nnnnnnn
LBQ

m−sj
(Xj) //

88pppppp
Lm(G) //

88rrrrrrrr

(3.22)
which are realized on the spectrum level.

Proof. The central square of the diagram (3.22) is realized by the square of spectra
from the diagram (3.20).

Corollary 5. Let
Θ: S TOP(X) → LSn−q1(F0)

be the map (2.11) for a pair (X0, X1) and let x ∈ LSn−q1(F0). If τj(x) 6= 0 for
some j, 2 6 j 6 k, then the element x cannot be realized as an obstruction to
splitting a simple homotopy equivalence into the closed manifold X .

Proof. It follows from [5], Proposition 7.2.7 that the image of the map Θ coincides
with the image of the map

Θ1 : Sn+1(X) → LSn−q1(F0),

which is realized on the spectrum level by the map

ΩS(X) −→ Σq1LS(F0). (3.23)

The map (3.23) is the composition of the maps in the upper row of the diagram
(3.20). The result now follows from the exact sequence with the map τj in the
diagram (3.22).
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§ 4. The Browder-Livesay filtration

We apply the groups LSF ∗ to the problem of the realization of splitting obstruc-
tions by simple homotopy equivalences of closed manifolds (see [13], [28] and [33])
and describe their relation to the iterated Browder-Livesay invariants. Afterwards,
we give several examples.

Assume that a manifold pair (Xn, Y n−1) is a Browder-Livesay pair. In this case
the square (2.10) has the following form:

F =


ρ

∼= //

��

ρ

��
G−

∼= // G+

 , (4.1)

where ρ = π1(∂U) ∼= π1(X \ Y ), G− = π1(Y ) and G+ = π1(X) are groups with
orientation homomorphisms. The vertical maps in (4.1) are inclusions of index 2.
The orientation homomorphisms on the groups G± coincide on the images of the
vertical maps and differ outside these images. In this case the groups LS∗(F )
are called the Browder-Livesay groups and are denoted by LN∗(ρ → G+) (see
[12]–[15], [17], [18], [23]–[25] and [34]). Throughout this section we suppose that the
filtration X in (1.5) is a Browder-Livesay filtration. In this case the dimension of
the submanifold Xi is n−i, where n = dim X, the codimension si of the submanifold
Xi in X is i, and

Fi =


ρi

∼= //

��

ρi

��
Gi+1

∼= // Gi

 , (4.2)

where all the groups Gi = π1(Xi) are isomorphic to the group G0 = π1(X0) if we
forget the orientation homomorphism.

We now state more algebraically several results of surgery theory for the Browder-
Livesay filtration (1.5).

Consider an infinite diagram G of groups with orientations (which is commutative
as a diagram of groups):

. . .

""F
FF

FF
FF

FF
ρ2

  B
BB

BB
BB

B

~~||
||

||
||

ρ1

  B
BB

BB
BB

B

~~||
||

||
||

ρ0

  B
BB

BB
BB

B

~~||
||

||
||

G3
// G2

// G1
// G0

(4.3)

in which the maps ρi → Gi and ρi → Gi+1 are inclusions of index 2 of oriented
groups. Every horizontal map is an isomorphism preserving the orientation on
the image of the corresponding group ρi and reversing the orientation outside this
image.

The commutative triangles of groups in (4.3) define the sequence of squares F

F0, F1, . . . , Fi, . . . , i > 0. (4.4)
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For 0 6 i 6 j we denote by F i
j the finite subset

Fi, Fi+1, . . . , Fj−1, Fj (4.5)

of the sequence (4.4). Let Fj = F 0
j . For any square of groups (4.1) the Browder-

Livesay groups LN∗(ρ → G) are defined in [25]. These algebraically defined groups
and the diagram (2.14) are realized on the spectrum level (see [10], [17], [29], [31]
and [34]). We can transfer the inductive definition of the spectra LSF (Xj) to the
case of the sequence F using the push-out squares (2.31) and (2.32). Thus, we
obtain the spectra LBQ(F i

j ) and LSF (F i
j ).

Note that the Browder-Livesay filtration (1.5) yields the finite set Fk−1 = F 0
k−1.

In this case for 0 6 i 6 j < k we have

LBQ(F i
j ) = LBQ(X i

j+1), LSF (F i
j ) = LSF (X i

j+1).

For the sequence F the diagram (3.20) yields the homotopy commutative dia-
gram of spectra

· · · // Σk+1LSF (Fk) //

��

· · · // ΣLSF (F0) //

��

∗

��
· · · // Σk+1LBQ(Fk) //

��

· · · // ΣLBQ(F0) //

��

L(G0)

��
· · · // L(G0) · · · L(G0) L(G0)

(4.6)

columns in which are cofibrations. We point out that in (4.6) we have LSF (F0) =
LS(F0) and LBQ(F0) = LP (F0) and

The diagram (4.6) yields the filtration of spectra

· · · // Σk+1LBQ(Fk) // · · · // ΣLBQ(F0) // L(G0)

· · · // Xk+1
// · · · // X1

// X0

which defined the surgery spectral sequence (see [8] and [32])

Ep,q
r = Ep,q

r (F ), p > 0, q ∈ Z,

such that
Ep,q

1 = πq−p(Xp, Xp+1) ∼= LNq−2p−2(ρp → Gp). (4.7)

The first differential
dp,q
1 : Ep,q

1 → Ep+1,q
1

of the surgery spectral sequence coincides with the composition

LNq−2p−2(ρp → Gp) → Lq−2p−2(Gp+1) → LNq−2p(ρp+1 → Gp+1). (4.8)
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The first map of the composition (4.8) fits in the diagram (2.14) for the square Fp,
and the second map fits in the diagram (2.14) for the square Fp+1.

The upper row of the diagram (4.6) yields the filtration of spectra

· · · // Σk+1LSF (Fk) // · · · // ΣLSF (F0) // ∗

· · · // Yk+1
// · · · // Y1

// Y0

The homotopy spectral sequence E r
p,q(F ) of this filtration is similar to the surgery

spectral sequence (see [8], [32] and [36]). In this case we obtain

E p,q
1 = πq−p(Yp, Yp+1)

with the first differential
∂p,q
1 : E p,q

1 −→ E p+1,q
1 .

Proposition 2. For p > 0 and q ∈ Z the vertical maps in the diagram (4.6) induce
an isomorphism

E p,q
r

∼= Ep,q
r

of spectral sequences. In particular, the differential ∂p,q
1 coincides with the compo-

sition (4.8).

Proof. All the top squares in (4.6) are push-outs; hence the fibres of all the corres-
ponding horizontal maps coincide (see [32] and [36]).

Proposition 3. For j > 2 there is a braid of exact sequences

// Ln+1(G0) //

((PPPPPP
LNn−1(ρ0 → G0)

τj //

((QQQQQQQ
LSFm−1(F 1

j−1) //

&&LLLLLLL

$$JJ
JJJ

JJ

::ttttttt LSFm(Fj−1)

((RRRRRR

66lllllll
LPn−1(F0)

((PPPPPPP

66nnnnnn

// LSFm(F 1
j−1) //

66nnnnnn
LBQ

m (Fj−1) //

66mmmmmmm
Ln(G0) //

88rrrrrrrr

(4.9)
where m = n− j. The diagram (4.9) is realized on the spectrum level.

Proof. This follows from the diagram (4.6).

Theorem 5. Let G be a diagram of groups (4.3) and x ∈ LNn−1(ρ0 → G0) an
element of the Browder-Livesay group. If τj(x) 6= 0 for some j > 2, then the ele-
ment x cannot be realized as an obstruction to splitting a simple homotopy equiva-
lence f : Mn → Xn of closed manifolds with π1(X) = G0.

Proof. Let f : Mn → Xn
0 be a simple homotopy equivalence, and (X0, X1) a

Browder-Livesay pair of closed manifolds such that the splitting obstruction Θ(f)
is equal to x ∈ LNn−1(ρ0 → G0), where G0 = π1(X0), ρ0 = π1(X0 \X1). Using the
geometric definition of 4-periodicity (see [2], Theorem 11.6.1) we can assume that
n > j + 5. Let RPN be a real projective space of high dimension. Consider a map

φ : X1 → RPN ,
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which induces an epimorphism of fundamental groups G1 = π1(X1) → Z/2 with
kernel ρ1. Without loss of generality we can assume (see the introduction) that the
map φ is transversal to RPN−1 with φ−1(RPN−1) = X2 and that the pair X2 ⊂ X1

is a Browder-Livesay pair with the square F1 in the splitting problem. Iterating
this construction we obtain a Browder-Livesay filtration X

Xj ⊂ Xj−1 ⊂ · · · ⊂ X1 ⊂ X0, (4.10)

in which Fi is the square in the splitting problem for the pair (Xi, Xi+1). Similarly
to the proof of Corollary 5 we obtain that the element x lies in the image of the
map

LSFn−j(Fj−1) → LNn−1(ρ0 → G0)

from the diagram (4.9). Hence τj(x) = 0. We obtain a contradiction, which proves
the theorem.

For j > 1 we have the homotopy long exact sequences

· · · −→ LBQ
n−j(Fj−1) → Ln(G0)

βj−→ LSFn−j−1(Fj−1) −→ · · · (4.11)

of the vertical cofibrations from the diagram (4.6).

Theorem 6. Let x ∈ Ln(G0). If βj 6= 0 for some j > 1, then the element x cannot
be realized by a normal map of closed n-dimensional manifolds.

Proof. If βj(x) 6= 0, then it follows from the exact sequence (4.11) that x does not
lie in the image of the map LBQ

n−j(Fj−1) → Ln(G0). Then, by [8] and [28], the
element x cannot be realized by a normal map of closed n-dimensional manifolds.

Every diagram G yields the set of iterated Browder-Livesay invariants (see [8],
[11], [18], [27] and [28]). Note that the map βj , j > 1, is equivalent to the full
set of iterated Browder-Livesay invariants of order up to j (see [8], [11], [18], [27]
and [28]).

Proposition 4. There is a homotopy commutative diagram of spectra

· · · // Σk+1LSF (Fk) //

��

. . . // Σ3LSF (F2) //

��

Σ2LSF (F1)

��
· · · // Σ1LN(ρ0 → G0)

��

. . . Σ1LN(ρ0 → G0)

��

Σ1LN(ρ0 → G0)

��
· · · // Σk+2LSF (F 1

k ) // . . . // Σ4LSF (F 1
2 ) // Σ3LS(F1)

(4.12)
columns in which are cofibrations.

Proof. This follows from the diagram (4.6) and Proposition 3.

Corollary 6. Let x ∈ LNn−1(ρ0 → G0). If τj(x) 6= 0 for some j > 2, then
τi(x) 6= 0 for all i > j.
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Proof. For j > 2 the map

Σ1LN(ρ0 → G0) → Σj+1LSF (F 1
j−1)

in the diagram (4.12) induces the map τj . The required result now follows from
(4.12).

The forbidding invariant τ2 is similar to the first Browder-Livesay invariant.

Theorem 7. The invariant τ2 fits in the braids of exact sequences

// Ln+1(G0) //

((QQQQQQQ
LNn−1(ρ0 → G0)

τ2 //

''PPPPPPP
LNn−3(ρ1 → G1) //

&&MMMMMMMM

&&MMMMMMMM

88qqqqqqqq LSFn−2(F1)

((QQQQQQ

66mmmmmmm
LPn−1(F0)

''PPPPPPP

77nnnnnnn

// LNn−2(ρ1 → G1) //

66mmmmmmm
LBQ

n−2(F1) //

77nnnnnnn
Ln(G0) //

88qqqqqqqq

(4.13)
and

// Ln+1(ρ0 → G0) //

))RRRRRRR
LNn−1(ρ0 → G0)

τ2 //

((QQQQQQQ
LNn−3(ρ1 → G1) //

''OOOOOOOO

''OOOOOOOO

77oooooooo LSFn−2(F1)

))RRRRRRR

55lllllll
Ln−1(G1)

((QQQQQQQ

66mmmmmmm

// LNn−2(ρ1 → G1) //

55lllllll
LPn−2(F1) //

66mmmmmmm
Ln(ρ0 → G0) //

77oooooooo

(4.14)
which are realized on the spectrum level. The map τ2 coincides with the first differ-
ential

d0,n+1
1 : E0,n+1

1 → E1,n+1
1

of the surgery spectral sequence for the diagram G .

Proof. The diagram (4.9) with j = 2 yields the diagram (4.13). The diagram
(3.11) with j = 2 yields the diagram (4.14). The push-out square (3.10) yields the
homotopy commutative diagram

LSF (F1) //

��

LP (F1)

��
Ω1LN(ρ0 → G0) //

δ

((QQQQQQQQQQQQ
Ω1L(G1) //

��

Ω2L(ρ0 → G0)

Ω−1LS(F1) Ω−1LN(ρ1 → G1)

(4.15)

the central row and the central column in which are cofibrations. The map δ
in (4.15) realizes the map τ2 on the spectrum level. It now follows from (4.8) that
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the map of homotopy groups

πn−2

(
Ω1LN(ρ0 → G0)

) δ∗ // πn−2

(
Ω−1LN(ρ1 → G1)

)

LNn−1(ρ0 → G0) LNn−3(ρ1 → G1)

induced by δ coincides with d0,n+1
1 .

We now consider several examples of the application of the results obtained.
Let i : ρ → G− be an inclusion of index 2 of Abelian groups, where the orientation

homomorphism is trivial on the group ρ and non-trivial on the group G−.

Theorem 8. No element of infinite order of the group LN2k(ρ → G−) can be real-
ized as the splitting obstruction of a simple homotopy equivalence of closed mani-
folds.

Proof. The inclusion i yields the diagram of groups G , in which all inclusions of
index 2 coincide with i and the orientation on the groups Gj changes on each
successive group outside the image of the map i. In particular, the orientation
homomorphisms of all the groups G2k coincide with the orientation homomorphism
of the group G0 = G−. By Theorem 7 the map τ2 coincides in dimension 2k
with the first differential of the surgery spectral sequence, which is yielded by the
composition

LN2k(ρ → G0) → L2k(π) → LN2k+2(ρ → G1)
∼=→ LN2k(ρ → G0) (4.16)

and is multiplication by 2 (see [15] and [32]). The required result now follows from
Theorem 5.

Corollary 7. Only the trivial element of the group

LN2k(Z/2n → Z/2n+1−) = Z2n−1

can be realized as the splitting obstruction of a simple homotopy equivalence of closed
manifolds.

Corollary 8. Only the trivial elements of the groups

LN0(1 → Z/2−) = Z, LN0(Z/2 → Z⊕ Z/2−) = Z⊕ Z,

LN0(Z/2⊕ Z/2 → Z⊕ Z⊕ Z/2−) = Z⊕ Z⊕ Z⊕ Z

can be realized as the splitting obstructions of simple homotopy equivalences of closed
manifolds.

Corollary 9. Let RP 4k be a real projective space. Then for any manifold X4m+1

with π1(X) = 0 and 4m + 4k + 1 > 5 a simple homotopy equivalence

f : M → X × RP 4

of (4m + 4k + 1)-dimensional manifolds splits along the submanifold X × RP 3.
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[32] I. Khèmblton (Hambleton) and A.F. Kharshiladze, “A spectral sequence in surgery”, Mat.
Sb. 183:9 (1992), 3–14; English transl. in Russian Acad. Sci. Sb. Math. 77:1 (1994), 1–9.

[33] P.M. Akhmetiev, A. Cavicchioli and D. Repovš, “On realization of splitting obstructions
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