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LOCAL-GLOBAL PRINCIPLE FOR TRANSVECTION GROUPS
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(Communicated by Martin Lorenz)

Abstract. In this article we extend the validity of Suslin’s Local-Global Prin-
ciple for the elementary transvection subgroup of the general linear group
GLn(R), the symplectic group Sp2n(R), and the orthogonal group O2n(R),
where n > 2, to a Local-Global Principle for the elementary transvection sub-
group of the automorphism group Aut(P ) of either a projective module P of
global rank > 0 and constant local rank > 2, or of a nonsingular symplec-
tic or orthogonal module P of global hyperbolic rank > 0 and constant local
hyperbolic rank > 2. In Suslin’s results, the local and global ranks are the
same, because he is concerned only with free modules. Our assumption that
the global (hyperbolic) rank > 0 is used to define the elementary transvec-
tion subgroups. We show further that the elementary transvection subgroup
ET(P ) is normal in Aut(P ), that ET(P ) = T(P ), where the latter denotes
the full transvection subgroup of Aut(P ), and that the unstable K1-group
K1(Aut(P )) = Aut(P )/ET(P ) = Aut(P )/T(P ) is nilpotent by abelian, pro-
vided R has finite stable dimension. The last result extends previous ones of
Bak and Hazrat for GLn(R), Sp2n(R), and O2n(R).

An important application to the results in the current paper can be found
in a preprint of Basu and Rao in which the last two named authors studied the

decrease in the injective stabilization of classical modules over a nonsingular
affine algebra over perfect C1-fields. We refer the reader to that article for
more details.

1. Introduction

In 1956, J-P. Serre asked if a finitely generated projective module over a poly-
nomial ring over a field is free. This is known as Serre’s problem on projective
modules. It was affirmatively proved by D. Quillen and A. Suslin independently
in 1976. Now it is known as the Quillen-Suslin Theorem. Quillen established the
following Local-Global Principle in his proof of Serre’s problem in [12].

Quillen’s local-global principle. A finitely presented module over a polynomial
ring R[X] over a commutative ring R is extended if and only if it is locally extended
over the localization of R[X] at every maximal ideal of R.

We shall be concerned with the matrix-theoretic version of this theorem. It was
established by Suslin in his second proof of Serre’s problem in [13].
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Suslin’s local-global principle. Let R be a commutative ring with identity and
let α(X) ∈ GLn(R[X]) with α(0) = In. If αm(X) ∈ En(Rm[X]), for every maximal
ideal m ∈ Max(R), then α(X) ∈ En(R[X]).

Shortly after his proof of Serre’s problem, Suslin-Kopeiko in [14] established an
analogue of the Local-Global Principle for the elementary subgroup of the orthog-
onal group. Around the same time, V.I. Kopeiko proved the analogous result for
the elementary subgroup of the symplectic group. In this note we establish an
analogous Local-Global Principle for the elementary transvection subgroup of the
automorphism group of projective, symplectic and orthogonal modules of global
rank at least 1 and local rank at least 3. All previous work on this topic assumed
that the global rank is at least 3. By definition the global rank or simply rank of a
finitely generated projective R-module (resp. symplectic or orthogonal R-module)

is the largest integer r such that
r
⊕R (resp.

r

⊥ H(R)) is a direct summand (resp.
orthogonal summand) of the module. H(R) denotes the hyperbolic plane.

Using this principle one can generalize well known facts regarding the group

GLn(R) (Sp2n(R) or O2n(R)) of automorphisms of the free module
n
⊕R of rank n

(free hyperbolic module
n

⊥ H(R) of rank n) to the automorphism group of finitely
generated projective (symplectic or orthogonal) modules of global rank at least 1
and satisfying the local condition mentioned above. Specifically, we shall show that
the elementary transvection subgroup is normal and the full automorphism group
modulo its elementary transvection subgroup is nilpotent-by-abelian whenever the
stable dimension is finite. These generalize results by Suslin and Kopeiko in [9],
[13], [14], Taddei in [15], the first author in [1], Vavilov and Hazrat in [8], and
others. We treat the above three groups uniformly.

Our main results are as follows:
Let Q denote a projective, symplectic or orthogonal module of global rank ≥ 1

and satisfying the local conditions stated above. Let

G(Q) = the automorphism group of Q,

T(Q) = the subgroup generated by transvections, and

ET(Q) = the subgroup generated by elementary transvections.

Theorem 1. Let R be a commutative ring with identity and let α(X) ∈ G(Q[X]),
with α(0) = In. If αm(X) ∈ ET(Qm[X]), for every maximal ideal m ∈ Max(R),
then α(X) ∈ ET(Q[X]).

Theorem 2. T(Q) = ET(Q). Hence ET(Q) is a normal subgroup of G(Q).

By applying the Local-Global Principle (Theorem 1) we prove

Theorem 3. The factor group G(Q)
ET(Q) is nilpotent-by-abelian when the stable di-

mension (i.e. Bass-Serre dimension) is finite.

To prove the result we use the ideas of the first author in [1], where he has shown
that the group GLn(R)/En(R) is nilpotent-by-abelian for n ≥ 3, but we avoid the
functorial construction of the descending central series.

2. Preliminaries

Definition 2.1. Let R be an associative ring with identity. The following condition
was introduced by H. Bass:
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(Rm) for every (a1, . . . , am+1) ∈ Umm+1(R), there are {xi}(1≤i≤m) ∈ R such
that (a1 + am+1x1)R+ · · ·+ (am + am+1xm)R = R.

The condition (Rm) ⇒ (Rm+1) for every m > 0. Moreover, for any n ≥ m + 1
the condition (Rm) implies (Rn) with xi = 0 for i ≥ m+ 1.

By stable range for an associative ring R we mean the least n such that (Rn)
holds. The integer n − 1 is called the stable dimension of R and is denoted by
sdim(R).

Lemma 2.2 (cf. [2]). If R is a commutative Noetherian ring with identity of Krull
dimension d, then sdim(R) ≤ d.

Definition 2.3. A row vector (a1, . . . , an) ∈ Rn is said to be unimodular in R
if
∑n

i=1 Rai = R. The set of unimodular vectors of length n in R is denoted by
Umn(R). For an ideal I, Umn(R, I) will denote the set of those unimodular vectors
which are (1, 0, . . . , 0) modulo I.

Definition 2.4. Let M be a finitely generated left module over a ring R. An
element m in M is said to be unimodular in M if Rm ∼= R and Rm is a direct
summand of M , i.e. if there exists a finitely generated R-submodule M ′ such that
M ∼= Rm⊕M ′.

Definition 2.5. For an element m ∈ M , one can attach an ideal, called the order
ideal of m in M , viz. OM (m) = {f(m)|f ∈ M∗ = Hom(M,R)}. Clearly, m is
unimodular if and only if Rm = R and OM (m) = R.

Definition 2.6. Following H. Bass ([2], pg. 167) we define a transvection of a
finitely generated left R-module as follows: Let M be a finitely generated left R-
module. Let q ∈ M and ϕ ∈ M∗ with ϕ(q) = 0 . An automorphism of M of the
form 1 + ϕq (defined by ϕq(p) = ϕ(p)q, for p ∈ M), will be called a transvection
of M if either q ∈ Um(M) or ϕ ∈ Um(M∗). We denote by Trans(M) the subgroup
of Aut(M) generated by transvections of M .

Definition 2.7. Let M be a finitely generated left R-module. The automorphisms
of the form (p, a) �→ (p+ax, a) and (p, a) �→ (p, a+ψ(p)), where x ∈ M and ψ ∈ M∗,
are called elementary transvections of M ⊕ R. (It is easily verified that these
automorphisms are transvections.) The subgroup of Trans(M ⊕ R) generated by
the elementary transvections is denoted by ETrans(M ⊕R).

Definition 2.8. Let R be an associative ring with identity. To define other classical
modules, we need an involutive antihomomorphism (involution, in short) ∗ : R →
R (i.e., (x − y)∗ = x∗ − y∗, (xy)∗ = y∗x∗ and (x∗)∗ = x, for any x, y ∈ R). We
assume that 1∗ = 1. For any left R-module M the involution induces a left module
structure to the right R-module M∗ = Hom(M,R) given by (xf)v = (fv)x∗, where
v ∈ M , x ∈ R and f ∈ M∗. Any right R-module can be viewed as a left R-
module via the convention ma = a∗m for m ∈ M and a ∈ R. Hence if M is a left
R-module, then OM (m) has a left R-module structure with scalar multiplication
given by λf(m) = f(λm).

Blanket assumption. Let A be an R-algebra, where R is a commutative ring with
identity, such that A is finite as a left R-module. Let A possesses an involution
∗ : r �→ r̄, for r ∈ A. For a matrix M = (mij) over A we define M = (mij)

t. Let

ψ1 = ( 0 1
−1 0 ), ψn = ψn−1 ⊥ ψ1 for n > 1; and ψ̃1 = ( 0 1

1 0 ), ψ̃n = ψ̃n−1 ⊥ ψ̃1, for
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n > 1. For a column vector v ∈ An we write ṽ = v̄tψn in the symplectic case and

ṽ = v̄tψ̃n in the orthogonal case. We define a form 〈 , 〉 as follows:

〈v, w〉 =
{
vt · w in the linear case,

ṽ · w otherwise.

(Viewing M as a right A-module we can assume the linearity.)
Since R is commutative, we can assume that the involution “∗” defined on A

is trivial over R. We shall always assume that 2 is invertible in the ring R while
dealing with the symplectic and the orthogonal cases.

Definition 2.9. A symplectic (orthogonal) A-module is a pair (P, 〈 , 〉), where
P is a projective left A-module of even rank and 〈 , 〉 : P × P → A is a nonsingular
(i.e. P ∼= P ∗ by x �→ 〈x, ·〉) alternating (symmetric) bilinear form.

Definition 2.10. Let (P1, 〈 , 〉1) and (P2, 〈 , 〉2) be two symplectic (orthogonal) left
A-modules. Their orthogonal sum is the pair (P, 〈 , 〉), where P = P1 ⊕ P2 and
the inner product is defined by 〈(p1, p2), (q1, q2)〉 = 〈p1, q1〉1 + 〈p2, q2〉2. Since this
form is also non-singular we shall henceforth denote (P, 〈 , 〉) by P1 ⊥ P2 and call it
the orthogonal sum of (P1, 〈 , 〉1) and (P2, 〈 , 〉2) (if 〈 , 〉1 and 〈 , 〉2 are clear from the
context).

Definition 2.11. For a projective left A-module P of rank n, we define H(P ) of
global rank rank n supported by P ⊕P ∗, with form 〈(p, f), (p′, f ′)〉 = f(p′)− f ′(p)
for the symplectic modules and f(p′) + f ′(p) for the orthogonal modules. There is
a unique nonsingular alternating (symmetric) bilinear form 〈 , 〉 on the A-module
H(A) = A ⊕ A∗ (up to scalar multiplication by A∗); namely, 〈(a1, b1), (a2, b2)〉 =
a1b2 − a2b1 in the symplectic case and a1b2 + a2b1 in the orthogonal case.

Remark 2.12. A bilinear form 〈 , 〉 induces a homomorphism Ψ : P → P ∗ =
Hom(P,A), defined by Ψ(p)(q) = 〈p, q〉. The converse is also true since 2 is in-
vertible in A. If 〈 , 〉 is symmetric, then one has Ψ = Ψ∗, and if 〈 , 〉 is alternating,
then one has Ψ + Ψ∗ = 0, under the canonical isomorphism P ∼= P ∗∗.

Definition 2.13. An isometry of a symplectic (orthogonal) module (P, 〈 , 〉) is an
automorphism of P which fixes the bilinear form. The group of isometries of (P, 〈 , 〉)
is denoted by Sp(P ) for the symplectic modules and by O(P ) for the orthogonal
modules.

Definition 2.14. Following Bass [3] we define a symplectic transvection as follows:
Let Ψ : P → P ∗ be an induced isomorphism. Let α : A → P be an A-linear map
defined by α(1) = u. Then α∗Ψ ∈ P ∗ is defined by α∗Ψ(p) = 〈u, p〉. Let v ∈ P be
such that α∗Ψ(v) = 〈u, v〉 = 0. An automorphism σ(u,v) of (P, 〈 , 〉) of the form

σ(u,v)(p) = p+ 〈u, p〉v + 〈v, p〉u+ 〈u, p〉u,
for u, v ∈ P with 〈u, v〉 = 0, will be called a symplectic transvection of (P, 〈 , 〉)
if either v ∈ Um(P ) or α∗Ψ ∈ Um(P ∗). (Viewing P as a right A-module we can
assume the linearity.)

Since 〈σ(u,v)(p1), σ(u,v)(p2)〉 = 〈p1, p2〉, σ(u,v) ∈ Sp(P, 〈 , 〉). Note that σ−1
(u,v)(p) =

p− 〈u, p〉v − 〈v, p〉u− 〈u, p〉u.
The subgroup of Sp(P, 〈 , 〉) generated by the symplectic transvections is denoted

by TransSp(P ).
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Definition 2.15. The (symplectic) transvections of (P ⊥ A2) of the form (p, b, a)
�→ (p+ aq, b− 〈p, q〉+ a, a) and (p, b, a) �→ (p+ bq, b, a+ 〈p, q〉 − b), where a, b ∈ A
and p, q ∈ P , are called elementary symplectic transvections. The subgroup of
TransSp(P ⊥ A2) generated by the elementary symplectic transvections is denoted
by ETransSp(P ⊥ A2).

In a similar manner we can define a transvection τ(u,v) for an orthogonal module
(P, 〈, 〉). For this we need to assume that u, v ∈ P are isotropic, i.e. 〈u, u〉 =
〈v, v〉 = 0.

Definition 2.16. An automorphism τ(u,v) of (P, 〈 , 〉) of the form

τ(u,v)(p) = p− 〈u, p〉v + 〈v, p〉u
for u, v ∈ P with 〈u, v〉 = 0 will be called an isotropic (orthogonal) transvec-
tion of (P, 〈 , 〉) if either v ∈ Um(P ) or α∗Ψ ∈ Um(P ∗) (see [7], pg. 214).

One checks that τ(u,v) ∈ O(P, 〈 , 〉) and τ−1
(u,v)(p) = p+ 〈u, p〉v − 〈v, p〉u.

The subgroup of O(P, 〈 , 〉) generated by the isotropic orthogonal transvections
is denoted by TransO(P ).

Definition 2.17. The isotropic orthogonal transvections of (P ⊥ A2) of the form
(p, b, a) �→ (p− aq, b+ 〈p, q〉, a) and (p, b, a) �→ (p− bq, b, a− 〈p, q〉), where a, b ∈ A
and p, q ∈ P , are called elementary orthogonal transvections. The subgroup
of TransO(P ⊥ A2) generated by elementary orthogonal transvections is denoted
by ETransO(P ⊥ A2).

Notation 2.18. In the sequel, P will denote either a finitely generated projective left
A-module of rank n, a symplectic left A-module or an orthogonal left A-module
of even rank n = 2r with a fixed form 〈 , 〉. Q will denote P ⊕ A in the linear
case, and P ⊥ A2, otherwise. To denote (P ⊕ A)[X] in the linear case and (P ⊥
A2)[X], otherwise, we will use the notation Q[X]. We assume that the rank of
the projective module is n ≥ 2 when dealing with the linear case, and n ≥ 6
when considering the symplectic and the orthogonal cases. For a finitely generated
projective A-module M we use the notation G(M) to denote Aut(M), Sp(M, 〈 , 〉)
and O(M, 〈 , 〉) respectively; S(M) to denote SL(M), Sp(M, 〈 , 〉) and SO(M, 〈 , 〉)
respectively; T(M) to denote Trans(M), TransSp(M) and TransO(M) respectively;
and ET(M) to denote ETrans(M), ETransSp(M) and ETransO(M) respectively.

The reader should be able to easily verify that if R is a reduced ring and P is
a free R-module, i.e. if P = Rr (in the symplectic and the orthogonal cases we
assume that P is free with the standard bilinear form), then ETrans(P ) ⊃ Er(R),
ETransSp(P ) ⊃ ESp(R) and ETransO(P ) ⊃ EOr(R), for r ≥ 3, in the linear case,
and for r ≥ 6, in the symplectic (and orthogonal) case.

Equality in all these cases will follow from Lemma 2.20 below.

We shall assume
(H1) For every maximal ideal m of A, the symplectic (orthogonal) module Qm

is isomorphic to A2n+2
m with the standard bilinear form H(An+1

m ).
(H2) For every nonnilpotent s ∈ A, if the projective module Qs is a free As-

module, then the symplectic (orthogonal) module Qs is isomorphic to A2n+2
s with

the standard bilinear form H(An+1
s ).

Remark 2.19. Note that T(P ) is a normal subgroup of G(P ). Indeed, for α ∈ G(P )
in the linear case we have α(1+ϕq)α

−1 = 1+(ϕα−1)α(q). In the symplectic case we
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can write σ(u,v) = 1+σ′
(u,v) and similarly, α(1+σ′

(u,v))α
−1 = 1+(σ′α−1)(σ′(u),σ′(v)).

A similar argument will also hold for the orthogonal case.

Lemma 2.20. If the projective module P of finite rank n is free (in the symplectic
and the orthogonal cases we assume that the projective module is free with the
standard bilinear form), then Trans(P ) = En(R), TransSp(P ) = ESpn(R) and
TransO(P ) = EOn(R) for n ≥ 3 in the linear case and for n ≥ 6 otherwise.

Proof. In the linear case, for p ∈ P and ϕ ∈ P ∗, if P = Rn, then ϕp : Rn →
R → Rn. Hence 1 + ϕp = In + v.wt for some row vector v and column vector w in
Rn. Since ϕ(p) = 0, it follows that 〈v, w〉 = 0. Since either v or w is unimodular,
it follows that 1 + ϕp = In + v.wt ∈ En(R). Similarly, in the nonlinear cases we
have σ(u,v)(p) = In + v.w̃ + w.ṽ and τ(u,v)(p) = In + v.w̃ − w.ṽ, where either v
or w is unimodular and 〈v, w〉 = 0. (Here σ(u,v) and τ(u,v) are as in the definition
of symplectic and orthogonal transvections.) Historically, these are known to be
elementary matrices; for details see [13] for the linear case, [9] for the symplectic
case, and [14] for the orthogonal case. �

Remark 2.21. Lemma 2.20 holds for n = 4 in the symplectic and the orthogonal
cases. This will follow from Remark 2.22.

Remark 2.22. ESp4(A) is a normal subgroup of Sp4(A) by ([9], Corollary 1.11).
Also ESp4(A[X]) satisfies the Dilation Principle and the Local-Global Principle by
([9], Theorem 3.6). Since we were intent on a uniform proof, these cases have not
been covered by us.

Notation 2.23. When P = An (n is even in the nonlinear cases), we also use the
notation G(n,A), S(n,A) and E(n,A) for G(P ), S(P ) and T(P ), respectively. We
denote the usual standard elementary generators of E(n,A) by geij(x), x ∈ A; ei
will denote the column vector (0, . . . , 1, . . . , 0)t (1 at the i-th position).

Remark 2.24. Note that if α ∈ End(Q), then α can be considered as a matrix of

the form ( End(P ) Hom(P,A)
Hom(A,P ) End(A) ) in the linear case. In the nonlinear cases one has a

similar matrix for α of the form ( End(P ) Hom(P,A⊕A)
Hom(A⊕A,P ) End(A⊕A) ).

3. Local-Global Principle for the transvection groups

In this section we deduce an analogue of Quillen’s Local-Global Principle for the
linear, symplectic and isotropic orthogonal transvection groups.

Proposition 3.1 (Dilation Principle). Let A be an associative R-algebra such that
A is finite as a left R-module and let R be a commutative ring with identity. Let P
and Q be as in 2.18. Assume that (H2) holds. Let s be a nonnilpotent element in
R such that Ps is free, and let σ(X) ∈ G(Q[X]) with σ(0) = Id. Suppose

σs(X) ∈
{
E(n+ 1, As[X]) in the linear case,

E(2n+ 2, As[X]) otherwise.

Then there exists σ̂(X) ∈ ET(Q[X]) and l > 0 such that σ̂(X) localizes to σ(bX)
for some b ∈ (sl) and σ̂(0) = Id.

First we state the following useful lemmas.
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Lemma 3.2. Let R be a ring and M be a finitely presented left (right) R-module
and let N be any R-module. Then we have a natural isomorphism:

γ : HomR(M,N)[X] → HomR[X](M [X], N [X]).

Lemma 3.3. Let S be a multiplicative closed subset of a ring R. Let M be a finitely
presented left (right) R-module and N be any R-module. Then we have a natural
isomorphism:

η : S−1(HomR(M,N)) → HomS−1R(S
−1M,S−1N).

Lemma 3.4 (see [5]). If ε = ε1ε2 · · · εr, where each εj is a standard elementary
generator, then for any r > 0, and for any (p, q) ∈ N× N,

εgepq(X
2rmY )ε−1 =

k∏
t=1

geptqt(X
mht(X,Y )),

for some ht(X,Y ) ∈ R[X,Y ], (pt, qt) ∈ N× N, and for some k > 0.

Proof of Proposition 3.1. Since elementary transvections can always be lifted, we
can and hence assume that R is reduced. We show that there exists l > 0 such that
σ(bX) ∈ ET(Q[X]) for all b ∈ (sk)R, for all k ≥ l.

As σ(0) = Id, we can write σs(X) =
∏

k γkgeikjk(Xλk(X))γ−1
k , where λk(X) ∈

As[X]. Hence for d > 0, σs(XT 2d) =
∏

k γkgeikjk(XT 2dλk(XT 2d))γ−1
k , for some

γk in E(n + 1, Rs) in the linear case, and in E(2n + n,Rs) in the nonlinear cases.
Let γk = ε1ε2 . . . εr, and d = 2r−1. Now apply Lemma 3.4 for m = 1, X = T , and
Y = 1. Then use the fact that for i �= 1 �= j,

geij(T
2µ(X)) = [gei1(Tµ(X)), ge1j(T )]

in the linear case, and

geij(T
2µ(X)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[gei1(Tµ(X)), ge1j(T )] if i �= σ(j)

ge1j(Tµ(X))[ge1l(−Tµ(X)), gei1(−T )] if i = σ(j)

[geσ(i)1(Tµ(X)), se1σ(j)(T )] if i �= σ(j)

ge1σj(Tµ(X))[ge1σ(l)(−Tµ(X)), geσ(i)1(−T )] if i = σ(j)

in the nonlinear cases for some l ≤ n, when i + 1 is even and when σ(i) + 1 is
even respectively. Then for d � 0 we get σs(XT 2d) = Π

t
geptqt(Tµt(X)), for some

µt(X) ∈ As[X] with pt = 1 or qt = 1.
Since Ps is a free As-module,

Ps[X,T ] ∼= An
s [X,T ] ∼= Ps[X,T ]∗ in the linear case,

Ps[X,T ] ∼= A2n
s [X,T ] ∼= Ps[X,T ]∗ in the nonlinear cases.

Thus using the isomorphism, polynomials in Ps[X,T ] can be regarded as linear
forms which act as follows: For x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Ak

s [X,T ]
(k = n in the linear case and k = 2n in the symplectic case),

〈x, y〉 =

⎧⎪⎨⎪⎩
xyt in the linear case,

xψny
t in the symplectic case,

xψ̃ny
t in the orthogonal case
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(where ψn denotes the alternating matrix corresponding to the standard symplectic

form
2n∑
i=1

e2i−1,i −
2n∑
i=1

e2i,2i−1 and ψ̃n denotes the symmetric matrix corresponding

to the standard hyperbolic form
2n∑
i=1

e2i−1,i +
2n∑
i=1

e2i,2i−1).

First we consider the case when pt = 1. Let p∗1, . . . , p
∗
k be the standard basis of

Ps and let smp∗i ∈ P for some m > 0 and i = 1, . . . , k. Let e∗i be the standard
basis of As. For qt = i, consider the element Tµt(X)e∗i ∈ Ak

s [X,T ] as an element in
Ps[X,T ]∗. Using Lemma 3.2, we may say that Tµt(X)e∗i is actually a polynomial
in T . By Lemma 3.3, there exists k1 > 0 such that k1 is the maximum power of s
occurring in the denominator of µt(X)e∗i . Choose l1 ≥ max(k1,m).

Next suppose qt = 1. For pt = j, Tµt(X)e∗j ∈ Ps[X,T ]. From Lemma 3.3 it
follows that we can choose k2 > 0 such that k2 is the maximum power of s occurring
in µt(X)e∗j . Again, using Lemma 3.2, we can regard Tµt(X)e∗j as a polynomial in
T . Choose l2 ≥ max(k2,m) and l ≥ max(l1, l2). Now applying the homomorphism
T �→ slT , it follows that σ(bXT 2d) is defined over Q[X]. Putting T = 1, by the
usual Dilation Principle there exists l > 0 such that σ̂(X) ∈ ET(Q[X]) localizes to
σ(bX) for some b ∈ (sl) and σ̂(0) = Id. �

Lemma 3.5. Let A be an associative R-algebra such that A is finite as a left
R-module and let R be a commutative ring with identity. Let α ∈ S(n,R) and let I
be an ideal contained in the nil radical Nil(R) of R. Let ‘bar’ denote the reduction
modulo I. If α ∈ E(n,A), then α ∈ E(n,A).

Proof. This is easy to verify. (The proof of Lemma 4.6 later is similar; its argument
can be used to prove this lemma.) �

Theorem 3.6 (Local-Global Principle). Let A be an associative R-algebra such
that A is finite as a left R-module and let R be a commutative ring with identity.
Let P and Q be as in 2.18. Assume that (H1) holds. Suppose σ(X) ∈ G(Q[X])
with σ(0) = Id. If

σp(X) ∈
{
E(n+ 1, Ap[X]) in the linear case,

E(2n+ 2, Ap[X]) otherwise

for all p ∈ Spec(R), then σ(X) ∈ ET(Q[X]).

Proof. This follows from a similar argument as in the proof of (4) ⇒ (3) in Theo-
rem 3.1 of [5]. �

Corollary 3.7. Assume that (H2) holds. Let τ (X) ∈ G(Q[X]), with τ (0) = Id.
If τs(X) ∈ ET(Qs[X]), and τt(X) ∈ ET(Qt[X]), for some s, t ∈ R such that
Rs+Rt = R, then τ (X) ∈ ET(Q[X]).

Lemma 3.8. Let R be a commutative ring with identity. If α = (aij) is an r × r
matrix over R with all entries nilpotent, then α is nilpotent.

Proof. Let alij = 0, for all i, j ∈ {1, . . . , r}. Now α2 has entries which are homoge-

neous polynomials of degree 2 in the aij ’s. Consequently, α
4 has entries which are

homogeneous polynomials of degree 4 in the aij ’s, and so on. Therefore, α2m = 0,
if 2m > lr2, by the Pigeon Hole Principle. �
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Corollary 3.9. Let A be an associative R-algebra such that A is finite as a left
R-module and let R be a commutative ring with identity. Let ‘bar’ denote the
reduction modulo Nil(R). Assume that (H1) holds. Then for τ ∈ G(Q), τ ∈ ET(Q)
if and only if τ ∈ ET(Q).

Proof. First we show that for σ(X) ∈ G(Q[X]), σ(X) ∈ ET(Q[X]) ⇔ σ(X) ∈
ET(Q[X]). Suppose that σ(X) ∈ ET(Q[X]). Then σp(X) ∈ ET(Ap[X]) =

E(n + 1, Ap[X]) and E(2n + 2, Ap[X]) in the linear and the nonlinear cases re-
spectively, for all p ∈ Spec(R). But then from Lemma 3.5 it follows that

σp(X) ∈
{
E(n+ 1, Ap[X]) in the linear case, and

E(2n+ 2, Ap[X]) otherwise.

Hence by Theorem 3.6, σ(X) ∈ ET(Q[X]).
Now modifying τ by some ε ∈ ET(Q) we assume that τ = Id + γ, where γ ≡ 0

modulo Nil(R). As the nilpotent entries are in R, which is a commutative ring, by

Lemma 3.8, γ is nilpotent. Define θ(X) = Id + Xγ. As θ(X) = Id ∈ ET(Q[X]),
from the above it follows that θ(X) ∈ ET(Q[X]). Whence τ = θ(1) ∈ ET(Q), as
required. �
Theorem 3.10. Let A be an associative R-algebra such that A is finite as a left
R-module and let R be a commutative ring with identity. Let Q be as in 2.18.
Assume that (H1) holds. Then T(Q) = ET(Q).

Proof. Using Corollary 3.9 we assume that A is reduced. By definition ET(Q) ⊂
T(Q). To prove the converse assume τ ∈ T(Q). Then there exists σ(X) ∈ T(Q[X])
such that σ(0) = Id and σ(1) = τ . Now, for every p ∈ Spec(R),

σp ∈
{
E(n+ 1, Ap[X]), in the linear case, and

E(2n+ 2, Ap[X]), otherwise.

Therefore, by Theorem 3.6 it follows that σ(X) ∈ ET(Q[X]). Whence τ = σ(1) ∈
ET(Q), as required. �

The next lemma was proved in the linear case in ([11], Proposition 4.1). The
authors do not assume the existence of a unimodular element in Q though and only
get a unipotent lift. In ([6], Lemma 2.1) it is mentioned that if Q has a unimodular
element, then the lift is a transvection.

Corollary 3.11. Let A be an associative R-algebra such that A is finite as a left
R-module and let R be a commutative ring with identity. Let Q be as in 2.18. If I
in an ideal in R, then the map T(Q) → T(Q/IQ) is surjective.

Proof. By Proposition 3.10, T(Q/IQ) = ET(Q/IQ). Since an elementary transvec-
tion can always be lifted to an elementary transvection, the result follows. �

As a consequence of Theorem 3.1 and Theorem 3.10, following L.N. Vaserstein’s
proof of Serre’s conjecture (see [10], Chapter III, §2) we deduce the following Local-
Global Principle for the action of the elementary subgroups of an extended projec-
tive, symplectic and orthogonal module.

Theorem 3.12. Let A be an associative R-algebra such that A is finite as a left
R-module and let R be a commutative ring with identity. Let Q be as in 2.18.
Assume that (H1) and (H2) hold. Let v(X) = (p(X), a(X)) be a unimodular
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element in Q[X] with v(0) = (0, 1). Suppose that for every prime ideal p ∈ Spec(R)
there exists

τp(X) ∈ T(Qp[X]) =

{
E(n+ 1, Ap[X]) in the linear case, and

E(2n+ 2, Ap[X]) in nonlinear cases

with τp(0) = In such that v(X)τ (X) = v(0). Then there exists τ (X) ∈ ET(Q[X])
with τ (0) = Id such that v(X)τ (X) = v(0).

4. The unstable K1-groups
S(Q)
ET(Q) are nilpotent

In this section, earlier results on unstable K1-groups of classical groups of A. Bak,
R. Hazrat, and H. Vavilov have been uniformly generalized to classical modules.

We prove Theorem 3 mentioned in the introduction. Before that we give a
brief historical sketch about our result. Throughout this section we assume R is a
commutative ring with identity.

In [1], A. Bak defines a functorial filtration GLn(R) = S−1Ln(R) ⊃ S0Ln(R) ⊃
· · · ⊃ SiLn(R) ⊃ · · · ⊃ En(R) of the general linear group GLn(R), where R is an
associative ring with identity and n ≥ 3, which is a descending central series. His
construction has its own merits, which we do not study here other than the fact that
the quotient GLn(R)/En(R) is nilpotent-by-abelian. A. Bak uses a localization-
completion method; we show that the localization part suffices to get the desired
result.

In [8], R. Hazrat and N. Vavilov have shown: Let Φ be a reduced irreducible
root system of rank ≥ 2 and R be a commutative ring such that its Bass-Serre
dimension δ(R) is finite. Then for any Chevalley group G(Φ, R) of type Φ over
R the quotient G(Φ, R)/E(Φ, R) is nilpotent-by-abelian. In particular, K1(Φ, R) is
nilpotent of class at most δ(R)+1. They use the localization-completion method of
A. Bak in [1], who showed that K1(n,R) is nilpotent-by-abelian. Their main result
is to construct a descending central series in the Chevalley group, indexed by the
Bass-Serre dimension of the factor-rings of the ground ring. Our approach shows
that for classical groups the localization part suffices.

The precise statement of our theorem is the following:

Theorem 4.1. Assume the notation in 2.18. We assume that (H1) and (H2) hold
and that R is Noetherian. Let d = dim (R) and t = local rank of Q.

The quotient group Q/T(Q) is nilpotent of class at most max(1, d+3− t) in the
linear case and max(1, d+ 3− t/2) otherwise.

(We assume that the global rank of Q is at least 1 and that the local rank of Q
is at least 3 in all the above cases.)

Corollary 4.2. Let d = dim (R) and t = local rank of Q. The quotient group
Q/ET(Q) is nilpotent of class at most max(1, d + 3 − t) in the linear case and
max(1, d+ 3− t/2) otherwise.

Recall

Definition 4.3. Let H be a group. Define Z0 = H, Z1 = [H,H] and Zi =
[H,Zi−1]. Then H is said to be nilpotent if Zr = {e} for some r > 0, where e
denotes the identity element of H.
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Remark 4.4. The standard generators of E(n,R) satisfy the following relation:

[geik(x), gekj(y)] = geij(zxy)

for x, y ∈ R and some z ∈ N (fixed for the group), and 1 ≤ i �= j �= k ≤ n,
j �= σi, σj, where σ is the permutation given by 2l �→ 2l − 1 and 2l − 1 �→ 2l.

Notation 4.5. Let S(n, slR) be the subgroup of S(n,R) consisting of matrices which
are the identity modulo slR and let S(Q, slR) be the subgroup of S(Q) consisting
of the automorphisms with determinant 1 which are the identity modulo slR.

Let J(R) denote the Jacobson radical of R.

Lemma 4.6. Let β ∈ S(n,R), with β ≡ In modulo I, where I is contained in
the Jacobson radical J(R) of R. Then there exists ε ∈ E(n,R) such that βε= the
diagonal matrix [d1, d2, . . . , dn], where each di is a unit in R and each di satisfies
dσid

∗
i = 1, and ε is a product of elementary generators with each congruent to the

identity modulo I.

Proof. The diagonal elements are units. Using this, one can establish the result
easily in the linear case. In the symplectic and the orthogonal cases, by multiplying
from the right side by suitable standard elementary generators each of which is
congruent to the identity modulo I, we can make all the (1, j)-th entries zero for
j = 3, . . . , n. Since char R �= 2, in the orthogonal case the (1, 2)-th entry will then be
automatically zero. In the symplectic case, again by multiplying from the right side
by suitable elementary generators, we can make the (1, 2)-th entry zero. Similarly,
multiplying by the left we can make the first column of β to be (d1, 0, . . . , 0)

t, where
d1 is a unit in R and d1 ≡ 1 modulo I. Repeating the above process we can reduce
the size of β. Note that after modifying the first row and the first column in the
symplectic and the orthogonal cases the second row and column will automatically
become (0, d2, 0, . . . , 0)

t for some unit d2 in R, with d2 ≡ 1 modulo I. Repeating
the process we can modify β to the required form. �

Blanket assumption. Henceforth we shall assume that the matrices have size at
least 3× 3 when dealing with the linear case and at least 6× 6 when dealing with
the symplectic and the orthogonal cases.

Lemma 4.7. Let R be a commutative ring and let s be a nonzero divisor in R.
Let D denote the diagonal matrix [d1, . . . , dn], where di should be units and satisfy
dσid

∗
i = 1, and di ≡ 1 modulo (sl) for l ≥ 2. Then[

geij

(a
s
X
)
, D

]
⊂ E(n,R[X]) ∩ S(n, (sl−1)R).

Proof. Let d = did
−1
j . Then

[
geij

(
a
sX

)
, D

]
= geij

(
a
sX

)
geij

(
−a

sdX
)
. Since

di, dj ≡ 1 modulo (sl) for l ≥ 2, we can write d = 1 + smλ for some m > 2 and
λ ∈ R. Hence

geij
(a
s
X
)
geij

(
−a

s
dX

)
= geij

(a
s
X
)
geij

(
−a

s
X
)
geij

(
−a

s
smλX

)
= geij

(
−a

s
smλX

)
∈ E(n,R[X]) ∩ S(n, (sm−1)R). �

Lemma 4.8. Let R be a ring, s ∈ R a nonzero divisor in R and a ∈ R. Then for
l ≥ 2, [

geij

(a
s
X
)
, S(n, slR)

]
⊂ E(n,R[X]).
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More generally,
[
ε(X), S(n, slR[X])

]
⊂ E(n,R[X]) for l � 0 and ε(X) ∈

E(n,Rs[X]).

Proof. First fix (i, j) for i �= j. Let α(X) = [eij
(
a
sX

)
, β] for some β ∈ S(n, slR).

As l ≥ 2, it follows that α(X) ∈ S(n,R[X]). Since E(n,R[X]) is a normal subgroup
of S(n,R[X]), we get αs(X) ∈ E(n,Rs[X]). Let B = 1 + sR. We show that
αB(X) ∈ E(n,RB[X]). Since s ∈ J(RB), it follows from Lemma 4.6 that we can
decompose βB = ε1 · · · εtD, where εi = gepiqi(s

lλi) ∈ E(n,RB), λi ∈ RB and D
= the diagonal matrix [d1, . . . , dn] with di a unit in R and di ≡ 1 modulo (sl) for
l ≥ 2, i = 1, . . . , n. If t = 1, then using the commutator law and Lemma 4.7 it
follows that αB(X) ∈ E(n,RB[X]). Suppose t > 1. Then

αB(X) =
[
geij

(a
s
X
)
, ε1 · · · εtD

]
=

[
geij

(a
s
X
)
, ε1

]
ε1

[
geij

(a
s
X
)
, ε2 · · · εtD

]
ε−1
1

and by induction each term is in E(n,RB[X]); hence αB(X)∈E(n,RB[X]). Since
α(0) = In, by the Local-Global Principle for the classical groups it follows that
α(X) ∈ E(n,R[X]). �

Corollary 4.9. Let R be a ring, let s ∈ R be a nonzero divisor in R and a ∈ R.
Then for l ≥ 2, [

geij

(a
s

)
, S(n, slR)

]
⊂ E(n,R).

More generally,
[
ε, S(n, slR)

]
⊂ E(n,R) for l � 0 and ε ∈ E(n,Rs).

Lemma 4.10. Fix the notation as in 2.18. Let s be a nonzero divisor in R such
that Ps is free. Assume that (H2) holds. Suppose τ ∈ T(Qs). Then for l � 0,
[τ, S(Q, slR)] ⊂ T(Q).

Proof. Let η ∈ S(Q, slR) and τ̃(X) ∈ T(Qs[X]) be an isotopy between the identity
map and τ ; i.e. τ̃ (0) =Id and τ̃ (1) = τ . Let α(X) = [τ̃(X), η]. Now, since η ≡ Id
modulo (sl), η = Id+slψ for some ψ ∈ End(Q). Therefore, ψ can be considered as a
matrix as in Remark 2.24. Hence τ̃(X) η τ̃(X)−1 = Id+slτ̃(X)ψτ̃(X)−1 ∈ S(Q[X])
for l � 0. As ‘T’ is a normal subgroup of ‘S’, it follows that αs(X) ∈ T(Qs[X]).
Let B = 1+sR. We show that αB(X) ∈ T(QB[X]). Note that s ∈ Jac(RB). Hence
for all m ∈ Max(RB),

(ηB)m ∈ S((QB)m, s
l(RB)m) =

{
E(n+ 1, (RB)m) in the linear case,

E(2n+ 2, (RB)m) otherwise.

Therefore, by Lemma 4.7, (ηB)m can be expressed as a product of elementary
matrices over (RB)m with each being the identity modulo (sl), and a diagonal
matrix D = [d1, . . . , dt], where t = r + 1 in the linear case and r + 2 otherwise,

and the di are units in R for i = 1, . . . , t. Let (ηB)m =
∏k

i=1 εiD, where εi is
in En+1((RB)m) in the linear case and in E2n+2((RB)m) otherwise, and εi = Id
mod (sl). So, (αB)m(X) = [τ̃ (X), ε1 · · · εkD]. Hence by Lemma 4.7 and Lemma 4.8,
we get

(αB)m(X) ∈
{
E(n+ 1, (RB)m[X]) in the linear case,

E(2n+ 2, (RB)m[X]) otherwise.
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Hence by the L-G Principle for the tranvection groups we get αB(X) ∈ T(QB[X]).
Therefore, it follows from Corollary 3.7 that α(X) ∈ T(Q[X]). Hence, [τ, η] ∈ T(Q).

�

Proof of Theorem 4.1. Using Corollary 3.9 we may and do assume that R is a
reduced ring. Note that if t ≥ d + 3, then the group S(Q)/T(Q) = K1(Q), which
is abelian and hence nilpotent. So we consider the case t ≤ d + 3. Let us first fix
a t. We prove the theorem by induction on d = dimR. Let H = S(Q)/T(Q). Let
m = d + 3 − t and α = [β, γ] for some β ∈ H and γ ∈ Zm−1. Clearly, the result

is true for d = 0. Let β̃ be the preimage of β under the map S(Q) → S(Q)/T(Q).

Choose a nonnilpotent element s in R such that Ps is free and β̃s ∈ E(n,As). We
define H = S(Q)/T(Q), where the bar denotes reduction modulo sl for some l � 0.
By the induction hypothesis, γ = {1} in G(Q). Since T(Q) is a normal subgroup
of S(Q) for n ≥ 3 in the linear case and for n ≥ 4 otherwise, by modifying γ we
may assume that γ̃ ∈ S(Q, slA), where γ̃ is the preimage of γ in S(Q). Now by

Lemma 4.10 it follows that [β̃, γ̃] ∈ T(Q). Hence α = {1} in H. �
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Anal. i Priložen 5 (1971), 17–27. MR0284476 (44:1701)

Department of Mathematics, University of Bielefeld, Bielefeld, Germany

E-mail address: bak@mathematik.uni-bielefeld.de

Indian Institute of Science Education and Research, Kolkata, India

E-mail address: rabeya.basu@gmail.com, rbasu@iiserkol.ac.in

Tata Institute of Fundamental Research, Mumbai, India

E-mail address: email: ravi@math.tifr.res.in

http://www.ams.org/mathscinet-getitem?mr=862660
http://www.ams.org/mathscinet-getitem?mr=862660
http://www.ams.org/mathscinet-getitem?mr=0284476
http://www.ams.org/mathscinet-getitem?mr=0284476

	1. Introduction
	Quillen's local-global principle
	Suslin's local-global principle

	2. Preliminaries
	Blanket assumption

	3. Local-Global Principle for the transvection groups
	4. The unstable K1-groups S(Q)ET (Q) are nilpotent
	Blanket assumption

	Acknowledgement
	References

