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Abstract

The general Hermitian group G Hs,, and its elementary subgroup
EH,, are the analogs in the theory of Hermitian forms of the general
linear group G L, and its elementary subgroup E,. This article proves
that the canonical map GHa,/EHz, — GHyyp1)/EHypq1) is an
isomorphism whenever n is large with respect to a suitable stable
range condition for rings with involution.

1 Introduction

An open question since the 1960’s is whether stability theorems for K, and
K, of projective modules and quadratic forms have analogs for Hermitian
forms. This paper establishes an analog for K; and a companion article [BT]
an analog for Kj.

The long time required for demonstrating a K;-analog is explained by
the lack of a notion of elementary subgroup in the general Hermitian group,
which is necessary in formulating a K;-stability result. This subgroup was
discovered recently by the second author [T].

The general Hermitian group GHa,(R, ai,...,a,) is the analog in the
theory of Hermitian forms of the general linear group GL,(R) in the the-
ory of projective modules. It is by definition the group of isomorphisms
of an orthogonal sum M(a;) L ... L M(a,) of metabolic planes M(a;)
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where a; = 0 for all 7 > r. There is an obvious stabilization homomor-
phism GHy,(R, ai,...,a,) — GHypi)(R, a1,...,a,). The elementary
Hermitian group EH,,(R, a,...,a,) is a subgroup of GHy,(R, a,...,a,),
which is generated by certain functorially defined matrices called elementary
Hermitian matrices. Some generators are very complex and require many
nonzero off diagonal coefficients. The stabilization homomorphism takes

EHQn(R, A1y -y a,«) to EHQ(n+1) (R, Ay ...y CLT). We define KHl’n(R, A1y .-y a,,-)

= GHoy(R, a1,...,a;)/EHon(R, ai,...,a,). A priori KHy,(R, ai,...,a,)
is just a coset space. The stabilization homomorphism above induces a sta-
bilization map KH, ,(R, a1,...,a,) — KH; 1 (R, ay,...,a,).

The stability theorem is proved under a stable range condition which is
weaker than its predecessors and easier to apply. We describe this condition.
Let R be an associative ring with identity 1 and involution a — a. Let
A € center(R) such that A\ = 1. Let max*(R) = {a € R|a = —)a}. The
ring R is said to satisfy the max*(R)-stable range condition max*(R)S,, of
degree m if R satisfies the usual stable range condition SR,, of H. Bass and

if given a (right) unimodular vector (ay, - - *5 Q(mt1), b1, -+, bm+1y) of length
2(m + 1), there is an (m + 1) x (m + 1) —A-Hermitian matrix vy such that
(@1, @ms1) + (b1, -+, bms1)7y is @ unimodular of length m + 1.

The main result is as follows.

Theorem 1.1 Let R and max*(R) be as above. Suppose that R satisfies the
stable range condition max*(R)S,,. Then for all n > m +r,

KH,,(R, a,...,a,)
is a group, the canonical map
KH;n1(R, ay,...,a,) — KHy,(R, a1,...,a,)
is surjective, and the canonical homomorphism
KH,,(R, a1,...,a,) — KHyn1(R, a1,...,0,)
is an isomorphism.

The rest of the article is organized as follows. In §2, we recall in detail
the definitions of GH,, and EH,,, and of important subgroups of EFHs,
which are used in establishing a decomposition of EH,, when stable range
conditions are imposed on R. In §3, we define a generalization of the stable
range condition above, which uses form parameters, and show that it is
weaker than its predecessors, namely the unitary stable range condition and
that developed by W. van der Kallen, B. Magurn and L. Vaserstein. In §4,
we prove our main result Theorem 1.1. An important tool in the proof is the
decomposition theorem for E H,,, which is also proved in the section.
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2 Preliminaries on GH and FH

The basic references for the general Hermitian group GH and its elementary
subgroup EH are [B] and [T]. The groups GH and F'H are the analogs for
Hermitian forms of the general quadratic group G@ and its elementary sub-
group E(@) in the theory of quadratic forms. Whereas the groups G and
EQ have been known for a long time and their quotient KQ; = GQ/EQ
intensively studied, the group E'H has been only recently discovered. Inves-
tigation of the quotient group KH; = GH/EH and of the higher Hermi-
tian K-groups K H; defined using the Volodin construction is only beginning
now. The topic K-stability for quadratic forms was treated already in the
late 1960’s by A. Bak, H. Bass, and A. Roy, and in the early 1970’s by M.
Kolster and L. Vaserstein. The fact that KQ-groups defined with respect to
the maximal form parameter agree with K H-groups defined for » = 0, by
[B, Theorem (1.1) and (1.3)], leads one to conjecture that stability results
for KQ,-groups have analogs for K Hi-groups.

We recall now the definitions of the groups GH and EH and of subgroups
of EH which will be used in obtaining in §4 a decomposition of £ H under
the max*(R)-stable range condition.

We fix the following notation. Let R be an associative ring with identity
1 and involution a ~ a; thus ab = ba and @ = a for all a,b € R. If a = (a;;)
denotes an m X n matrix with coefficients a;; € R, let & denote its conjugate
transpose; thus & = (a};) is the n x m matrix such that aj, = Gy.

Let r and n be natural numbers such that n > r. Let A\ € center(R)
such that AA = 1. Let aq,...,a, be a sequence of elements in R such that
a; =Aa; forall1 <7 <mnanda,y1 = a0 ="---=a, =0. In the context we
are working, it makes sense letting 7 = 0 mean that a; = -+ = a, = 0. So
we shall do this. Let

ai

A; = r xr diagonal matrix ,

A = n x n diagonal matrix

I = an identity matrix .



Define the n-th general Hermitian group of the elements ag,...,a, by

(A N A A
GHy, (R, al,...,a,«)Z{UGGLm(R”U( I 0 )U:<[ 0 )}

A typical element of this group is denoted by a 2n x 2n matrix

a B
v 0 )’
where «, 3,7 and § are n x n block matrices. There is an obvious embedding

GHQn(R, ai,..., ar) e GHQ(H+1)(R, al,..., ar)

0

(87
a f 0 1
(75)H 7 0

0 0

oo O™
—_ o o o

and one defines

GH(R, al,...,ar) = llglGHQn(R, al,...,ar).

n>r

Let min™(R) = {a + \a|a € R}. For any ay,...,a, as above, let
C={"a1,...,7,) €' (R") | Y_aaw; € min *(R)}.
i=1

In order to deal effectively with technical difficulties caused by the elements
ai,...,ar, we shall finely partition a typical matrix

a p
v 0
of GHoy (R, ay,...,a,) into the form

11 012 ﬁn /312
(2‘1) Qo1 Qg2 ?21 ?22
Y11 Y12 11 12
Y21 Y22 521 522

where a1y, 811, 711,011 are T X r matrices, aig, B12, V12,012 are r X (n — 1)
matrices, aoi, fa1,Y21,001 are (n — r) X r matrices, and agg, B2, Y22, 002 are
(n —7) x (n — r) matrices. By [T, 3.4],

(22) the columns of 11 — ], 12, ﬁll, ﬂm, Bn, 321, 511 — 1 and 521 belong to C.
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Letting GQa, (R, max*(R)) denote the general quadratic group [B, §3] over
R for maximal form parameter max*(R), one checks straightforward that the
subgroup of GHo, (R, a1,...,a,) consisting of

I 0 0 O
@ad| 0 a2 0 P2 ap r ~ @ R, max*(R
. 0 0 I 0 € 271( 7a17"'aa’r) - QZ(n—r)( , INnax ( ))
0 v2 0 do

We identify now functorically defined elements of G Hy,, which will be used

to generate E Hy,. The first 3 kinds of generators are taken for the most part
from GQs(n—r) (R, max*(R)) which is embedded as in (2.3) as a subgroup of
G H,, and the last 2 kinds are motivated by the result (2.2) concerning the
columns of a matrix in GHo,.

Let
Heij(a) (e Randr+1<i<mn,1<j<n,i#j)

denote the 2n x 2n matrix with 1 along the diagonal, a in the (7, j)’th position,
—a in the (n + j,n + i)’th position, and 0 elsewhere. Let

rii(a) (@€ Rand r+1< 14,5 <n)

denote the 2n X 2n matrix with 1 along the diagonal, @ in the (i,n + j)’th
position, —Aa in the (j,n + 4)’th position, and 0 elsewhere. If i = j, this
forces of course that a = —\a. Let

lij(a) (e€ Rand 1 <14,j <n)

denote the 2n X 2n matrix with 1 along the diagonal, @ in the (n + 4, j)’th
position, —Aa@ in the (n + j,i)’th position, and 0 elsewhere. If i = j, this
forces of course that a = —\a.

For ( = %(zy,-+-,2,) € C, let

(reER such that ¢y + )\Ef = Z:E,-a,-xi.

=1

The element (; is not in general unique. Define

I 12 0 0

0 1 0 0 .
Hm;(¢) = 0 Ay I 0 (CeCandr+1<i<n)

0 72 —app I



to be the 2n X 2n matrix such that ays is the r X (n — r) matrix with ¢ as its
(¢ —r)’th column and all other column’s zero, and a9 is the (n—r) X (n—7)
matrix with (; in its (¢ — r,4 — 7)’th position and 0 elsewhere. Define

I 0 0 B2
|01 Bz P .
ri(¢) = 0 0 I _ A, By ((eCandr+1<i<n)
00 0 1

to be the 2n X 2n matrix such that (i3 is the r x (n —r) matrix with  as its
(1 — r)’th column and all other columns 0, and 3y is the (n — ) x (n — r)
matrix with A(; in its (1 — 7,4 — r)’th position and 0 elsewhere.

Each of the matrices above is called an elementary Hermitian matrix
for the elements aq, ..., a,.

One can show by direct computation as in [T, §4] that each elementary
Hermitian matrix is in GHo, (R, a1, - .., a;).

Define the n’th elementary Hermitian group

EHQH(R, A1y ey CLT)

of the elements ay, ..., a, to be the subgroup of GHo, (R, a1, -..,a,) gener-
ated by all elementary Hermitian matrices. It is obvious that the embedding
GHy(R, a1,...,0,) — GHypmy1)(R, ay,...,a,) takes EHy, (R, ay,...,a,)
to EHymy1)(R, a1,...,a,) and one defines

EH(R, ay,...,a,) = liLIlEHgn(R, A1y ...,y 0y).
n>r
It is customary to identify GHop—1)(R, a1, ..., a,) and EHypm_1y(R, a1,. .., a,),
respectively, with their images in GH, (R, a1, ..., a,) and EHon(R, a4, ..., a,).
The following subgroups of EHy,(R, a1, -..,a,) will be used to establish
a decomposition of FHs,(R, a1, ...,a,) under stable range conditions. Let

Cn =< Hepla), r+1<i<n;liy(a),1 <i<nand Hm,((),a € R, € C >
R, = < Heyj(a), 1 <j<n;rpi(a),r+1<j<mnandr({),a€ R cC>
= {00, |0 € EHyp_1y(R, ay,...,a,) and 0y € Cp}

Qn = < Hm;(¢), Heij(a), 7+ 1<4,j <n,i#j; and l;;(a),1 <i,j<n,a€ R,(€C >.

e
|

Lemma 2.4 Suppose n > 2. Suppose 0 € GHy,(R, ay,...,a,) such that
the n’th row and n’th column of o are identical with the n’th row and n’th
column of the 2n x 2n identity matrix, respectively. Then the 2n’th row



and 2n’th column of o are identical with the 2n’th row and 2n’th column
of the 2n x 2n identity matrix, respectively. In particular, if n > r then
o€ GHQ(’H,*I) (R, Aiy.-., G,T).

Proof Let

By [T, (3.1)]

a BY ' 5+ BA A8
) T\ ad—ABA+ I —A5 a—-AB |-

Using the equation

a B o+BA A8 N _ (T 0

) aA—ABA+ MW —A5 a—AB )~ \ 0 I
and the fact that A is a diagonal matrix, one deduces routinely the conclusion
of the lemma. O

Lemma 2.5 GHy,_1)(R, ai,...,a,) normalizes EHy, (R, a4,...,a,).

Proof By [T, (8.3)], R, and C,, generates FHy,(R, ai,...,a,). But it is
obvious that R, and C,, are normalized by GHy(,—1)(R, ay,...,a,). O
The following corollary obvious.

Corollary 2.6 FH(R, ay,...,a,)is anormal subgroup of GH(R, ay,...,a,).

Furthermore according to the Hermitian Whitehead Lemma [T, §5|, EH (R,
ai,...,a,) is the commutator subgroup of GH(R, ai,...,a,). One defines

KHl,n(Ra at, - - -aa'r) = GHQn(Ra ag, - - -aa'r)/EHQn(Ra ai, - - .,CLT)
and
KHl(R, al,...,a,):GH(R, al,...,ar)/EH(R, al,...,ar).

Whereas KH;(R, a1,...,a,) is an abelian group, KH »(R, a1,...,a,) isin
general just a coset space.



3 A-stable range condition

Let R be an associative ring with identity. A vector (aq,...,a,) with coeffi-
cients a; € R is called right unimodular if there are elements b,,...,b, € R
such that a1by + --- + a,b, = 1. The stable range condition SR, of
A. Bass in the formulation of L. Vaserstein says that if (ai,...,am+1) is
a unimodular vector then there exist elements by,...,b, € R such that
(a1 4+ amy1b1, - - -, Gm + Q1) is unimodular. It follows easily that SR, =
SR, for any n > m.

Suppose that R has an involution a +— a. Let A € center(R) such that
A\ = 1. Let min*(R) = {a — Aala € R} and max*(R) = {a € Rla = —)a}.
A form parameter A is an additive subgroup of R such that

1) aAa C A for all a € R,
2) min*(R) C A C max*(R).
Clearly the extremes in (2) satisfy (1) so that they are form parameters. Let

M (A)  (resp. M (A))

denote the set of all m x m matrices 7 such that v = —A7 and the diagonal
coefficients of y lie in A (resp. 7 = —\¥ and the diagonal coefficients of 7 lie
in A).

Definition 3.1 Let A be a form parameter on R. R is said to satisfy the
A-stable range condition AS,, if it satisfies SR,, and if given any uni-
modular vector (ai, -+, @mi1,01,° ,bmy1) € R*™T? there exists a matrix
v € M,,;1 (A) such that (a1, -+, @my1) + (b1, -, byy1)y is unimodular.

Lemma 3.2 The following conditions are equivalent for a ring R with
involution and form parameter A C R.

(3.2.1) R satisfies AS,,

(3.2.2) R satisfies SR, and given any unimodular vector (ay, - - ., Gm1,
bi,...,bmy1) there is a 2(m + 1) x 2(m + 1) matrix

where I is the (m+1) x (m+ 1) identity matrix and v € M, 1 (A) such that
vo = (ay,...,a,,,b),...,b,, 1) and (a},...,al,,,) is unimodular.

(3.2.3) R satisfies SR, and given any unimodular vector (ay, ..., Gmy1,
bi,...,bmy1) there is a 2(m + 1) x 2(m + 1) matrix

o= [ € 0
=, &
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where € an invertible (m + 1) x (m + 1) matrix and ye~' € M, (A) such
that vo = (d},..., a1, b, ..., 8,,,) and (a},...,al,, ) is unimodular.

Proof It is clear that (3.2.1) <= (3.2.2) = (3.2.3). Suppose that (3.2.3)
holds. We show that (3.2.2) holds. Let

(T 0
P= vl T

_ " " 1 /! :
and vp = (af,..., a5, ,b7,...,b; ;). Since
e 0
o= -
p € 1 ’
it is clear that (al,...,al,,,) = (af,...,a’  )e. Thus (a},...,a, . )e ! =
(af,...,ay, ). Since(d},...,a}, ) is unimodular and e is invertible, it fol-
lows that (af,...,a;,. ) is unimodular. O

Lemma 3.3 AS,, = AS,, for all n > m.

Proof We shall use the matrix notation introduced in §2 with » = 0. Let
n > m. Clearly SR, holds. By induction on n, we can assume that R sat-
isfies AS,, 1. We shall show that R satisfies the formulation of AS,, given in
(3.2.3).Let v = (a1,---,Gpy1,01, -, bpr1) be a unimodular vector. By SR,
(cf. [K, Chap VI, Remark 1.5.1]), there are elements z1, ..., z, € R such that

if 0 = Heyp1(—21) - Heppy1 (—2,) then vo = (af, -+, af, 1,00, -, 00, 1)
and (af,---,af, 1,0}, --,0,) is unimodular. Again by SR,, there exists
elements y1,...,y, € R such that if p = Hepp11(y1) - - Hepr1n(yn) then
vop = (a, -+, an 1, b, --,by ;) and (@, --,ap,bf, -+, b) is unimodular.

By AS,,_1, there is a 2n x 2n matrix

= ][ lilay) = ( i' ?)

1<i<j<n

where 7' € M, (A) such that (a?, -+, a b, -+ 0" = (1, +, Cpydiy -+, dy)

and (cq,---,¢,) is unimodular. Let 7 denote the 2(n + 1) x 2(n + 1) stabi-
lization of 7/. Thus

where



Clearly vopr = (c1,- -+, Cny1,d1,++,dpy1) and (c1,- -+, Cpy1) is unimodular
because (¢, -+, ¢,) is. O
If S is a set of elements of R, let

IS = mOR

m2s

where 9 runs through all maximal right ideals of R. Note that a vector
(a,...,a,) is unimodular <= J{ai,...,a,} = R.

The absolute stable range condition AS,, of M. Stein, W. van der
Kallen, B. Magurn, and L. Vaserstein says if (a1, -+, ay,y1) is a vector then
there are elements z1, - - -, Z,, € R such that a,,11 € J{a1+ ami121, -, @+
1T}y 160 J{a1, ,ame1} = Ja1 + am121, -, G + 1T }-

Lemma 3.4 Let R be a ring with involution. Then AS,, = AS,, for any
form parameter A on R.

Proof We show first that SR,, holds. Let (ai,---,ams1) be a unimodular

vector. By AS,,, there are elements x1,- - -, z,, such that J{ar, -, amsi1} =
JHar+amize, -, am+ami1Tm}- Since R = J{a1,- - -, Gmy1}, it follows that
(@1 + Gmy1T1, -+ G + A 1Z4,) is unimodular. Thus SR, holds.

We shall use now the equivalent formulation of AS,, given in (3.2.3).
Let v = (ai1,---,a2(m+1)) be a unimodular vector. Let p = m + 3 and
q = 2(m+1). By AS,,, there exist elements z1, - - -, 2, € R such that if oy =

H611m+1(_i‘1) e H6m,m+1(—fm) then Vo1 = (agl)’ T al(ll)) and 3{&;1,)1, Tt aflljl} =
3{@21_)1, . -,a,(ll)} = J{ap—1, - -,aq}. Let 2 <n <m+1 (= 1) and suppose
that for each 1 <4 < n, we have found a ¢ X ¢ matrix

as ig (3.2.3) spch that if voy - --0; = (agi), » -,agi)) then 3{@520 el al(;zi} =
3{@5,2, cee a((;)}. We construct now a ¢ X ¢ matrix o, with the same proper-

ties. By AS,,, there exist elements y1,- - -,y € R such that if

On = Hel,%—n—l—l(_gl) T HE%—n,g—n—l—l(__%—n)l%—n—l—l,%—n—ﬂ( %—n—l—l) T l%—n—}—l,%(ym)a
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i.e.

1 —1
1 _g%—n
1
1
1
Op = 1
1
-0 Y9 _pt1 0 Ym [ Y1 o Yip 1
- _%—n—i—l 1
—Aim, 1
then/uo-l...o'n:( gn)’ )and‘j{ap n’...’ - n} "{ap n"."a'((]n’n—l—l}_
J{a" Vo.a g"nlﬂ} Bythe1nduct10nthehypothe51s J{a n+1,---, q"nlle}
d{ann1421a" )} and Clearly, 15{‘1 n+1a" )} ‘j{a Sl aa’((] )}-
Thus J{ap e O n} J{ap iy )} By 1nduct10n we can construct
asequence 01, - Omy1 Of matrices o; as above such thatd{a m+1),---, 5;’;*11 =
+1 +1) +1) +1) +1 +1
Hasy o )a T, a gmm+1} Thus\j{am 1 G r:zn+1 P =Ha o )’ "’ag(nm+)1)}:

R. O

Let A be a form parameter on R. The A-unitary stable range condi-
tion AUS,, (cf. [HO, p. 526]) says that SR, holds and that if (a,. .., am,
b1, -+, by) is a unimodular vector then there is a vector (z1, ..., Zm, Y1, ", Ym)
such that z191 +. . .+ 2¥m € A and a121+. . .+ 02y +b1y1+- - -+ 00y = 1.
It is not difficult to show that AUS,, = AUS,, for any n > m.

Lemma 3.5 AUS,, = AS,,.

Proof We use the formulation of AS,, given in (3.2.3). Let v = (a1, - -, tma1,
b1, -+, bny1) be a unimodular vector. As in the proof of (3.3), we can find a
product of hyperbolic elementary matrices He;;(x) such that after multiply-
ing v on the right by this product, we can assume (ay,-- -, Gy, b1, -+, by) is
unimodular. By AUS,,, there is a vector (z1,...,Zm, Y1, -, Ym) such that
TG+ .o+ Tolm € Aand a121+. . .+ 0T +b1y1+- - -+ bpym = 1. Let 0 =
Hey i1 (7)) -+ Hemmi1 (@) lm1 (Y1) - - - bt mt1 (Ymg1) Where 23 = (1 —
Am1);, Y = Yi(l —@my1) (L <d<m) and yp 0 = =300, (1 — amp)Zays(1 —
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am+1). Then vo = (ay, -+, ay, 1,0}, -, b, ) has the property that a;,,, =
1. Thus (a},---,a;,, ) is unimodular. By (3.2.3), we are finished. O

Lemma 3.6 Suppose that R is module finite over a subring £ C center(R).
Let Max(k) denote the maximal ideal spectrum of & in the Zariski topology.
Define dy(R) = dimension(Max(k)), cf. [Bs, pp. 92-102]. Suppose that
Max(k) is Noetherian and dj(R) is finite. Then R satisfies ASy, (g)+1 for any
form parameter A in R.

Proof By [MKYV, Theorem (3.1)], R satisfies ASq,(r)+1. Thus by (3.4), we
are finished. O

4 Proof of Theorem 1.1

Throughout this section, R denotes an associative ring with identity and
involution a — a. A denotes an element in the center(R) such that A\ =1
and max*(R) = {a € R|a = —)a}. It will be assumed throughout that

R satisfies the stable range condition max*(R)S,,.

Lemma 4.1 Let n > r + m + 1. Then for any 0 € GHy,(R, ai,...,a,),
there is an element 7 € @,, such that o7 has 1 in its (n,n)’th position.

Proof Let
Q11 (12 511 /312

Qo1 (g2 521 /322
71 M2 011 O12
Yo1 Yoz 021 022

be the 4 x 4 block matrix description of ¢ given in (2.1) and (2.2). Since
o~' € GHyy(R, ay,...,a,) and therefore also has such a description, there
are r X (n — r) matrices z1,y; and (n — r) X (n — r) matrices z, y2 such
that a9 + 9o + Bory1 + Baoys = I and the columns of z; lie in C.
Thus (o121, Q22, B21Y1, Pe2) is a unimodular vector in (M(n_r)(R))‘l. Let v;
denote the bottom row of ae; (i = 1,2) and w; denote the bottom row of F;
(Z = 1, 2) Then (lel,vg,wl, U)Q) is the bottom row of (OleiEl, agg,ﬁgl,ﬂQQ)
and hence is unimodular in R*™~"+7_ Since the stable range condition SR,
holds and n —r > m + 1, there exists (cf. [K, Chap.VI, Remark 1.5.1]) an
(n —7r) X (n — r) matrix z; such that (ve + v12121, w1, we) is unimodular in
R*m=m)+7_ Gince the columns of z; belong to C, it follows straightforward
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that the columns of x;2; belong to C'. Let (; denote the 7’th column of x;2;
and let z5 be the (n —7) X (n — r) matrix defined by

I T121 0 0
0o I 0 0 T
0 _Alxlzl I 0 - H HmT—I—’L(CZ) € Qn
_ =1
0 z9 —z21T1 I
Set
I 121 0 0 I 0 0 0
o 1 0 0 0 00 g,
L= 0 —Al.’ElZl I 0 _ 0 Al.iClZl I 0 n
0 zZ9 —Z171 I —/\21,’7)1141 0 0 I

Then the n’th row of o is
(’U1 - )\wgzl.flAl, Vg + V12121 + wg(z2 - Zla_clAlxlzl), Wy — We21Z1, U]Q) .

Let (v}, vy, w!, w}) denote this row. Then (v}, w}, w}) is unimodular in R+,
because (vy + v12121, w1, we) is. Since R satisfies SR, and n —r > m + 1,
there exists an r x (n — ) matrix z3 such that (v} + w]z3, w}) is unimodular
in R?(»=7). Set

1 0 00
0 I 00
2= Q zZ3 I 0 < Qn
—Az3 0 0 I
Then the n'th row of o7y is (v — wh(A23), vh + w23, wi, wh) and (vh +

w} z3, wh) is unimodular. Let (vf, v}, w!, w}) denote this row. Thus (v}, w))
is unimodular in R*™~7). Since R satisfies max*(R)S,, and n —r > m + 1,
there exists a matrix v € M,,_, (max*(R)) such that v 4+ w4~ is unimodular
in R"". Set

O NO
~N O o
o O O

= H lij(aij) € Qn

r1<i<j<n

T3 =

S OO~

v 0 I

where a;; is the (¢ — r, j — r)’th coefficient of . Since R satisfies SR, and
(n —r) > m+ 1, there is by [Bs, Theorem 5.3.3] a product € of elementary
(n —7r) X (n — r) matrices such that (vj +wiy)e = (0,---,0,1). Set

0
0
0 € Q.

—1

T4 =

O OO MN
oo N O
O ~NO O

€



Then o7 797374 has n’th row (v, (0,---,0,1),w},w)"). O
Recall the subgroups P,, Q,, and R, of EHy,(R,ai,...,a,), which are
defined in §2.

Definition 4.2 Let ¢ € EH,,(R, ay,...,a,). A PRQ-decomposition of
¢ is a product decomposition ¢ = car where 0 € P,,,a € R,,, and 7 € @),,.

Decomposition Theorem 4.3 Let n > r +m + 2. Then every element of
EHy, (R, ay,...,a,) has a PRQ-decomposition, i.e. EHy,(R, ay,...,a,) =
PanQn-

Proof Let ¢ € EHy,(R, aq,...,a,). A PRQ-decomposition ocar of ¢ will
be called reduced if the (n—1,n)’th coefficient of o is 0. The strategy of the
proof is as follows. First we show that if ¢ has a PR(Q-decomposition then
it has a reduced one. Then we identify generators 6 of EHo, (R, a1, ...,a,)
and show using reduced P R(Q-decompositions that 6P, R,Q, C P,R,Q,. 1t
follows trivially that EHs, (R, ai,...,a,;) = P,R,Qy.

Let cat be a PRQ-decomposition of ¢. Write

o1 o012 o013 0
0 1 0 O
031 032 o33 0
O41 Osp 043 1

01:(011 013)_

031 033

By definition, oy € EHyy-1)(R, a1,...,a,). Since n > r +m + 2, it fol-
lows from (4.1) that there is a 71 € @,_1 such that the (n — 1,n — 1)’th
coefficient of 0,7y is 1. It is obvious that if 7y is identified with its image in
EHy, (R, ay,...,a,) (under the stabilization map EHy,, 1) (R, a1,-..,a,) —
EHy, (R, ai,...,a,)) then 7y € @, and the (n—1,n—1)’th coefficient of o7 is
1. Furthermore 1, € P,NQ,, and 7; normalizes R,,. Thus (o) (7 ‘o) (ry '7)
is a PRQ-decomposition of ¢ such that the (n—1,n —1)’th coefficient of oy
is 1. Choose z € R such that the (n — 1,n)’th coefficient of o7 Hep—1 () is
0. Choose y € R such that the (n,n—1)’th coefficient of 7, ' Hep, n1(y) is
0. Let o = Hepo1 () and 73 = Hepp—1(y). Then 75 (1 ars) Ty = oa0y
for some 0y € EHyp—1)(R, a4,...,a,) C P, and some oy € R,. Thus ¢ =
oar = (onn)(n (g tanTs)n)(ny i r) = (onmos)as(r, 'y by t7)
which is a reduced PRQ-decomposition of ¢.

and set
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The relations

Hepi(a) = [Henpn-1(a), Hen—1,:(1)] (eceRandr+1<i<n-—1),
Tnj(a) = [Henj(a), 5i(1)] (e Randr+1<1i,j5<n-1),
Trn(@)Tn-10(—a) = [Tn_1n-1(a), Henp1(1)], (a € max*(R)),
() = [ri(Q), Henj(=1)]rin($y),  ((€Cr+1<j<n—1),

show that P, and the matrices He,, ,_1(a) (a € R) generate EHy, (R, a1,...,a,).
Obviously P, (P, R,®Q») C P, R,Q,. Let ocar be areduced PRQ-decomposition.
Since the (n — 1,n)’th coefficient of ¢ is 0, o can be expressed as a product

o = 0304 where o3 € C,, such that the (n — 1,n)’th coefficient of o3 is 0 and
0y € EHyp_1)(R, a1,...,a,). A straightforward computation shows that
Hepp1(a)osHeppn1(—a) € P, and it is clear that EHy,_1)(R, a4,...,a,)
normalizes R,,. Thus He, ,_i(a)oar = (He,n—1(a)osHep, ;—1(—a)oy)

(07 Hepo1(a)oga)T which is a PRQ-decomposition. O

Proof of Theorem (1.1) Let 0 € GHy, (R, a4,...,a,). By (4.1), there is a
7 € Q. € EHy,(R, ay,...,a,) such that the (n,n)’th coefficient of o7 is 1.

n—1

Clearly there is a matrix 7 = []| Heui(z;) such that o7 has 0 in the first
i=1

(n—1) entries of its n’th row and 1 in the n’th entry of this row. From (2.2),

n n—1
it follows that there is a matrix 73 = [] lin(vi) [ €in(yi)Hm,(C) such that
i=1 i=r+1

T30T1 T, has the same n’th row as omm and the same n’th column as the
2n X 2n identity matrix. For any matrix

( : Ig ) S GHZn(Aaa'la"'aar)’

it follows from the identity
a B A A a B\ _ (A A
v 6 I 0 v 6 ) I 0

(i) @aAB + 76+ Aad = A1, and
(i) BAB + 68+ ABs = 0.

that

From (i), we obtain that the (2n, 2n)’th coefficient of 730775 is 1. From (2.2),

n—1 n
it follows now that there is a matrix 74 = [[ Heni(2:) [I 7in(20)70(€) such
i=1 i=r+1
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that 7473077 has the same n’th row and n’th column as 73077, and the
same 2n’th column as the 2n x 2n identity matrix. It follows now from (ii)
that 7473077 has the same n’th row as the 2n X 2n identity matrix. Thus
1473071 Ty € GHop 1y(R, a1,...,a,), by (2.4). Let p = 7y130m75. By (2.5), p
normalizes EHy, (R, ai,...,a,). Since o = 75 ‘7, prs ', it follows that o
normalizes EHy, (R, a1,...,a,). Thus KH; ,(R, a1,...,a,) is a group and
the map KH; ,_1(R, a1,...,a,) — KHy,(R, a1,...,a,) is surjective. By
induction on n —m — r, we obtain that the map K Hy 1 (R, a1,...,0,) —
KH; ,(R, ay,...,a,) is surjective.

Let ¢ € GHy(R, a1,...,a,) N EHypnyny(R, a1,...,0,). Let oar be a
Prni1yRnt1)Q(n41)-decomposition of ¢. Since the (n+1)’th row of o coincides
with that of the 2(n+1) x2(n+1) identity matrix, it follows that the (n+1)’th
row of oar coincides with the (n + 1)’th row of ar. Thus the (n+ 1)’th row
of ar coincides with that of the 2(n + 1) x 2(n + 1) identity matrix. Write

7__60
=\, e )

If (v, w) denotes the (n + 1)’th row of « then the (n + 1)’th row of ar is

e O ,_
(v, w) ( o ) = (ve + wy, we ™).
Thus wée~! = 0. Since ! is invertible, w = 0. Thus o € Q1. Write o =
o117, where 0y € EHy, (R, ay,...,a,) and 71 € Ciny1) € Q(ny1). Obviously
¢ = oi(nar) and ot € Qi) N GHon(R, a4,...,a,). It suffices to show
that mar € EHy, (R, ay,...,a,). In fact, we shall show that 7 ar € Q,,.

Write
nar = [ & 0
1 woet )

From the definition of @1, €; is an (n+1) X (n+1) matrix in the elementary
group E,.1(R), of the form
€ = I (65)
7\ o ¢

where s is an 7 X (n 4+ 1 — r) matrix whose columns lie in C. Furthermore
since 7y a7 lies in GHoy (R, ay, .. ., a,), the (n4+1—7)’th column of ay is trivial
and the last row and column of €| are the same as those of the (n + 1 —r)
identity matrix. Let & denote the i’th column of ap (1 < i < n —r) and set
1o =[] Hm,4i(—&). Then 7 € Q,, and

a €9 0
T2T1OT = ——1
T2 €
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where

I 0
€2 = ( 0 ¢ ) € Eypq1(R)

2

and €, € GL,1_,(R) whose last row and column are the same as those of

the (n + 1 — r) identity matrix. Thus €, € FE,,1(R) N GL, .(R).

Since

n—r > m+ 1 and A satisfies SR,,, we obtain by stability for K; of the

general linear group [Bs, Theorem 5.4.2 | that ¢, € E,,_,(R). Set
—1
(& 0
T3 = ( 0 & ) .

(10
T3ToT1XT = s I .

Then 73 € ), and

Since the matrix on the right hand side of the equality lies in GHo, (R, a4, ..., a,),

it must lie in @),,. Thus a7 lies in Q),. O
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