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Abstract

The general quadratic group GQ2, and its elementary subgroup EQ2,
are analogs in the theory of quadratic forms of the general linear group
GL, and its elementary subgroup F,. This article proves that the
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stabilization map GQon/EQ2n — GQa(ny1)/FEQo(n41) is an isomor-
phism whenever n > AS + 1 and AS denotes the A-stable rank of
rings with antiinvolution. As a corollary, a result is obtained which
has been anticipated since the late 1960’s: Over rings of finite Bass-
Serre dimension d, the stabilization map is an isomorphism whenever
n>d+ 2.

1 Introduction

Let R denote an associative ring with identity and antiinvolution. Let A
denote a form parameter on R defined with respect to the antiinvolution. Let
GQan (R, A) denote the general quadratic group of rank n over the form ring
(R,A) and let EQs, (R, A) denote its elementary subgroup. The role of the
group G(Qo, and its elementary subgroup EQs, in the theory of nonsingular
quadratic modules is analogous to that of the general linear group GL,, and
its elementary subgroup FE, in the theory of finitely generated projective
modules.

Let KQin(R,A) = GQan(R,A)/EQ2, (R, A). There is a natural embed-
ding GQan (R, A) = GQan+1)(R,A) of groups which induces a map KQ,,
(R,A) = KQint1(R,A) of coset spaces called the stabilization map. Our
main result is the following.

Theorem 1.1 Suppose R satisfies the A-stable range condition AS,, where
m > 2. If n > m then

KQl,n (Ra A)

is a group, the stabilization map

KQl,nfl(Ra A) — KQl,n(Ra A)

is surjective, and the stabliziation map

KQ1,n(RA) —+ KQ1pnt1 (R,A)

is an isomorphism of groups.

Stability results of the kind above have been available in the literature for
a long time, beginning with the papers [B1] and [B2] for surjective stability
and the papers [V1] and [V2] for surjective and injective stability. These
papers and later publications employed notions of stable range and dimension
which are stronger than A-stable range. Their precise relation to A-stable
range is given in the theorem below.



Several of the notions of stable range and dimension are defined for any
associative ring with identity. They are Bass-Serre dimension BS, Krull di-
mension K dim of Rentschler and Gabriel, max Krull dimension K max of
Stafford, dim(max spec) = length of longest chain of Jacobson prime ideals,
and absolute stable range AS,, of level m. For an associative ring R with
identity, antiinvolution, and form parameter A, let AUS,,, denote the unitary
stable range condition of level m on (R, A).

For any associative ring R with identity, let J(0) denote its Jacobson
radical.

Theorem 1.2 Suppose R is a ring with antiinvolution and form parameter A.
Then R satisfies AS,,, whenever one of the following conditions is satisfied.

(1.2.1) R satisfies AS,,.

(1.2.2) R satisfies AUS,,.

(1.2.3) m =1+ BS(R).

(1.2.4) R is right Noetherian and m = 1 + K dim(R/J(0)).

(1.2.5) R is a PI ring, either R is finitely generated as an algebra over a
Noetherian subring in center (R) or R is module finite over a
J-Noetherian subring in center (R), and m = 1 + dim(maxspec(R)).

(1.2.6) R is strongly right J-Noetherian and m = 1 + K max(R).

In view of the theorems above, one might expect that existing surjective
(resp. injective) stability results in the literature begin at m (resp. m + 1).
However, this is true only for surjective stability. Injective stability results in
the literature begin at m+ 2. It follows that Theorem 1.1 provides not just a
qualitative, but also a quantitative advance for stability results. Its corollary
that the stabilization map is an isomorphism whenever n > 2 + BS(R)
has been sought since the late 1960’s and is a direct analog for G(Q) of Bass’
original stability theorem for GL. Moreover Theorem 1.1 as well as its analog
for Hermitian forms in [BT] shows that A-stable range is the right analog for
rings with antiinvolution of Bass’ notion of stable range for rings.

The literature records several times dissatisfaction with the proof of in-
jective stability, cf. [HO, p. 521] and [K, p. vi]. Moreover accepted proofs
such as M. Saliani’s in [K, VI (4.7.1)] are still long and complicated. In the
current paper, we provide a one and a half page proof of injective stability,
which is self contained modulo a basic elementary knowledge of quadratic
modules over form rings, such as presented in the first 3 sections of chap-
ter V of the standard text [HO| of Hahn and O’Meara or in sections 1-5 of
chapter I and section 4 of chapter VI of the textbook [K] of Knus. (Either
of these texts can be supplemented by sections 1-6 in chapter I and sections
1-5 in chapter II of [Bs 2], sections 1 and 2 in [BV], and sections 1B, 2 and 3
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in [B3].) Although the presentations in these sources assume that the sym-
metry A € center (R), it is a minor detail dropping this assumption, or the
reader can simply assume in the current paper that A € center (R).

The rest of the paper is organized as follows. In §2, we recall the notions
of antiinvolution, form parameter, general quadratic group, and elementary
quadratic group, and prove a couple elementary facts concerning the last 2
notions. In §3, we recall the notions of stable rank and dimension used above
and prove Theorem 1.2. In §4, we provide an elementary proof of Theorem
1.1, using just the material in §2.

2 Preliminaries on GQ) and E(Q

In this section, we recall the definition of the general quadratic group GQs,
and its elementary subgroup EQs, and prove a couple easy lemmas.

Let R denote an associative ring with identity. Recall that an antiho-
momorphism s : R — R is an additive map such that h(ab) = h(b)h(a) for
all a,b € R. An antiinvolution — : R — R is an antiisomorphism for which
there is an element A € R with the property that A\a) = @ for all a € R.
Setting a = 1, we obtain A\ = 1. We claim that A\ = 1, from which it will
follow that ) is invertible in R and A~! = X. Clearly A = A\ = A(A)) = \.

Thus 1 = (AA)(AX) = A(AMN)A = A = A\ = A\. Note that this argument
doesn’t work, if in the definition above the condition AaX = @ is replaced by
the condition @ = Aa\. In the latter case, we would have to insist addition-
ally that A is invertible in R. The element A is called a symmetry of the
antiinvolution - and is obviously unique up to an element ¢ € center (R)
such that ¢¢ = 1. An antiinvolution with symmetry A will be called a A-
involution.

Let — : R — R denote a Minvolution on R. Let max*(R) = {a €
R | a = —a)} and min*(R) = {a — @A | a € R}. On checks straightforward
that max*(R) and min*(R) are closed under the operation a — Zaz for any
x € R. A A form parameter on R is an additive subgroup A of R such
that

min*(R) C A C max*(R),

TAzx C A for all z € R.

Let M denote a right R-module. A sesquilinear form on M is a bi-
additive map B : M x M — R such that B(va,wb) = aB(v,w)b for all
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v,w € M and a,b € R. To any sesquilinear form B on M, we associate a A-
Hermitian form

<, > MxM-—R
defined by

< wv,w >p= B(v,w) + B(w,v)\

and a A- quadratic form

gg: M — R/A
defined by

¢5(v) = [B(v,v)].

The triple (M,< , >pg,qp) is called a A- quadratic module. It is
nonsingular if M is finitely generated and projective over R and the map
M — Hompg(M, R), m — (m, )p, is bijective. A morphism of A-quadratic
modules is an R-linear map of right R-modules which preserves the associated
A-Hermitian and A-quadratic forms.

Let M denote a free right R-module with ordered basisey,--- ,e,,e_1,---,
e_n. Let ¢ denote the unique sesquilinear form on M such that the 2n x 2n-

matrix
e =(7 0 )-

One checks straightforward that the A-quadratic module (M, < , >,,q,)
is nonsingular. Using the basis of M, one can identify Aut (M, < , >,,qy,)
with a subgroup of the general linear group GLs,(R). This subgroup is
denoted by

GQQH (R: A)

and is called the general quadratic group of rank n. Its role in the theory
of nonsingular quadratic forms is analogous to that of the general linear group
in the theory of finitely generated projective modules. The following lemma
provides a matrix characterization of the elements of GQs, (R, A) and can be
used as a definition of GQ2, (R, A).

If o = (a;;) denotes an m x m matrix with coefficients a;; € R, let
i;) where aj; = aj;. It is easy to see that the rule o — @& defines a

A-involution on the ring M, (R) of all m x m matrices with coefficients in R.



Lemma 2.1 [B3, (3.1) and (3.4)] An invertible 2n x 2n matrix ( 3 ? ) €

G Lo, (R) is an element of GQq, (R, A) < the following conditions hold.

o GHGED-G)

(2.1.2) The diagonal coefficients of ¥a and 43 lie in A.
Moreover condition (2.1.1) is equivalent to the following condition.

(2.1.1) ( f; ? >_1 = ( /-\57 /-\Ba’\A ) .

There is an obvious embedding

GQm(R,A) — GQ2mn+1) (R,A)

a 0 6 0

a [ 0 1 0 0
<fy(5) — v 0 0 0
0 0 0 1

and using this map, we shall frequently want to consider GQq,(R,A) as a
subgroup of GQa(n41)(R, A).
We recall next the elementary quadratic matrices He;j(a), r;;(a) and
lij(a) in GQQH(R, A) Let
He;j(a) (a€ Rand 1 <1i,7 <n,i#j)

denote the 2n x 2n matrix with 1 along the diagonal, a in the (7, j)’th position,
—a in the (n + j,n + i)’th position, and 0 elsewhere. Let

rij(a) (ea€e Rand 1<14,j <n)
denote the 2n x 2n matrix with 1 along the diagonal, ¢ in the (i,n + j)’th
position, —aA in the (j,n + ¢)’th position, and 0 elsewhere. If i = j, it is
required additionally that a € A. Let

lij(a) (e € Rand 1 <14,j <n)

denote the 2n x 2n matrix with 1 along the diagonal, @ in the (n+1,7)th
position, —Aa in the (n + j,7)’th position, and 0 elsewhere. If i = j, it is
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required additionally that a € A. Using Lemma 2.2, one checks straightfor-
ward that each matrix above lies in GQ,(R,A). The subgroup generated
by these matrices is denoted by

EQ2H (R7 A)

and is called the elementary quadratic group. The stabilization map
GQan(R,A) = GQynt1)(R, A) above induces a stabilization map EQan (R, A)
— EQy(n11)(R, A) which will be used frequently to identify EQn, (R, A) with
its image in EQam+1)(R, A).

The following subgroups of EQy, (R, A) will be used to establish a de-
composition of EQq,(R,A) under stable range conditions. Let

Cn =< Hep(a), 1 <i<njlip(a),1<i<n,a€R>

R, = < Heyj(a), 1 <j<niryi(a),1<j<naeR>

P, ={o001 | 0 € EQy(n-1)(R,A) and o, € Cy,}

Qn = < Hej(a), 1 <45 <myi#jiliyla),1<i,j<nacR>.

Lemma 2.2 Let n > 2. Suppose 0 € GQo, (R, A) such that the n’th row
and n’th column of ¢ are identical with the n’th row and n’th column of the
2n x 2n identity matrix, respectively. Then the 2n’th row and 2n’th column
of o are identical with the 2n’th row and 2n’th column of the 2n x 2n identity
matrix, respectively. Consequently o € GQap—1)(R, A).

Proof Let

By (2.1.1),

Using the equation

a [ 75 ﬁ)\ (T 0
v 4 Ay dax ) \0 T )’
one deduces straightforward the conclusion of the lemma. O

Lemma 2.3 GQ3n—1)(R, A) normalizes EQn (R, A).

Proof By [B3, (3.16)], R,, and C,, generate EQs,(R,A). But it is obvious
that R, and C, are normalized by GQop—1)(R, A). O
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3 A-stable range condition

In this section, we recall the A-stable range condition and other stable range
conditions and notions of dimension used in the article and prove Theorem
1.2.

Let R be an associative ring with identity. A vector (a1, ..., a,) with coef-
ficients a; € R is called right unimodular if there are elements by,...,b, €
R such that a6, + --- + a,b, = 1. The stable range condition SR,
of H. Bass in the formulation of L. Vaserstein says that if (a1,...,Gm41)
is a unimodular vector then there exist elements b1,...,b,, € R such that
(a1 + ami1b1, - - -, G + @10y ) is unimodular. It follows easily that SR, =
SR, for any n > m. The stable rank SR(R) of R is the smallest number
m such that SR, holds.

Let R be an associative ring with identity and A-involution a — a. Let A
be a A-form parameter on R. Let M, (A) denote the set of all n x n matrices v
such that ¥ = —)\¥ and the diagonal coefficients of v lie in A. The A-stable
range condition AS,, of A. Bak and G. Tang says that R satisfies SR, and
that given any unimodular vector (a1, -+ , Gmy1, b1, bmy1) € R*™F2 there
exists a matrix v € M1 (A) such that (ai, -+, amy1) + (b1, -+, bg1)7 is
unimodular. By [BT, (3.3)], AS,, = AS, for all n > m. The A-stable rank
AS(R) of R is the smallest number m such that AS,, holds.

We recall next two other stable range conditions which have been used to
prove stability results for quadratic forms and record a lemma stating that
each is stronger than AS,,. The lemma has the consequence that stability
results based on AS,, are stronger that those based on the other stable range
conditions.

If S is a set of elements of R, let

IS=1 N m|NR

m2s

where 90 runs through all maximal right ideals of R. Note that a vector
(a1,...,a,) is unimodular <= J{ai,...,a,} = R. The absolute sta-
ble range condition AS,, of M. Stein, W. van der Kallen, B. Magurn,
and L. Vaserstein says if (a1, ,ay41) is a vector then there are elements
x1, -+ , Ty € R such that a1 € J{a1 + ame121, -+, A + Gpi1Tm ), i€
Har, - yam}t = a1 + a1z, - -, @ + Gy ). It s not difficult to
check that AS,, = AS, for all n > m. The absolute stable rank AS(R)
of R is the smallest number m such that AS,, holds.
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Let A be a form parameter on R. The A-unitary stable range condi-
tion AUS,, (cf. [HO, p. 526]) says R satisfies SR,, and given any unimodular
vector (aq,...,Qm,b1, - ,by) there exists a vector (Z1,...,Tm, Y1, ", Ym)
such that 2,91 +. . .+ 2,Jm € Aand a121+. . .+ 0T +01y1+- - -+ bpym = 1.
It is not difficult to show that AUS,, = AUS,, for alln > m. The A-unitary
stable rank AUS(R) is the smallest number m such that AUS,, holds.

Lemma 3.1 [BT, (3.4) - (3.5)] The following holds for any ring R with form
parameter A.

(3.1.1) AS,, = AS,,

(3.1.2) AUS,, = ASpm.

If P denotes a partially ordered set, let dev(P) denote its deviation, cf.
[MR, 6.1.2], and let £(P) denote the length of the longest chain in P. Let
R denote an associative ring with identity. A right ideal 2 in an associative
ring R with identity is called a J-ideal (J stands for Jacobson), if A =
J(2A). Let L(R) (resp. L;(R)) denote the lattice of all right ideals (resp.
J-ideals) of R. Define the Krull dimension (in the sense of Rentschler
and Gabriel) K dim(R) = devL(R), cf. [MR, 2.2], and the max Krull
dimension (in the sense of Stafford) K max(R) = devL;(R), cf. [S, §1].
Let Prime;(R) denote the partially ordered set of all prime J-ideals of R
and define dim(maxspec (R)) = ¢(Prime;(R)), cf. [S, §0]. Let k& denote a
commutative ring. Let maxspec(k) denote the set of all maximal ideals of
k under the Zariski topology. If Y is a subspace of maxspec(k), let Irr(Y)
denote the partially ordered set of all irreducible closed subsets of Y. Define
bs(k) to be the smallest natural number m such that maxspec(k) is a finite
union of Noetherian subspaces Y such that ¢(Y) < m. If no such natural
number exists then set bs(k) = co. For an associative ring R with identity,
define the Bass-Serre dimension BS(R) to be the smallest number m
such that R is module finite over a commutative subring k& C center (R)
and bs(k) < m.

Proof of Theorem 1.2 (1.2.1) and (1.2.2) are the assertions of Lemma 3.1.

(1.2.3) By [KMV, Theorem 3.7], R satisfies AS,, and so we are finished
thanks to (1.2.1).

(1.2.4) (resp. (1.2.5), (1.2.6)) By [S, Theorem A (i)] (resp. [S, Theorem A
(ii)], [S, Theorem B]), R satisfies AS,, and so we are finished again
by (1.2.1). O



4 Proof of Theorem 1.1

Throughout this section, R is an associative ring with identity and A-involution
a — a and A is a A-form parameter on R. It will be assumed throughout
that

R satisfies the A-stable range condition AS,,.

This implies by definition that R satisfies Bass’ stable range condition SR,,.
Recall the subgroup @, of EQ2,(R,A), which was defined in §2.

Lemma 4.1 Let n > m + 1. Then for any 0 € GQa,(R,A), there is an
element 7 € @, such that o7 has 0 in the first (n — 1) entries of its n’th row
and 1 in the n’th entry of this row.

(31

be the 2 x 2 block matrix description of ¢ provided in Lemma 2.2. Clearly
(e, B) is a unimodular vector in (M, (R))?. Let v denote the bottom row of
a and w the bottom row of 5. Then (v, w) is the bottom row of («, §) and
hence is unimodular in R*".

Since R satisfies AS,, and n > m + 1, there exists a matrix v € M, (A)
such that v 4+ w7~ is unimodular in R™. Set

T1=<,IY ?)Z H lij(aij) € Qn

1<i<j<n

Proof Let

where a;; is the (¢, 7)’th coefficient of 7. Since R satisfies SR,;, and n > m+1,
there is by [Bsl, Theorem 5.3.3] a product € of elementary n X n matrices
such that (v +wy)e=(0,---,0,1). Set

e 0
7—2:<0 EI>EQTL

Then o775 has n’th row ((0,---,0,1),w). O
Recall the subgroups P,, Q,, and R,, of EQy,(R, A), which are defined in
§2.

Definition 4.2 Let ¢ € EQo,(R,A). A PRQ-decomposition of ¢ is a
product decomposition ¢ = ocar where 0 € P,,a € R,,, and 7 € Q),,.
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Decomposition Theorem 4.3 Let n > m + 2. Then every element of
EQ2n(R,A) has a PRQ-decomposition, i.e. EQa,(R,A) = P,R,Qy.

Proof Let ¢ € EQ,(R,A). A PRQ-decomposition car of ¢ will be called
reduced if the (n — 1,n)’th coefficient of o is 0. The strategy of the proof is
as follows. First we show that if ¢ has a PR(@-decomposition then it has a
reduced one. Then we identify a set of generators 6 of EQa,(R,A) and show
using reduced PRQ-decompositions that 0P, R,Q, C P,R,Q,. It follows
trivially that EQa,(R,A) = P,R,Qy.

Let cat be a PRQ-decomposition of ¢. Write

o o012 o013 0
0 1 0 0
031 032 033 0
O41 Os2 043 1

01:(011 013)_
031 033
By definition, 01 € EQamn—-1)(R,A). Since n > m + 2, it follows from (4.1)
that there is a 4 € @),—; such that the (n — 1,n — 1)’th coefficient of 017
is 1. It is obvious that if 7y is identified with its image in EQs, (R, A) (un-
der the stabilization map EQyp—1)(R,A) — EQ2,(R,A)) then 1y € @,
and the (n — 1,n — 1)’th coefficient of o7y is 1. Furthermore 11 € P, N Q,
and 7; normalizes R,. Thus (o7)(r 'arn)(r7'7) is a PRQ-decomposition
of ¢ such that the (n — 1,n — 1)’th coefficient of o7y is 1. Choose x € R
such that the (n — 1,7n)'th coefficient of o7 He,—1,(z) is 0. Choose y €
R such that the (n,n — 1)th coefficient of 7, 'am He,, 1(y) is 0. Let
7o = Hey 1,(7) and 73 = Heppno1(y). Then 7, ' (7 'amms)m = o9y for
some 0y € EQyn-1)(R,A) C P, and some a; € R,. Thus ¢ = car =
(or1m2) (1 M tamTs) ) (1y 11 1 1) = (0mmeos)an(ry Py iy i) which s
a reduced P R@)-decomposition of ¢.

The relations

and set

Hepi(a) = [Heppn—1(a), Hep—1,(1)] (aeRand 1 <i<n-—1),
rnj(a) = [Hepj(a),r5i(1)] (eeRand 1 <i#j<n-—1),
7“nn(a)rn—l,n(_a) = [Tn—l,n—l(a)a Hen,n—l(l)]a (a €A),
show that P, and the matrices He, ,_1(a) (a € R) generate EQ2p, (R, A). Ob-
viously P, (P, R,Q.) C P,R,Q,. Let cat be a reduced P RQ-decomposition.

Since the (n — 1,n)’th coefficient of ¢ is 0, o can be expressed as a prod-
uct 0 = o304 where o3 € C,, such that the (n — 1,n)’th coefficient of o3
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is 0 and 04 € EQyn_1)(R,A). A straightforward computation shows that
Heyp 1(a)osHepn 1(—a) € P, and it is clear that EQyy—1)(R, A) normal-
izes Ry,. Thus He, ,—1(a)oar = (Hepp—1(a)osHep n—1(—a)oy)

(0 ' Heépn1(a)os)7 which is a PRQ-decomposition. O

Proof of Theorem (1.1) Let 0 € GQ2,(R,A). By (4.1), there is a 7 €
Qn C EQ2, (R, A) such that o7y has 0 in the first (n — 1) entries of its n’th

row and 1 in the n’th entry of this row. It follows that there is a matrix 3 =
n n—1

I1 %in(vi) 1] Hein(y:) such that 307 has the same n’th row as o772 and the

i=1 i=1

same n’th column as the 2n x 2n identity matrix. Now we can find a matrix

n
Ty = [ [ rin(2;) such that 730775 has the same n’th row and n’th column as
i=1
2n x 2n identity matrix. Thus the element p = T30 € GQom—1)(R, A),

by (2.2). So p normalizes EQy, (R, A), by (2.3). Since o = 75 7, pry it
it follows that o normalizes EQay, (R, A). Thus KQ ,(R,A) is a group and
the map KQ1n1(R,A) — KQ1,(R, A) is surjective.

Let ¢ € GQ(R,A) N EQz(nH)(Ra A). Let oat be a Py R Qni1)-
decomposition of ¢. Since the (n + 1)’th row of o coincides with that of
the 2(n + 1) x 2(n + 1) identity matrix, it follows that the (n + 1)’th row of
oar coincides with the (n + 1)’th row of ar. Thus the (n + 1)’th row of ar
coincides with that of the 2(n + 1) x 2(n + 1) identity matrix. Write

(€ 0
T = v =)

If (v, w) denotes the (n + 1)’th row of « then the (n + 1)’th row of ar is

e 0 _
(v, w) < y ) = (ve + wy,we 1),
Thus we™! = 0. Since ! is invertible, w = 0. Thus a € Q,4;. Write
o = o111 where 01 € EQou(R,A) and 71 € Clny1) € Qu+1).- Obviously
¢ = oi(niar) and TaT € Qi) N GQ2 (R, A). It suffices to show that
nar € EQy, (R, A). In fact, we shall show that mar € Q,.

Write
mar= [ & 0
! moa )

Since Tar € GQa, (R, A), it follows that the last row and column of v; are
zero and €; € GL,(R). From the definition of @41, €; isan (n+1) x (n+1)
matrix in the elementary group E,;;(R). Thus ¢, € GL,(R) N E,1(R).

To complete the proof, it suffices to show that ¢; € E,(R). Since R satisfies
SR,, (because it satisfies AS,,;) and n > m + 1, it follows by stability for K;
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of the general linear group [Bsl, Theorem 5.4.2 | that GL,(R) N E,,1(R) =
E,(R). O
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