
Journal of Pure and Applied Algebra 104 (1995) 235-241

Induction for Finite Groups Revisited

ANTHONY BAK
Department of Mathematics

University of Bielefeld
33501 Bielefeld, Germany

Abstract Let G be a finite group and I(G) a nonempty family of subgroups
of G, which is closed under conjugation and taking subgroups of its mem-
bers. Let F be a Green ring functor on G. Let Ω be the Burnside ring
functor on G and let ΩF denote the image of the canonical natural transfor-
mation Ω −→ F . Suppose that for each subgroup H ⊂ G, every Z-torsion
element of ΩF (H) is nilpotent. Then the following are equivalent: (1) F is
I(G)-hypercomputable. (2) ΩF is I(G)-hypercomputable. (3) The restriction
homomorphism Res G

I(G)(Q ⊗ F ) : Q ⊗Z F (G) −→
∏

H∈I(G)

Q ⊗Z F (H) is injec-

tive. (4) the induction homomorphism Ind G
I(G)(Q⊗F ) :

∐

H∈I(G)

Q⊗ZF (H) −→

Q ⊗Z F (G) is surjective.

1. Introduction

We recall the notions of Mackey functor, Green ring functor, Green module,
and hypercomputability for Mackey functors, as well as the universal prop-
erties of the Burnside ring functor. A detailed exposition of these notions is
included in [BM, §7].

Let G be a finite group. Let Sub(G) denote the category whose objects
are all subgroups H ⊂ G and whose morphism are all symbols iH,g,K : H −→
K where H and K are subgroups of G and g ∈ G such that gHg−1 ⊂ K.
Composition is defined by iK,g′,K′iH,g,K = iH,g′g,K′. Each morphism iH,g,K has
a natural realization as a group homomorphism H −→ K, h 7−→ ghg−1, but
distinct morphisms can have the same realization. A Mackey functor on
G is a bifunctor M : Sub(G) −→ ((abelian groups)) [G, (1.3) axioms G1
and G2] satisfying the Mackey subgroup property [G, (1.3) axioms G3 and
G4]. If M is a Mackey functor on G, one often lets Ind K

g,HM = M?(iH,g,K)
and Res K

g,HM = M?(iH,g,K) and sets IndK
H = Ind K

1,H and ResK
H = Res K

1,H .
The map Ind K

g,HM (resp. Res K
g,HM) is called an induction map (resp.
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restriction map). If I(G) is a family of subgroups of G, let Ind G
I(G)M denote

the canonical map
∐

H∈I(G)

M(H) −→ M(G),
∐

H∈I(G)

xH 7−→
∑

H∈I(G)

IndG
HM(xH),

and let Res G
I(G)M denote the canonical map M(G) −→

∏

H∈I(G)

M(H), x 7−→

∏

H∈I(G)

ResG
HM(x).

Let I(G) be a nonempty family of subgroups of G closed under con-
jugation and taking subgroups of its members. A Mackey functor M on
G is called I(G)-computable if the canonical maps colim

I(G)
M? −→ M(G)

and M(G) −→ lim
I(G)

M? induced by induction and restriction, respectively, are

bijective. Let S be a set consisting of the natural number 1 and some nat-
ural primes p, possibly none, such that p divides |G| := order of G. Let
I(G)S = {H ⊂ G | ∃N E H, N ∈ I(G), | H/N | = power of s, s ∈ S}.
Let S ′ denote the multiplicative subset of Z generated by 1 and all natu-
ral primes p such that p /∈ S and p divides |G|. A Mackey functor M on
G is called I(G)-hypercomputable if for all sets S as above, the functor
S ′−1M := S ′−1

Z ⊗Z M is I(G)S-computable.

Let ((associative rings with identity))w denote the category whose ob-
jects are all associative rings with identity, whose morphisms are all iden-
tity preserving ring homomorphisms between associative rings with identity,
and whose weak morphisms (accounting for the superscript w above) are all
group homomorphisms between associative rings with identity. A Green
ring functor on G is a bifunctor F : Sub(G) −→ ((associative rings with
identity))w such that for any morphism iH,g,K ∈ Sub(G), F ?(iH,g,K) is a mor-
phism in ((associative rings with identity))w and F?(iH,g,K) is a weak mor-
phism in ((associative rings with identity))w, F satisfies the Mackey subgroup
property (in particular, F is a Mackey functor), and F satisfies the Frobenius
reciprocity law [G, (1.3) axiom G5].

A Mackey functor M on G is called a Green module over a Green
ring functor F on G if M is a Frobenius module [L, Chap. III §1] over F .

Let

Ω : Sub(G) −→ ((commutative associative rings with identity))w

denote the Burnside ring functor. It is well known, cf. [t.D, §1], that Ω
is a Green ring functor, that every Mackey functor on G is canonically a
Green module over Ω, and that for any Green ring functor F on G, there is
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a canonical natural transformation Ω −→ F of Green ring functors such that
for each subgroup H ⊂ G, image (Ω(H) −→ F (H)) ⊂ center (F (H)). Let

ΩF := image (Ω −→ F ).

The following theorem is dual to A. Dress’ induction theorems [D, (1.2)
and (1.7)]. A formulation of Dress’ results, in the language of the present
article is given in [B, (12.13)].

Theorem 1.1. Let G be a finite group and I(G) a nonempty family of
subgroups of G, which is closed under conjugation and taking subgroups of its
members. Let F be a Green ring functor on G such that for each subgroup
H ⊂ G, every Z-torsion element of F (H) is nilpotent. Then the restriction
homomorphism Res G

I(G)(Q⊗F ) : Q⊗ZF (G) −→
∏

H∈I(G)

Q⊗ZF (H) is injective

⇐⇒ F is I(G)-hypercomputable.

The theorem above allows one to prove a result which could be called
the

Fundamental Theorem 1.2. Let G be a finite group and I(G) a nonempty
family of subgroups of G, which is closed under conjugation and taking sub-
groups of its members. Let F be a Green ring functor on G such that for
each subgroup H ⊂ G, every Z-torsion element of ΩF (H) is nilpotent. Then
the following are equivalent:

(1) F is I(G)-hypercomputable.
(2) ΩF is I(G)-hypercomputable.
(3) The homomorphism Res G

I(G)(Q ⊗ F ) : Q ⊗Z F (G) −→
∏

H∈I(G)

Q ⊗Z F (H)

is injective.
(4) The homomorphism Ind G

I(G)(Q ⊗ F ) :
∐

H∈I(G)

Q ⊗Z F (H) −→ Q ⊗Z F (G)

is surjective.

Proof (1) ⇒ (2). (1) implies that the restriction homomorphism Res G
I(G)(Q⊗

F ) : Q⊗Z F (G) −→
∏

H∈I(G)

Q⊗Z F (H) is injective. It follows that the restric-

tion homomorphism Res G
I(G)(Q⊗ΩF ) : Q⊗Z ΩF (G) −→

∏

H∈I(H)

Q⊗Z ΩF (H) is

injective. One checks easily that every subbifunctor of a Green ring functor
is a Green ring functor. Hence, ΩF is a Green ring functor and by Theorem
(1.1), ΩF is I(G)-hypercomputable.
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(2) ⇒ (3). Since F is a Green module over ΩF and ΩF is I(G)-hypercomputable,
it follows from Dress’ result [D, (1.2)] (cf. [B, (12.13)(a)]) that F is I(G)-
computable. In particular, the restriction homomorphism Res G

I(G)(Q ⊗ F ) :

Q ⊗Z F (G) −→
∏

H∈I(G)

Q ⊗Z F (H) is injective.

(3) ⇒ (4). (3) implies, as in the proof of (1) ⇒ (2), that the restriction
homomorphism Res G

I(G)(Q ⊗Z ΩF ) : Q ⊗Z ΩF (G) −→
∏

H∈I(G)

Q ⊗Z ΩF (H) is

injective. Thus, by Theorem (1.1), ΩF is I(G)-hypercomputable. Hence, as
in the proof of (2) ⇒ (3), F is I(G)-hypercomputable. In particular, the
induction homomorphism Ind G

I(G)(Q⊗F ) :
∐

H∈I(G)

Q⊗Z F (H) −→ Q⊗Z F (G)

is surjective.

(4) ⇒ (1). This follows from Dress induction [D, (1.2) and (1.7)]. Q.E.D.

The following corollaries of the fundamental theorem have applications
in K-theory [BM, (12.22) and (12.23)], surgery theory [BM, (13.20)], and
transformation groups [BM, §14 ].

Corollary 1.3. Let G be a finite group and I(G) a nonempty family of
subgroups of G, which is closed under conjugation and taking subgroups of
its members. Let F be a Green ring functor on G such that for each sub-
group H ⊂ G, every Z-torsion element of ΩF (H) is nilpotent. Then if F is
I(G)-hypercomputable, every submackey functor F ′′ ⊂ F and every quotient
Mackey functor F ′ of F is I(G)-hypercomputable.

Proof The important observation to make is that F ′ and F ′′ are Green
modules over ΩF (but not necessarily over F ). By the Fundamental Theorem
(1.2), ΩF is I(G)-hypercomputable. Thus, by [D, (1.2)], F ′ and F ′′ are I(G)-
hypercomputable.

Corollary 1.4. Let G be a finite group and I(G) a nonempty family of
subgroups of G, which is closed under conjugation and taking subgroups of
its members. Let F0, F1, . . . , Fm be a sequence of Green ring functors on G
such that for each i > 0, one of the following holds: (1) There is a natural
transformation Fi−1 −→ Fi of Green ring functors. (2) The canonical ac-
tion of Ω on Fi factors through ΩFi−1

and for each subgroup H ⊂ G, every
Z-torsion element of ΩFi−1

(H) is nilpotent. (3) There is an exact sequence

F ′′

i −→ Fi
γ

−→ Fi−1 of natural transformations of Mackey functors (in par-
ticular, γ is not necessarily a natural transformation of Green ring functors)
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such that F ′′

i is I(G)-hypercomputable and for each subgroup H ⊂ G, every
Z-torsion element of ΩFi−1

(H) is nilpotent. (4) There is an exact sequence

F ′′

i −→ Fi
γ

−→ Fi−1 of Mackey functors such that F ′′

i is I(G)-hypercomputable
and γ is surjective. Then F0 is I(G)-hypercomputable ⇐⇒ all the F ,

i s are
I(G)-hypercomputable.

Proof. The assertion ⇐) is trivial. The assertion ⇒) is proved by induction
on m. The case m = 0 is trivial. Assume that m > 0 and that the result
is true for m − 1. Thus, Fm−1 is I(G)-hypercomputable. Let F = Fm and
F ′ = Fm−1.

Suppose there is a natural transformation F ′ −→ F as in (1). Then
F is a Green module over F ′. Since F ′ is I(G)-hypercomputable, it follows
from [D, (1.2)] that F is I(G)-hypercomputable.

Suppose (2) holds. Then F is a Green module over ΩF ′ and by (1.2),
ΩF ′ is I(G)-hypercomputable. It follows now from [D, (1.2)] that F is I(G)-
hypercomputable.

Let F ′′ −→ F
γ

−→ F ′ be an exact sequence as in (3). Let S and S ′

be as in the definition of I(G)-hypercomputable. Consider the commutative
diagram of short exact sequences.

∐
H∈I(G)SS ′−1F ′′(H) −→

∐
H∈I(G)SS ′−1F (H) �

∐
H∈I(G)SS ′−1 image γ(H)

Ind G
I(G)S(S ′−1F ′′) ↓ Ind G

I(G)S (S ′−1F ) ↓ ↓ Ind G
I(G)S(S ′−1 image γ)

S ′−1F ′′(G) −→ S ′−1F (G) � S ′−1 image γ(G).

By [D, (1.2)], it suffices to show that the induction map Ind G
I(G)S(S ′−1F ) is

surjective. By assumption, the induction map Ind G
I(G)S(S ′−1F ′′) is surjective

and by (1.3), the induction map Ind G
I(G)S(S ′−1imageγ) is surjective. Thus,

by the 5-Lemma, the induction map Ind G
I(G)S(S ′−1F ) is surjective.

Let F ′′ −→ F
γ

−→ F ′ be an exact sequence as in (4). Then one
gets a commutative diagram as above and deduces as above that F is I(G)-
hypercomputable. Q.E.D.

The rest of this article is devoted to the proof of Theorem (1.1).

2. Proof of Theorem (1.1)
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Throughout this section, G denotes a finite group and F a Green ring functor
on G.

Definition 2.1. Let I(G) and R(G) be nonempty families of subgroups of
G, which are closed under conjugation and taking subgroups of their mem-
bers. I(G) is called relatively F -prime to R(G) if the 2-sided ideal image
(Ind G

I(G)F ) is relatively prime to the 2-sided ideal Ker(Res G
R(G)F ), i.e., image

(Ind G
I(G)F ) + Ker(Res G

R(G)F ) = F (G).

Lemma 2.2. Let F ′ be a Green ring functor on G which is a Green module
over F . If I(G) is relatively F -prime to R(G) then I(G) is relatively F ′-
prime to R(G).

Proof. Let x ∈ image (Ind G
I(G)F ) and y ∈ Ker (Res G

R(G)F ) such that x+y =
1F (G). Clearly, 1F ′(G) = 1F (G)1F ′(G) = x1F ′(G) + y1F ′(G). By Frobenius reci-
procity, x1F ′(G) ∈ image (Ind G

I(G)F
′). Furthermore, y1F ′(G) ∈ Ker(Res G

R(G)F
′)

because for H ∈ R(G),ResG
HF ′(y1F ′(G)) = (ResG

HF (y))(ResG
HF ′ (1F ′(G))) = 0.

Q.E.D.

Proposition 2.3. Let F ′ be a Green ring functor on G. Let I(G) and R(G)
be nonempty families of subgroups of G, which are closed under conjugation
and taking subgroups of their members, such that I(G) is relatively F -prime
to R(G). If F ′ is a Green module over F and Ker(Res G

R(G)F
′) = 0 then every

Green module on G over F ′ is I(G)-computable.

Proof. By Dress’ theorem [D, (1.2)] (cf. [B, (12.13) (a)]), it suffices to
show that the induction map Ind G

I(G)F
′ is surjective. But, this is a trivial

consequence of Lemma (2.2) and the assumption that Ker(Res G
R(G)F

′) = 0.
Q.E.D.

Let S(G) denote the set of all subgroups of G. If I ⊂ S(G) is closed
under conjugation, let Conj(I) denote the set of conjugation classes (H) of
elements H ∈ I. Give Conj(S(G)) the partial ordering defined by the rule
(H) 5 (K) ⇔ H is conjugate to a subgroup of K.

Definition 2.4. A linear ordering (H1), (H2), . . . , (Hr) of the elements of
Conj(S(G)) is called good if (Hi) 5 (Hj) =⇒ i 5 j. A nonempty, con-
jugate closed subset I(G) ⊂ S(G) is called initial if there is a good order-
ing (H1), (H2), . . . , (Hr) of Conj(S(G)) such that for some k,Conj(I(G)) =
{(H1), (H2), . . . , (Hk)}.

The next lemma characterizes initial families of subgroups of G.
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Lemma 2.5. Let I(G) be a nonempty, conjugate closed family of subgroups of
G. Then I(G) is an initial family ⇐⇒ I(G) is closed under taking subgroups
of its members.

Proof The proof is an elementary exercise.

Key Lemma 2.6. Let Ω : Sub(G) −→ ((commutative associative rings with
identity
))w denote the Burnside ring (bi)functor. Let I(G) be a nonempty family of
subgroups of G, which is closed under conjugation and taking subgroups of
its members. Then I(G) is relatively Q ⊗Z Ω-prime to I(G).

Proof. By Lemma (2.5), there is a good ordering (H1), (H2), . . . , (Hr) of
Conj(S(G)) such that {(H1), (H2), . . . , (Hk)} = Conj(I(G)), for some k. For
(H) ∈ Conj(S(G)) and a finite G-set X, define φ(H)(X) = |XH| := number of
elements in X which are left fixed by every element in H. It is easy to check,
cf. [t.D, §1], that φ(H) defines a ring homomorphism φ(H) : Ω(G) −→ Z.

Let ei(1 ≤ i ≤ r) denote the idempotent of
r∏

Z whose i′th coordinate is 1

and other coordinates are 0. Define φ : Ω(G) −→
r∏

Z, X 7−→
r∏

i=1

φ(Hi)(X)ei.

Give the Burnside ring Ω(G) the ordered Z-basis [G/H1], [G/H2], . . . , [G/Hr]
where [G/Hi] denotes the isomorphism class of the G-set G/Hi of left cosets

of Hi in G. Give
r∏

Z the ordered Z-basis e1, e2, . . . , er. One deduces easily
from the paragraph preceeding [t. D, (1.2.3)] that φ is represented by an upper
triangular matrix M(φ) whose i′th diagonal element is |NG(Hi)/Hi| where
NG(Hi) is the normalizer of Hi in G. In particular, the diagonal entries
of M(φ) are nonzero natural numbers. Thus, φ is injective and Q ⊗ φ :

Q ⊗Z Ω(G) −→
r∏

Q is a ring isomorphism.

It is well known that the Burnside ring functor is a Green ring functor
on G. Thus, the bifunctor Q ⊗Z Ω : Sub(G) −→ ((commutative associative
rings with identity))w, H 7−→ Q ⊗Z Ω(H), is also a Green ring functor. Let
x ∈ Q ⊗Z Ω(G). It follows from the definition of restriction for the Burn-
side ring functor that ResG

H(Q ⊗Z Ω)(x) = 1Q⊗ZΩ(H) ⇐⇒ (Q ⊗ φ(K))(x) =
1 for all subgroups K of H. Thus, I(G) is relatively Q ⊗Z Ω-prime to
I(G) ⇐⇒(by definition) there are elements x ∈ image (Ind G

I(G)(Q ⊗Z Ω))

and y ∈ Ker(Res G
I(G)(Q⊗Z Ω)) such that x+y = 1Q⊗ZΩ(G) ⇐⇒ there is an el-

ement x ∈ image (Ind G
I(G)(Q⊗Z Ω)) such that (ResG

H(Q⊗Z Ω))(x) = 1Q⊗ZΩ(H)

for all H ∈ I(G) ⇐⇒ there is an element x ∈ image (Ind G
I(G)(Q ⊗Z Ω)) such

that (Q ⊗ φ(H))(x) = 1 for all H ∈ I(G). Since Q ⊗ φ is bijective, there
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is a unique element x ∈ Q ⊗Z Ω(G) such that (Q ⊗ φ(H))(x) = 1 for all
H ∈ I(G) and (Q⊗ φ(H))(x) = 0 for all H /∈ I(G). Since M(Q⊗ φ) = M(φ)
is a triangular matrix with nonzero diagonal entries and since Conj(I(G)) =

{(H1), (H2), . . . , (Hk)}, the element x above has the form
k∑

i=1

ai[G/Hi] for

suitable rational numbers ai ∈ Q. Thus, x ∈ image (Ind G
I(G)(Q⊗ZΩ)). Q.E.D.

Proof Of Theorem 1.1. By Dress induction [D, (1.2) and (1.7)] (a
formulation in the language of the present article is given in [B, (12.13)]), it
suffices to show that the induction map Ind G

I(G)(Q ⊗Z F ) is surjective. But,

this follows immediately from (2.6), (2.3), and the fact that Q ⊗Z F is a
Green module over Q ⊗Z Ω, because any Mackey functor, for example F , is
a Green module over Ω. Q.E.D.
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