Journal of Pure and Applied Algebra 14 (1979) 1–20. © North-Holland Publishing Company

ARF'S THEOREM FOR TRACE NOETHERIAN AND OTHER RINGS

Anthony BAK

Faculty of Mathematics, University of Bielefeld, 48 Bielefeld, Postfach 8640, Germany

Communicated by H. Bass Received 25 April 1977

1. Introduction and statement of main results

The purpose of the paper is to extend Arf's Theorem below to a larger class of rings.

Arf's Theorem [2, Satz 13]. Let k be a field of characteristic 2 such that the similarity classes of central simple k-algebras of dimension 4 form a group under \bigotimes_k . Then the isomorphism class of a nonsingular quadratic form q over k is determined by three invariants; the rank $r(q) \in \mathbb{Z}$, the Clifford algebra $C(q) \in Br(k) = Brauer$ group (k), and the Arf invariant $\Delta(q) \in k/\{c + c^2 | c \in k\}$.

A consequence of the extension will be that one can remove Arf's restriction on the similarity classes of central simple k-algebras. This is accomplished by replacing the invariants C(q) and $\Delta(q)$ by a single invariant $\beta(q)$ with values in $k \otimes_{k^2} k/\{a \otimes b = b \otimes a, a \otimes b = a \otimes b^2 a\}$.

We describe now the extension. The key idea will be to replace k in the tensor product above by a quotient Γ/Λ of two form parameters.

Let A be a ring with involution $a \mapsto \bar{a}$; thus $ab = \bar{b}\bar{a}$ and $\bar{a} = a$ for all $a, b \in A$. Let $\lambda \in \text{center } A$ such that $\lambda \bar{\lambda} = 1$. A form parameter Λ is an additive subgroup of A such that

(1) $\{a - \lambda \bar{a} \mid a \in A\} \subset \Lambda \subset \{a \mid a \in A, a = -\lambda \bar{a}\},\$

(2) $aA\bar{a} \subseteq A$ for all $a \in A$.

The minimum and maximum choice of the form parameter are denoted respectively by min and max. A Λ -quadratic module is a pair (M, ψ) where M is a right A-module and ψ is a sesquilinear form on M. Associated to (M, ψ) are a Λ -quadratic form $q_{\psi}: M \to A/\Lambda, \quad m \mapsto [\psi(m, m)]$, and an even λ -hermitian form $\langle m, n \rangle_{\psi} =$ $\psi(m, n) + \lambda \overline{\psi(n, m)}$. A morphism $(M, \psi) \to (M', \psi')$ of Λ -quadratic modules is an A-linear map $M \to M'$ which preserves the Λ -quadratic and λ -hermitian forms. Define the product $(M, \psi) \perp (M', \psi') = (M \oplus M', \psi \oplus \psi')$. Call (M, ψ) nonsingular if M is a finitely generated projective A-module and the map $M \to \text{Hom}_A(M, A)$, $m \mapsto \langle m, \rangle_{\psi}$, is bijective. An example of a nonsingular module is the hyperbolic module $\mathbb{H}(P) = (P \oplus \operatorname{Hom}_A(P, A), \psi_P)$ such that P is a finitely generated projective right A-module and $\psi_P(p, f), (q, g)) = f(q)$. Hom_A(P, A) is given a right A-module structure via the rule $(fa)(p) = \overline{a}f(p)$.

$$\mathbb{H}(A) = \left(A \oplus A, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\right)$$

is called the *hyperbolic plane* (if (u, v) and $(x, y) \in A \oplus A$, and if

$$\psi = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

then

$$\psi((u, v), (x, y)) = \frac{(\bar{u}, \bar{v})}{\binom{0}{1}} \binom{0}{0} \binom{x}{y} = \bar{v}x$$

Let Γ be another form parameter such that $A \subseteq \Gamma$. If $a, b \in \Gamma$ then the A-quadratic modules

$$\left(A \oplus A, \begin{pmatrix} a & 0\\ 1 & b \end{pmatrix}\right)$$

are called *quasi hyperbolic planes* and will play an important part in our work. Basic facts concerning Λ -quadratic modules can be found in [13] and [8], and a mini introduction to the subject can be found in [9, Section 2].

If the involution on A is trivial then a 0-quadratic module is the classical definition of a quadratic form. If the involution is arbitrary then it follows from lemma 1 below that a max-quadratic module is the classical definition of an even λ -hermitian form. if A is an integral group ring $\mathbb{Z}\pi$, $\lambda = \pm 1$, and $\Lambda = \min$, then one obtains the kind of form which arises in geometric surgery.

Lemma 1. Let M and M' be right A-modules and $f: M \to M'$ an A-linear map. Then f defines a homomorphism $(M, \psi) \to (M', \psi')$ of max-quadratic modules \Leftrightarrow f preserves the associated even λ -hermitian forms.

The proof is given in Section 3.

For fields k of characteristic 2 with trivial involution, we shall show that the isomorphism class of a nonsingular 0-quadratic module (V, ψ) , i.e. classical quadratic form q_{ψ} , is determined by the rank V and an invariant $\beta(V, \psi) \in k \otimes_{k^2} k/\{a \otimes b = b \otimes a, a \otimes b = a \otimes b^2 a\}$. An easy exercise [16; XIV, Section 9] shows that the isomorphism class of the max-quadratic module (V, ψ) is determined by the rank V. Thus, two nonsingular 0-quadratic modules (V, ψ) and (V', ψ') are isomorphic $\Leftrightarrow(V, \psi)$ and (V', ψ') are isomorphic as max-quadratic modules and $\beta(V, \psi) = \beta(V', \psi')$. The extension of Arf's Theorem shall take this form.

Fix two form parameters Λ and Γ such that $\Lambda \subset \Gamma$. If $x \in \Gamma$, then the rule $x \mapsto ax\bar{a}$ (resp. $x \mapsto \bar{a}xa$) induces a left (resp. right) action of Λ on Γ/Λ . Let

$$S(\Gamma/\Lambda) = \Gamma/\Lambda \otimes_A \Gamma/\Lambda / \{a \otimes b = b \otimes a, a \otimes b = a \otimes bab\}.$$

The letter S is used to remind the reader that $S(\Gamma/\Lambda)$ is a quotient of the symmetric tensor product of Γ/Λ . If k is as above, and if A = k, $\Lambda = 0$, and $\Gamma = k$ then $S(\Gamma/\Lambda) = k \otimes_{k^2} k/\{a \otimes b = b \otimes a, a \otimes b = a \otimes b^2 a\}$.

Call two nonsingular A -quadratic modules (M, ψ) and (M', ψ') stably isomorphic if

$$(M,\psi)\bot \underbrace{\mathbb{H}(A)\bot\cdots}_{n} \bot \mathbb{H}(A) \cong (M',\psi')\bot \underbrace{\mathbb{H}(A)\bot\cdots}_{n} \bot \mathbb{H}(A)$$

for some n.

Let $Q(A, \Lambda)$ = category with product of nonsingular Λ -quadratic modules.

Theorem 1. Assume that A has a family $0 \subseteq g_1 \subseteq \cdots \subseteq g_n$ of involution invariant ideals with the following properties. If $A_i = A/g_i$, $A_i = \text{image } \Lambda \to A_i$ and $\Gamma_i = \text{image } \Gamma \to A_i$ then for each i such that $1 \leq i \leq n-1$ either $g_{i+1}/g_i \subset \text{annih-ilator}_{A_i}(\Gamma_i/A_i)$ or A_i is g_{i+1}/g_i —adically complete, and A_n is semisimple of characteristic 2 (if $\Gamma_{n-1} = A_{n-1}$, then $A_n = 0$). Then there is a surjective function

$$\beta: \boldsymbol{Q}(A, \Lambda) \to S(\Gamma/\Lambda)$$

which is well defined on isomorphism classes, respects products (i.e. $\beta((M, \psi) \perp (M', \psi')) = \beta(M, \psi) + \beta(M', \psi'))$, and has the property that two nonsingular Λ -quadratic modules (M, ψ) and (M', ψ') are stably isomorphic $\Leftrightarrow (M, \psi)$ and (M', ψ') are stably isomorphic as Γ -quadratic modules and $\beta(M, \psi) = \beta(M', \psi')$.

Furthermore, without any restriction on A_n , the canonical map below is an isomorphism

 $S(\Gamma/\Lambda) \xrightarrow{\cong} S(\Gamma_n/\Lambda_n).$

Note that any semisimple ring A with involution satisfies the hypotheses of Theorem 1.

Call A trace neotherian if A is a noetherian module over the subring generated additively by 1 and all $c + \bar{c}$ such that $c \in \text{center } A$. For example, any order A over a Dedekind ring of characteristic $\neq 2$ is a trace noetherian. On the other hand, an infinite ring with characteristic 2 and trivial involution is not trace noetherian.

Proposition 1. Trace noetherian rings satisfy the hypotheses of Theorem 1.

Remark 1. If two nonsingular A-quadratic modules (M, ψ) and (M', ψ') are stably isomorphic, then it turns out that under suitable hypotheses on A and (M, ψ) one can assert that (M, ψ) and (M', ψ') are isomorphic. The phenomenon is called cancellation. If A is a field (resp. local ring), then cancellation holds for all nonsingular A-quadratic modules by a theorem of E. Witt [19] (resp. the author [3]). More generally [3] shows the following (a résumé of [3] is found in [4]). If A is finitely generated as a module over its center and if the maximal ideal space of the center is noetherian of finite dimension d then cancellation holds for nonsingular Λ -quadratic modules whose h-rank >d; if h-rank $(M, \psi) \le d$, then (M, ψ) stably isomorphic to (M', ψ') implies that

 $(M,\psi) \underbrace{\perp \mathbb{H}(A) \perp \cdots \perp \mathbb{H}(A)}_{n} \cong (M',\psi') \perp \underbrace{\mathbb{H}(A) \perp \cdots \perp \mathbb{H}(A)}_{n}$

for any $n \ge d + 1 - (h - \operatorname{rank}(M, \psi))$. If one takes into account the size of Λ , then H. Bass [12] has shown that some technical improvements in the size of n are obtainable in certain circumstances.

Remark 2. If g is the ideal of A generated by all $c + \bar{c}$ such that $c \in \text{center } A$ then $g \subseteq \text{annihilator}_A(\Gamma/A)$ and A/g has characteristic 2.

Next we record some consequences of Theorem 1.

Let π be a group. Let $\chi: \pi \to \{\pm 1\}$ be an homomorphism and let the integral group ring $\mathbb{Z}\pi$ have the involution $a \mapsto \bar{a}$ such that $\bar{\sigma} = \chi(\sigma)\sigma^{-1}$ for all $\sigma \in \pi$. Let $\lambda = \pm 1$ and let π_{λ} = subgroup of π generated by all $\sigma \in \pi$ such that $\sigma = -\lambda\bar{\sigma}$. Note that $\sigma = -\lambda\bar{\sigma} \Rightarrow \sigma^2 = 1$.

Corollary 1. Let $\pi' \subseteq \pi$ be a normal subgroup of π such that the mixed commutator group $[\pi', \pi_{\lambda}] = 1$. Let $\Lambda \subseteq \Gamma$ be form parameters on $\mathbb{Z}\pi$ defined with respect to λ and the involution above, and let $\Lambda' \subseteq \Gamma'$ denote respectively their images under the canonical map $\mathbb{Z}\pi \to \mathbb{Z}(\pi/\pi')$. Then the canonical map below is an isomorphism

$$S(\Gamma/\Lambda) \xrightarrow{=} S(\Gamma'/\Lambda').$$

Proof. By Theorem 1 it suffices to show that the kernel $(\mathbb{Z}\pi \to \mathbb{Z}(\pi/\pi')) \subseteq$ Ann_{$\mathbb{Z}n$} (Γ/Λ) . The kernel is generated as an ideal by all $1 - \sigma$ such that $\sigma \in \pi'$ and Γ/Λ is generated additively by elements $x = \sum_i a_i \sigma_i$ such that $\sigma_i \in \pi_\lambda$ and $a_i \in \mathbb{Z}$. The hypothesis $[\pi', \pi_\lambda] = 1$ implies that σ commutes with x. Thus $(1 - \sigma)x(1 - \sigma) = (x + \chi(\sigma)x) - (\sigma + \bar{\sigma})x \equiv (\mod \Lambda) 2x + (\sigma + \bar{\sigma})x \in \Lambda$.

The next result was announced in [5, Theorem 6].

Corollary 2. Let π be a group. If π_{λ} is nilpotent, then

$$S(\max(\mathbb{Z}\pi)/\min(\mathbb{Z}\pi)) \approx \begin{cases} \mathbb{Z}/2\mathbb{Z} \text{ generated by } [1 \otimes 1] & \text{if } \lambda = -1, \\ 0 & \text{if } \lambda = 1. \end{cases}$$

Proof. Consider the canonical commutative diagram.

Since π_{λ} is nilpotent, π_{λ} has a sequence of normal subgroups $1 = \gamma_0 \subseteq \gamma_1 \subseteq \cdots \subseteq \gamma_n = \pi_{\lambda}$ such that $\gamma_i/\gamma_{i-1} \subseteq$ center $(\pi_{\lambda}/\gamma_{i-1})$ for all $1 \le i \le n$. Applying Corollary 1 *n* times, one obtains that p_1 is an isomorphism. One must apply the full force of Corollary 1 because the image of $\max(\mathbb{Z}\pi_{\lambda})$ in $\mathbb{Z}(\pi_{\lambda}/\gamma_i)$ is not necessarily $\max(\mathbb{Z}(\pi_{\lambda}/\gamma_i))$ for $i \ne 0$ or *n*. The map *f* is surjective because the map $\max(\mathbb{Z}\pi_{\lambda}) \to \max(\mathbb{Z}\pi)/\min(\mathbb{Z}\pi)$ is surjective. Thus, from the commutativity of the diagram, one deduces that *f* and p_2 are isomorphisms. If $\lambda = 1$, then $\max(\mathbb{Z}) = \min(\mathbb{Z}) = 0$; thus $S(\max(\mathbb{Z})/\min(\mathbb{Z})) = 0$. If $\lambda = -1$, then $\max(\mathbb{Z}) = \mathbb{Z}$, and one computes easily that $S(\max(\mathbb{Z})/\min(\mathbb{Z})) \cong \mathbb{Z}/2\mathbb{Z}$ and is generated by $[1 \otimes 1]$.

 $p: A \to A, \quad a \mapsto a + a\bar{a},$ s: $A \to A, \quad a \mapsto a + \bar{a}.$

Corollary 3. Let D be a characteristic 2 division ring with involution. Suppose that \max/\min has dimension 1 over D, e.g. D = k is a perfect field of characteristic 2 with trivial involution. If x is a basis element for \max/\min , then the map below is an isomorphism

 $S(\max/\min) \rightarrow D/\{s(D) + \mathfrak{p}(D)\}, [xa \otimes bx] \mapsto [ab].$

The proof of Corollary 3 is an easy exercise.

C. Clauwens [C] has some overlap with the following result in the case A is the integral group ring $\mathbb{Z}\pi$ of a finite group π . In fact the number r below is the number of conjugacy classes found in [14, Section 4].

Corollary 4. Suppose the hypotheses of Theorem 1. Suppose in addition that A_n is finite (e.g. A is a \mathbb{Z} -order). Factor the center (A_n) into a product center $(A_n) = \prod_i k_i$ such that k_i is either an involution invariant field or k_i is a product of two fields exchanged by the involution.

(a) Let r = number of fields k_i with trivial involution. If $\lambda = -1$, then

$$S(\max/\min) \cong (\mathbb{Z}/2\mathbb{Z})'$$

(b) Let r_{Γ} (resp. r_{Λ}) = number of fields k_i with trivial involution such that $k_i \subset \text{image}$ $\Gamma \rightarrow A_n$ (resp. $k_i \subset \text{image } \Lambda \rightarrow A_n$). Then

$$S(\Gamma/\Lambda) \cong (\mathbb{Z}/2\mathbb{Z})^{r_{\Gamma}-r_{\Lambda}}$$

Note. If $\lambda = -1$ (resp. $\lambda \neq -1$), then it is necessarily (resp. not necessarily) true that the image in A_n of the maximal form parameter for A is the maximum form parameter for A_n .

A detailed proof of Corollary 4 can be found in [10]. The commutative case is an easy exercise.

Theorem 1 will be proved in the framework of algebraic K-theory. Next we translate Theorem 1 into an equivalent result in algebraic K-theory.

Recall that if C is a category with a commutative associative product \perp then $K_0C =$ the free abelian group on the isomorphism classes [M] of objects M of C modulo the relations $[M \perp N] = [M] + [N]$. One can check easily that two objects M and N have the same class $[M] = [N] \in K_0C \Leftrightarrow$ there is an object P such $M \perp P \cong N \perp P$. Let

 $Q(A, \Lambda)$ = category with product of nonsingular Λ -quadratic modules, $KO_0(A, \Lambda) = K_0 Q(A, \Lambda)$,

 $WQ_0(A, \Lambda) = KQ_0(A, \Lambda) / \{\mathbb{H}(P)|P \text{ finitely generated projective}\}.$

It follows from Lemma 2 (in Section 3) that two nonsingular Λ -quadratic modules have the same class in $KQ_0(A, \Lambda) \Leftrightarrow$ they are stably isomorphic. From this fact it follows that Theorem 2 below implies Theorem 1.

Theorem 2. Suppose the hypotheses of Theorem 1 are satisfied. Then there are split exact sequences

$$0 \to S(\Gamma/\Lambda) \to \left\{ \begin{array}{l} KQ_0(A,\Lambda) \to KQ_0(A,\Gamma) \\ WQ_0(A,\Lambda) \to WQ_0(A,\Gamma) \end{array} \right\} \to 0,$$

$$a \otimes b \mapsto \left[A \oplus A, \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} \right] - [\mathbb{H}(A)]$$

and the canonical map below is an isomorphism

$$S(\Gamma/\Lambda) \xrightarrow{\cong} S(\Gamma_n/\Lambda_n).$$

The next result is an easy consequence of Theorem 2. The proof is left to the reader.

Corollary 5. If A is a commutative semilocal ring which has characteristic 2, trivial involution, and is (Jacobson radical (A))-adically complete then $WQ_0^1(A, A) \cong S(\max/A)$. In particular $WQ_0^1(A, 0) \cong A \otimes_{A^2} A / \{a \otimes b = b \otimes a, a \otimes b = a \otimes b^2 a\}$.

If X is an involution invariant subgroup of $K_1(A)$ then one has the concept of a discr-based-XA-quadratic module. For a precise definition see [7] or [9, Section 2]. Let $Q(A, A)_{\text{discr-based-}X}$ denote the category with product of all such modules. Let

$$KQ_0(A, \Lambda)_{\text{discr-based-}X} = K_0 Q(A, \Lambda)_{\text{discr-based-}X}$$

and

$$WQ_0(A, \Lambda)_{\text{discr-based-}X} = KQ_0(A, \Lambda)_{\text{discr-based-}X} / \mathbb{H}(A)_{\text{based-}}$$

It is worth noting that the surgery obstruction groups $L_{2n}^{P}(\pi)$, $L_{2n}^{h}(\pi)$, and $L_{2n}^{s}(\pi)$ are

defined as follows:

$$L_{2n}^{P}(\pi) = WQ_{0}^{(-1)^{2}}(\mathbb{Z}\pi, \min),$$

$$L_{2n}^{h}(\pi) = WQ_{0}^{(-1)^{n}}(\mathbb{Z}\pi, \min)_{\text{discr-based-}K_{1}(\mathbb{Z}\pi)},$$

$$L_{2n}^{s}(\pi) = WQ_{0}^{(-1)^{n}}(\mathbb{Z}\pi, \min)_{\text{discr-based-}[\pm\pi]}.$$

Theorem 3. Suppose the hypotheses of Theorem 1 are satisfied. Then there are split exact sequences

$$0 \to S(\Gamma/\Lambda) \to \left\{ \begin{array}{l} KQ_0(A, \Lambda)_{\text{discr-based-}X} \to KQ_0(A, \Gamma)_{\text{discr-based-}X} \\ WQ_0(A, \Lambda)_{\text{discr-based-}X} \to WQ_0(A, \Gamma)_{\text{discr-based-}X} \end{array} \right\} \to 0$$
$$a \oplus b \mapsto \left[A \oplus A, \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} \right] - \left[A \oplus A, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right]$$

where $A \oplus A$ has the prescribed basis (1, 0), (0, 1).

The Proof is analogous to that of Theorem 2 and will be omitted.

Corollary 6. Recall the notation prior to Corollary 1. Let π be a group such that π_{λ} is nilpotent. Let X be an involution invariant subgroup of $K_1(\mathbb{Z}\pi)$. Let K denote one of the functors KQ_0 , WQ_0 , $KQ_0(\)_{\text{discr-based-}X}$, $WQ_0(\)_{\text{discr-based-}X}$. Then

$$K(\mathbb{Z}\pi, \min) \xrightarrow{-} K(\mathbb{Z}\pi, \max)$$
 if $\lambda = 1$,

and if $\lambda = -1$ the sequence below is split exact

$$0 \to \mathbb{Z}/2\mathbb{Z} \to K(\mathbb{Z}\pi, \min) \to K(\mathbb{Z}\pi, \max) \to 0,$$
$$1 \mapsto \left[\mathbb{Z}\pi \oplus \mathbb{Z}\pi, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}\right] - \left[\mathbb{Z}\pi \oplus \mathbb{Z}\pi, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\right].$$

Corollary 6 follows easily from Corollary 2, Theorems 2 and 3, Corollary 7 in Section 2, and the analogy of Corollary 7 for discr-based-X quadratic modules.

2. Proofs

Proof of Proposition 1. Let k denote the subring of A generated additively by 1 and all $c + \bar{c}$ such that the $c \in$ center A. Let p denote the ideal of k generated additively by all $c + \bar{c}$ above. Let $g_1 = pA$ and $g_2 =$ inverse image in A of the Jacobson radical of A/g_1 . Since $p \subset Ann_A(\Gamma/A)$ it follows that $g_1 \subset Ann_A(\Gamma/A)$. Since k/p = 0 or $\mathbb{Z}/2\mathbb{Z}$ it follows that $A_1 = A/g_1$ is finite. Thus A_1 is (g_2/g_1) -adically complete and $A_2 = A/g_2$ is semisimple. A_2 has characteristic 2 because $2 \in p$. **Proof of Theorem 2.** We recall briefly the group $KQ_1(A, \Lambda)$. If α is a matrix, let $\bar{\alpha} =$ transpose conjugate α . Let $GQ_{2n}(A, \Lambda)$ denote the subgroup of $GL_{2n}(A)$ of all

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

such that

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}^{-1} = \begin{pmatrix} \overline{\delta} & \lambda \overline{\beta} \\ \overline{\lambda \gamma} & \overline{\alpha} \end{pmatrix}$$

and the diagonal coefficients of $\bar{\gamma}\alpha$ and $\bar{\delta\beta}$ lie in Λ . Let $EQ_{2n}(A, \Lambda)$ denote the subgroup of $GQ_{2n}(A, \Lambda)$ generated by all

$$\begin{pmatrix} \boldsymbol{\varepsilon} & \boldsymbol{0} \\ \boldsymbol{0} & \bar{\boldsymbol{\varepsilon}}^{-1} \end{pmatrix}$$

such that ε is a product of elementary matrices and by all

$$\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 0 \\ \gamma & 1 \end{pmatrix}$

such that $\beta = -\lambda \overline{\beta}$, $\gamma = -\overline{\lambda \gamma}$, and the diagonal coefficients of β and $\overline{\gamma}$ lie in Λ . There is a natural map $GQ_{2n}(A, \Lambda) \rightarrow GQ_{2(n+1)}(A, \Lambda)$,

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \mapsto \begin{pmatrix} \alpha & \beta \\ 1 & 0 \\ \hline \gamma & \delta \\ 0 & 1 \end{pmatrix},$$

and one sets $GQ(A, \Lambda) = \varinjlim GQ_{2n}OA, \Lambda)$ and $EQ(A, \Lambda) = \varinjlim EQ_{2n}(A, \Lambda)$. From Lemma 3 (in Section 3) it follows that $EQ(A, \Lambda)$ is the commutator subgroup of $GQ(A, \Lambda)$. We let $KQ_1(A, \Lambda) = GQ(A, \Lambda)/EQ(A, \Lambda)$.

Let $K'_0(F)$ denote the relative group [12, VII] associated to the cofinal functor $F: Q(A, A) \rightarrow Q(A, \Gamma)$. According to [12; VII, Section 5], there is an exact sequence

$$KQ_1(A, \Lambda) \to KQ_1(A, \Gamma) \xrightarrow{\partial} K'_0(F) \to KQ_0(A, \Lambda) \to KQ_0(A, \Gamma).$$

The surjectivity of $KQ_0(A, \Lambda) \rightarrow KQ_0(A, \Gamma)$ follows from the definition of Λ - and Γ -quadratic modules. The rest of the proof has essentially three steps

- (i) $K'_0(F) \cong S(\Gamma/\Lambda)$ (valid for arbitrary A),
- (ii) $\partial = 0$,
- (iii) $S(\Gamma/\Lambda) \xrightarrow{\simeq} S(\Gamma_n/\Lambda_n)$ (valid for arbitrary A_n).

(i)-(iii) establish the exactness of $0 \to S(\Gamma/\Lambda) \to KQ_0(\Lambda, \Lambda) \to KQ_0(\Lambda, \Gamma) \to 0$. From the exactness of $0 \to S(\Gamma_n/\Lambda_n) \to KQ_0(\Lambda_n, \Lambda_n) \to KQ_0(\Lambda_n, \Gamma_n) \to 0$, one

 $0 \to S(\Gamma_n/\Lambda_n) \to WQ_0(\Lambda_n,\Lambda_n) \to$ of deduces easily the exactness The of $0 \to S(\Gamma_n/\Lambda_n) \to WQ_0(A,\Lambda) \to$ $WQ_0(A_n, \Gamma_n) \rightarrow 0.$ exactness $WQ_0(A, \Gamma) \rightarrow 0$ follows from (iii) and the exactness of the preceding sequence. Since A_n has characteristic 2 it follows by Lemma 2 (in Section 3) that $WQ_0(A_n, A_n)$ has exponent 2. Thus the sequence $0 \rightarrow S(\Gamma_n/\Lambda_n) \rightarrow WQ_0(\Lambda_n, \Lambda_n) \rightarrow WQ_0(\Lambda_n, \Gamma_n) \rightarrow 0$ is split. The splitting assertions in the theorem follows from (iii) and the splitting assertion for the sequence above.

Proof of (i). Let $a, b \in \Gamma$. Let (a, b) denote the Λ -quadratic module

$$(a, b) = \left(A \oplus A, \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}\right).$$

The Λ -quadratic and λ -hermitian forms associated to (a, b) depend only on the classes of a and b modulo Λ . (0, 0) is the hyperbolic plane $\mathbb{H}(A)$. If $a_i, b_i \in \Gamma$ (i = 1, ..., n), let

$$\begin{array}{c}
\stackrel{n}{\downarrow} (a_{i}, b_{i}) = (A^{n} \oplus A^{n}, \begin{pmatrix} a_{1} & | & | \\ \ddots & | & 0 \\ a_{n} & | & | \\ ----- & | & ---- \\ 1 & | & b_{1} \\ \ddots & | & \ddots \\ 1 & | & b_{n} \end{pmatrix}).$$

Let $Q(A, \Lambda, \Gamma)$ denote the category with product whose objects are symbols

$$\left(\prod_{i=1}^{n} (a_i, b_i), \prod_{i=1}^{n} (c_i, d_i) \right).$$

The product is defined by $(M, N) \perp (M', N') = (M \perp M', N \perp N')$. A morphism $(M, N) \rightarrow (M', N')$ is an A-linear isomorphism $A^n \oplus A^n \rightarrow A^n \oplus A^n$ which induces isomorphisms $M \rightarrow M'$ and $N \rightarrow N'$ of A-quadratic modules. Let

$$KQ_0(A, \Lambda, \Gamma) = K_0 \boldsymbol{Q}(A, \Lambda, \Gamma) / [\boldsymbol{M}, N] + [\boldsymbol{N}, \boldsymbol{P}] = [\boldsymbol{M}, \boldsymbol{P}].$$

There is a canonical map $KQ_0(A, \Lambda, \Gamma) \to K'_0(F)$, $[M, N] \mapsto [M$, identity map on $A^n \oplus A^n$, N], and using the proof of [11, 10.2] (see also [9, Section 3]) one can show easily that the above map is an isomorphism. Next one shows straight forward that the rules $((a, b), (c, d)) \mapsto a \otimes b - c \otimes d$ and $a \otimes b \mapsto ((a, b), (0, 0))$ induce mutually inverse homomorphisms $KQ_0(A, \Lambda, \Gamma) \to S(\Gamma/\Lambda)$ and $S(\Gamma/\Lambda) \to KQ_0(A, \Lambda, \Gamma)$.

Proof of (iii). Clearly the map $S(\Gamma/\Lambda) \to S(\Gamma_1/\Lambda_1)$ is surjective. Suppose that $g_1 \subset \operatorname{Ann}_A(\Gamma/\Lambda)$. If $a, b \in \Gamma$ and $b \in g_1$ then the relation $a \otimes b = a \otimes ba\bar{b}$ shows that $a \otimes b$ represents 0 in $S(\Gamma/\Lambda)$. Thus $S(\Gamma/\Lambda) \to S(\Gamma_1/\Lambda_1)$ is an isomorphism. Suppose that A is g_1 -adically complete. Let

$$WQ_1(A, \Lambda) = KQ_1(A, \Lambda) \Big/ \Big\{ \begin{pmatrix} \alpha & 0 \\ 0 & \bar{\alpha}^{-1} \end{pmatrix} \Big| \alpha \in GL(A) \Big\},$$

and consider the exact sequences

 f_i and g_i (j = 0, 1) are isomorphisms by Lemmas 4 and 5 (in Section 3). Thus $S(\Gamma/A) \rightarrow S(\Gamma_1/A_1)$ is an isomorphism.

Proof of (ii). (iii) allows one to reduce to the case A is semisimple. Since KQ_1 respects finite products one can reduce to the case A is simple. Using some easy Morita theory, one can reduce to the case A = D is a division ring. $KQ_1(D, \Gamma)$ is generated by 2×2 matrices

$$\begin{pmatrix} a & 0\\ 0 & \bar{a}^1 \end{pmatrix}$$
 and $\begin{pmatrix} 0 & \lambda\\ 1 & 0 \end{pmatrix}$

which lift back to $KQ_1(D, A)$. One could do the simple case directly and avoid the Morita argument.

Corollary 7 below is partly a restatement of Theorem 2 and partly a summing up of certain results obtained in the proof of Theorem 2. To round out the results, we introduce a little more notation. Let γ and β denote matrices such that $\gamma = -\overline{\lambda\gamma}$, $\beta = -\lambda\overline{\beta}$, and the diagonal coefficients of $\overline{\gamma}$ and β lie in Γ . If the diagonal coefficients of $\overline{\gamma} + \overline{\gamma}\beta\gamma$ lie in Λ , define

$$(\boldsymbol{\gamma},\boldsymbol{\beta}) = \begin{pmatrix} 1 & 0\\ \boldsymbol{\gamma} & 1 \end{pmatrix} \begin{pmatrix} 1 & \boldsymbol{\beta}\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0\\ -\boldsymbol{\gamma} & 1 \end{pmatrix}$$

Let $EQ(A, \Lambda, \Gamma)$ denote the multiplicative group generated by all (γ, β) and their transpose conjugates. Let $EQ(A, \Lambda)$ denote the subgroup of $EQ(A, \Lambda, \Gamma)$ generated by all (γ, β) and their transpose conjugates such that the diagonal coefficients of $\overline{\gamma}$ and β lie in Λ . One has $EQ(A, \Lambda) \subset EQ(A, \Lambda, \Gamma) \subset GQ(A, \Lambda)$. In R. Sharpe's paper [17] the group $EQ(A, \min)$ is denoted EU(A). In [17, Section 5] there is a certain normal form of elements of EU(A). If one examines the proof, one sees that it can be used verbatim to establish a normal form for $EQ(A, \Lambda)$. (We give in [8, Section 5] a shorter version of Sharpe's proof for arbitrary form parameter.) The normal form says that every element of $EQ(A, \Lambda)$ can be written as a product

$$\begin{pmatrix} 1 & 0 \\ \gamma & 1 \end{pmatrix} \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \gamma' & 1 \end{pmatrix} \begin{pmatrix} \varepsilon & 0 \\ 0 & \overline{\varepsilon}^{-1} \end{pmatrix} \begin{pmatrix} 0 & \Sigma \\ -\Sigma^{-1} & 0 \end{pmatrix}$$

such that the diagonal coefficients of $\bar{\gamma}$, $\bar{\gamma}'$, and β lie in A, ε is a product of elementary

matrices, and

$$\boldsymbol{\Sigma} = \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ -\boldsymbol{\lambda} & 0 \end{pmatrix} & & \\ & \ddots & & \\ & & \begin{pmatrix} 0 & 1 \\ -\boldsymbol{\lambda} & 0 \end{pmatrix} \end{pmatrix}$$

Since

$$\begin{pmatrix} 0 & \boldsymbol{\Sigma} \\ -\boldsymbol{\Sigma}^{-1} & 0 \end{pmatrix}$$
 and $\begin{pmatrix} \boldsymbol{\varepsilon} & 0 \\ 0 & \boldsymbol{\overline{\varepsilon}}^{-1} \end{pmatrix}$

lie in $EQ(A, \Omega)$ for any Ω , one deduces easily an exact sequence $0 \rightarrow EQ(A, \Lambda, \Gamma)/EQ(A, \Lambda) \rightarrow KQ_1(A, \Lambda) \rightarrow KQ_1(A, \Gamma).$

Proposition 2. If A is any ring with involution, then $(\gamma, \beta)^8 \in (EQ(A, \Lambda))$. Furthermore, if the diagonal coefficients of β lie in A, then $(\gamma, \beta)^4 \in EQ(A, \Lambda)$.

C. Clauwens has told me that he can prove a result similar to Proposition 2.

Remark 3. If A is a commutative \mathbb{Z} -order which has a certain technical condition satisfied for example by group rings and maximal real orders then by arithmetic methods one can show that $(\gamma, \beta)^4 \in EQ(A, A)$. In the case of a group ring $\mathbb{Z}\pi$, we have computed precisely the group $EQ(\mathbb{Z}\pi, \min, \max)/EQ(\mathbb{Z}\pi, \min)$ in [6, Theorems 10 and 15].

Corollary 7. If A is any ring with involution, then there is an exact sequence

$$0 \to EQ(A, \Lambda, \Gamma)/EQ(A, \Lambda) \to KQ_1(A, \Lambda) \to KQ_1(A, \Gamma) \stackrel{\partial}{\to} S(\Gamma/\Lambda) \stackrel{\rho}{\to}$$

$$KQ_0(A, \Lambda) \to KQ_0(A, \Gamma) \to 0$$

such that

$$\rho[x \otimes y] = \left[A \oplus A, \begin{pmatrix} x & 0 \\ 1 & y \end{pmatrix}\right] - [\mathbb{H}(A)] \quad and \quad \partial \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} = \sum_{i=1}^{n} [x_i \otimes y_i]$$

where x_1, \ldots, x_n (resp. y_1, \ldots, y_n) are the diagonal coefficients of $\bar{\gamma}\alpha$ (resp. $\bar{\delta}\beta$). Furthermore, if A satisfies the hypotheses of Theorem 1, then $\partial = 0$.

It was indicated already that Corollary 7 follows from the proof of Theorem 2.

Proof of Proposition 2. Since $(\gamma, \beta)^2 = (\gamma, 2\beta)$ and the diagonal coefficients of 2β lie in Λ , it suffices to prove the second assertion in the proposition. The idea of the proof

is as follows. $(\gamma, \beta)^4 = (\gamma, 4\beta)$. Write

$$\begin{pmatrix} 1 & 4\beta \\ 0 & 1 \end{pmatrix} = \left[\begin{pmatrix} 1 & 2 & | & \\ 0 & 1 & | & \\ & | & 1 & 0 \\ & | & -2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & | & 0 & \\ -1 & | & -\beta \\ & | & 1 & \\ & | & 1 \end{pmatrix} \right] \begin{pmatrix} 1 & | & 0 & -2\beta \\ -1 & | & -2\beta & 0 \\ & -1 & | & -2\beta & 0 \\ & | & 1 & \\ & | & 1 \end{pmatrix}$$

Conjugate the above by

$$\begin{pmatrix} 1 & 0 \\ \gamma & 1 \end{pmatrix}$$

and begin simplifying by multiplying on the left and right by elements of $EQ(A, \Lambda)$. The process shows that

$$(\gamma, \beta)^{4} = \begin{pmatrix} 1 & 2 & | & \\ 0 & 1 & | & \\ | & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & | & \\ | & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 & | & \\ 0 & -\frac{1}{2\gamma} & | & \\ | & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & | & \\ -\frac{1}{2\gamma} & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -2\beta \\ | & & 1 & -2\gamma & -2\gamma & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -2\beta \\ | & & & 1 & -2\gamma & -2\gamma & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -2\beta \\ | & & & & 1 & -2\gamma &$$

3. Six lemmas

Lemma 1. Let M and M' be right A-modules and $f: M \to M'$ an A-linear map. Then f defines a homomorphism $(M, \psi) \to (M', \psi')$ of max-quadratic modules \Leftrightarrow f preserves the associated even λ -hermitian forms.

12

Proof. The assertion \Rightarrow follows by definition. Conversely, it must be shown that if f preserves the associated λ -hermitian forms, then f preserves the associated quadratic forms as well. Suppose that $\psi(m, n) + \lambda \overline{\psi(n, m)} = \psi'(f(m), f(n)) + \lambda \overline{\psi'(f(n), f(m))}$ for all $m, n \in M$. We must show that $\psi(m, m) \equiv \psi'(f(m), f(m))$ mod max for all $m \in M$, i.e.

$$\psi(m, m) - \psi'(f(m), f(m)) \in \max$$

i.e.

$$\psi(m,m) - \psi'(f(m),f(m)) = -\lambda \left(\overline{\psi(m,m)} - \overline{\psi'(f(m),f(m))} \right),$$

i.e.

$$\psi(m, m) + \lambda \overline{\psi(m, m)} = \psi'(f(m), f(m)) + \lambda \overline{\psi'(f(m), f(m))}.$$

But this is the first equation above with m = n.

Lemma 2. If (M, ψ) is a nonsingular Λ -quadratic module then $(M, \psi) \perp (M, -\psi) \cong \mathbb{H}(M)$.

Proof. Let $(N, \varphi) = (M \oplus M, \psi \oplus -\psi)$. Let $M_1 = \{(m, m) \mid m \in M\}$ and $M'_1 = \{(m, 0) \mid m \in M\}$. $N = M_1 \oplus M'_1$ and M_1 is a totally isotropic subspace of (N, φ) , i.e. $q_{\varphi}(x) = 0$ and $\langle x, y \rangle_{\varphi} = 0$ for all $x, y \in M_1$. Since $N \to N^*$, $n \mapsto \langle n, \rangle_{\varphi}$ is bijective, one can define a function $h: M'_1 \to M_1$ via $-\varphi(x, y) = \langle hx, y \rangle_{\varphi}$ for all $x, y \in M'_1$. If $M_2 = \{(m, 0) + h(m, 0) \mid m \in M\}$, then M_2 is also totally isotropic and $N = M_1 \oplus M_2$. If $f: M_2 \to M_1^*, x \mapsto \langle x, \rangle_{\varphi}$, then the map $M_1 \oplus M_2 \to M_1 \oplus M_1^*, (m_1, m_2) \mapsto (m_1, f(m_2))$, defines an isomorphism $(N, \varphi) \to \mathbb{H}(M_1)$. Since $M_1 \cong M$, it follows that $(N, \varphi) \cong \mathbb{H}(M)$.

Lemma 3 (Quadratic Whitehead Lemma). If

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
 and $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in GQ_{2n}(A, \Lambda),$

then the following equation holds in $GQ_{4n}(A, \Lambda)$

$$\begin{pmatrix} \alpha & | & \beta \\ -\frac{1}{\gamma} & | & \delta \\ | & -\frac{1}{\gamma} & | & \delta \\ | & -\frac{1}{\gamma} & | & D \\ | & -\frac{1}{\gamma} & | & D \\ | & -\frac{1}{\gamma} & | & D \\ | & -\frac{1}{\gamma} & | & 0 \\ | & -\frac{1}$$

Proof. By direct computation.

A. Bak

Lemma 4. If g is an involution invariant ideal of A such that A is g-adically complete then the canonical functor $Q(A, \Lambda) \rightarrow Q(A/g, \Lambda/g \cap \Lambda)$ induces a bijection from the isomorphism classes of $Q(A, \Lambda)$ to the isomorphism classes of $Q(A/g, \Lambda/g \cap \Lambda)$.

The proof can be read verbatim from the proof given by C. T. C. Wall [18] Lemma 1 and Theorem 2 for the special case $\Lambda = \min$. Walls' remark that the result is "far from being true for hermitian forms" can be disregarded. A proof of Lemma 4 and a related result for not necessarily even hermitian forms will appear in [8, Section 3].

Lemma 5. If g is an involution invariant ideal of A such that A is g-adically complete, then the canonical map $KQ_1(A, \Lambda) \rightarrow KQ_1(A/g, \Lambda/g \cap \Lambda)$ is surjective, and the canonical map $WQ_1(A, \Lambda) \rightarrow WQ_1(A/g, \Lambda/g \cap \Lambda)$ is an isomorphism.

Proof. The proof of Lemma 4 above shows that if (M, ψ) and $(N, \varphi) \in Q(A, \Lambda)$ then any isomorphism $(M/gM, \psi) \rightarrow (N/gN, \varphi)$ can be lifted to an isomorphism $(M, \psi) \rightarrow (N, \varphi)$. The first assertion of Lemma 5 follows from the special case $(M, \psi) = \mathbb{H}(A^n) = (N, \varphi)$ and the fact that $GQ_{2n}(A, \Lambda) = \operatorname{Aut}(\mathbb{H}(A^n))$. By definition

$$WQ_1(A, \Lambda) = KQ_1(A, \Lambda) / \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \tilde{\alpha}^{-1} \end{pmatrix} \middle| \alpha \in GL(A) \right\}.$$

Thus, it is clear that $WQ_1(A, \Lambda) \rightarrow WQ_1(A/g, \Lambda/g \cap \Lambda)$ is surjective. An element in the kernel can be represented by a matrix

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in GQ(A, \Lambda)$$

such that α and $\delta \equiv 1 \mod g$ and β and $\gamma \equiv 0 \mod g$. Thus α is invertible and one deduces easily that

$$\binom{\alpha \quad \beta}{\gamma \quad \delta} = \binom{\alpha \quad 0}{0 \quad \bar{\alpha}^{-1}} \binom{1 \quad 0}{\bar{\alpha}\gamma \quad 1} \binom{1 \quad \alpha^{-1}\beta}{0 \quad 1} \equiv (\operatorname{mod} EQ(A, A)) \binom{\alpha \quad 0}{0 \quad \bar{\alpha}^{-1}}$$

which vanishes in $WQ_1(A, \Lambda)$.

The following lemma is not needed in the paper, but is useful in applying the results of the paper.

Lemma 6. Let $\Lambda \subset \Gamma$ be two form parameters in A. Assume that A, Λ , and Γ satisfy the hypotheses in Theorem 1. If $\Lambda = \Gamma_0 \subset \Gamma_1 \subset \cdots \subset \Gamma_s = \Gamma$ is a sequence of form parameters, then $S(\Gamma/\Lambda) \cong S(\Gamma_1/\Gamma_0) \oplus \cdots \oplus S(\Gamma_s/\Gamma_{s-1})$.

Proof. It suffices to consider the case s = 2. From Theorem 2 it follows that all the

maps in the commutative diagram

are injective. Thus there is an exact sequence

$$0 \to S(\Gamma_1/\Gamma_0) \to S(\Gamma_2/\Gamma_0) \to S(\Gamma_2/\Gamma_1) \to 0.$$

Since all the groups have exponent 2, the sequence splits.

4. Construction of β

The purpose of this section is to construct $\beta : Q(A, \Lambda) \to S(\Gamma/\Lambda)$ first under the hypotheses of Theorem 1, and then in the special case that A is a commutative, characteristic 2, complete local ring with trivial involution and $\Gamma = \max$. In the later case a particularly nice construction is obtained.

We begin with the general situation. Here β was constructed already in the proof of Theorem 2, but the details were a little sketchy. Below β is constructed as the composite of a number of functors and maps. Begin by taking the canonical functor $Q(A, \Lambda) \rightarrow Q(A_n, \Lambda_n)$. Factor A_n as a product $A_n = A_n^1 \times \cdots \times A_n^i$ of rings A_n^i such that A_n^i is either a simple ring with involution or a product $A_n^i = B \times B^\circ$ of simple rings B and $B^{\circ} = B^{\circ \text{pposite}}$ such that the involution takes $(x, y) \mapsto (y, x)$. The form parameter A_n has a corresponding decomposition $A_n = A_n^i \times \cdots \times A_n^t$ where $A_n^i =$ $e^{i}A_{n}e^{i}$ and e^{i} is the central idempotent which defines A_{n}^{i} . Γ_{n} has an analogous decomposition $\Gamma_n = \Gamma_n^1 \times \cdots \times \Gamma_n^t$. Let $A_n^1 \times \cdots \times A_n^s$ denote the product of all the A_n^i such that A_n^i is simple and the involution on the center A_n^i is trivial. Next take the canonical functor $Q(A_n, \Lambda_n) \rightarrow Q(A_n^1, \Lambda_n^1) \times \cdots \times Q(A_n^s, \Lambda_n^s)$. Write A_n^i as a matrix ring $A_n^i = M_{m_i}(D_i)$ over the division ring D_i . Let ~ denote the involution on A_n^i . By a theorem of A. Albert [1; X, Theorem 12] D_i has an involution $d \mapsto \bar{d}$ which is trivial on the center D_i , and from the Skolem-Noether theorem it follows that there is an element $\alpha_i \in M_{m_i}(D_i)$ such that for all $x \in M_{m_i}(D_i) \alpha_i \tilde{x} \alpha_i^{-1} = \bar{x}$ where $\bar{x} =$ transpose (x_{kl}) and x_{kl} is the (k, l)'th coefficient of x. If A_n^{i-} and A_n^{i-} denote A_n with respectively the involution ~ and – then the functor $Q(A_n^{i}, \Lambda_n) \rightarrow Q(A_n^{i}, \alpha_i \Lambda_n^i)$ is an equivalence of categories with product. If $\Lambda_i = \alpha_i \Lambda_n^i \cap D_i$, then there is a Morita equivalence [15], [8, Section 7] $Q(A_n^{i-}, \alpha_i \Lambda_n^i) \rightarrow Q(D_i, \Lambda_i)$. Stringing together the functors above, one obtains a product preserving functor $Q(A, \Lambda) \rightarrow Q(D_1, \Lambda_1) \times$ $\cdots \times \boldsymbol{Q}(D_s, A_s).$ Similarly, one obtains а product preserving functor $\boldsymbol{Q}(A, \Gamma) \rightarrow \boldsymbol{Q}(D_1, \Gamma_1) \times \cdots \times \boldsymbol{Q}(D_s, \Gamma_s).$ Next, take the canonical map $Q(D_i, \Lambda_i) \rightarrow WQ_0(D_i, \Lambda_i), (M, \psi) \mapsto [M, \psi]$. Since D_i has characteristic 2, it follows

A. Bak

from Lemma 2 that $WQ_0(D_i, \Lambda_i)$ has exponent 2, and hence the exact sequence $0 \rightarrow S(\Gamma_i/\Lambda_i) \rightarrow WQ_0(D_i, \Lambda_i) \rightarrow WQ_0(D_i, \Gamma_i) \rightarrow 0$ has a retract β_i . Thus, one obtains a diagram

$$S(\Gamma/\Lambda) \qquad \qquad Q(A, \Lambda)$$

$$\downarrow^{p_1} \qquad \qquad \downarrow^{p}$$

$$S(\Gamma_1/\Lambda_1) \times \cdots \times S(\Gamma_s/\Lambda_s) \xleftarrow{\beta_1 \times \cdots \times \beta_s} WQ_0(D_1, \Lambda_1) \times \cdots \times WQ_0(D_s, \Lambda_s)$$

The map p_1 is an isomorphism by Theorem 2, and β is constructed as the composite $\beta = p_1^{-1}(\beta_1 \times \cdots \times \beta_s)p$.

Next is a construction of β in the special circumstances indicated at the beginning of the section.

Proposition 3. Suppose that A is a commutative, characteristic 2, (Jacobson radical A)-adically complete, local ring with trivial involution. If $(M, \psi) \in Q(A, \Lambda)$, then M is a free A-module and has a basis e_1, \dots, e_{2m} such that the $2m \times 2m$ matrix

$$(\psi(e_i, e_i)) = \begin{pmatrix} \begin{pmatrix} a_1 & 0 \\ 1 & b_1 \end{pmatrix} & 0 \\ & \ddots & \\ 0 & & \begin{pmatrix} a_m & 0 \\ 1 & b_m \end{pmatrix} \end{pmatrix}.$$

The class $[\sum_{i=1}^{m} a_i \otimes b_i] \in S(A/\Lambda)$ does not depend on the choice of e_1, \ldots, e_{2m} and one can define β by

$$\beta: \boldsymbol{Q}(A, \Lambda) \to S(A/\Lambda), \qquad [M, \psi] \mapsto \left[\sum_{i=1}^{m} a_i \otimes b_i\right].$$

Proof. Any finitely generated projective module over a local ring is free. See for example [12, III (2.13)]. Any nonsingular max-quadratic module over a characteristic 2 complete local ring with trivial involution is a product of hyperbolic planes. For the case of a field see [16; XIV, Section 9]. Then lift the result to A via Lemma 4. Let (M, ψ) be as in the proposition. One can always replace (M, ψ) by $(M, \psi + \varphi - \lambda \bar{\varphi})$ where $\bar{\varphi}(m, n) = \overline{\varphi(n, m)}$, because the A-quadratic (or λ -hermitian) forms associated to ψ and $\psi + \varphi - \lambda \bar{\varphi}$ are the same. Let e_1, \ldots, e_n be a basis for M and let (a_{kl}) denote the matrix whose (k, l)'th coefficient is $\psi(e_k, e_l)$. After replacing ψ by $\psi + \varphi - \lambda \bar{\varphi}$ for a suitable φ , one can assume that $a_{kl} = 0$ for all (k, l) such that k < l. Since all nonsingular max-quadratic modules are a product of hyperbolic planes one

can choose at the outset e_1, \ldots, e_n such that

$$(a_{k_l}) + \lambda (\operatorname{transpose}(\overline{a_{k_l}})) = \begin{pmatrix} \begin{pmatrix} 0 & \lambda \\ 1 & 0 \end{pmatrix} & 0 \\ & \ddots & \\ 0 & \begin{pmatrix} 0 & \lambda \\ 1 & 0 \end{pmatrix} \end{pmatrix}$$

It follows that

$$(a_{kl}) = \begin{pmatrix} \begin{pmatrix} a_1 & 0 \\ 1 & b_1 \end{pmatrix} & 0 \\ & \ddots & \\ 0 & & \begin{pmatrix} a_m & 0 \\ 1 & b_m \end{pmatrix} \end{pmatrix}$$

The homomorphism

$$\alpha: S(A/\Lambda) \to WQ_0(A,\Lambda), \qquad [a \otimes b] \mapsto \left[A \oplus A, \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}\right]$$

is injective by Theorem 2, and bijective by the above. It follows that the element $[\sum_{i=1}^{m} a_i \otimes b_i] \in S(A/A)$ is independent of the choice of $e_1, \dots, e_{2m=n}$. Clearly β defines an inverse to α .

5. Cancellation for quasi hyperbolic planes

Let A be a ring with involution. Let Λ and Δ be two form parameters in A such that $\Lambda \subset \Gamma$. Recall that a *quasi* Λ -hyperbolic plane of level Γ is a Λ -quadratic module

$$(a, b) = \left(A \oplus A, \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}\right)$$

such that $a, b \in \Gamma$. If $a_i, b_i \in \Gamma$ $(1 \le i \le r)$ let

Theorem 4. Let A be a ring with involution. Let $\Lambda \subset \Gamma$ be two form parameters in A. Assume that A has a family of involution invariant ideals $0 \subset g_1 \subset \cdots \subset g_n$ which satisfy the hypotheses of Theorem 1.

(a) Let (M, ψ) be a nonsingular Λ -quadratic module. If

$$\underset{i=1}{\overset{\prime}{\downarrow}}(a_i, b_i) \bot (M, \psi) \cong \underset{i=1}{\overset{\prime}{\downarrow}}(c_i, d_i) \bot (M, \psi),$$

then

$$\prod_{i=1}^{r} (a_i, b_i) \bot (0, 0) \cong \prod_{i=1}^{r} (c_i, d_i) \bot (0, 0).$$

(b) Let $A_n = A/g_n$. Factor A_n as a product $A_n = A_n^1 \times \cdots \times A_n^i$ of rings such that A_n^i is either a simple ring with involution or A_n^i is a product $A_n^i = B \times B^{\text{opposite}}$ of two simple rings B and B^{opposite} such that the involution takes $(x, y) \mapsto (y, x)$. Assume that if A_n^i is simple and if the involution on $k^i = \text{center}(A_n^i)$ is trivial, then k^i is a perfect field and A_n^i is a matrix ring over k^i . Let (M, ψ) be a nonsingular A-quadratic module. If

$$\prod_{i=1}^{r} (a_i, b_i) \bot (M, \psi) \cong \prod_{i=1}^{r} (c_i, d_i) \bot (M, \psi),$$

then

$$\coprod_{i=1}^{\prime} (a_i, b_i) \cong \coprod_{i=1}^{\prime} (c_i, d_i)$$

Proof. (b) Identify

Let F and G denote the images of $\perp'_{i=1}(a_i, b_i)$ and $\perp'_{i=1}(c_i, d_i)$ in $Q(A_n, A_n)$ $(A_n = \text{image } A \rightarrow A_n)$. Since

$$\prod_{i=1}^r (a_i, b_i) \bot (M, \psi) \cong \prod_{i=1}^r (c_i, d_i) \bot (M, \psi),$$

it follows from Witt cancellation [19] (plus a Morita equivalence if some of the (A_n^i) 's are matrix rings of rank >1) that $F \cong G$. The idea of the rest of the proof is to pick an isomorphism $F \to G$ which one can lift to an isomorphism $\perp_{i=1}^{r} (a_i, b_i) \to \perp_{i=1}^{r} (c_i, d_i)$.

Corresponding to the decomposition $A_n = A_n^1 \times \cdots \times A_n^t$ there are decompositions $A_n = A_n^1 \times \cdots \times A_n^t$ and $\Gamma_n^n = \Gamma_n^1 \times \cdots \times \Gamma_n^t$ such that $A_n^i = e^i A_n e^i$, $\Gamma_n = e^i \Gamma_n e^i$, and e^i is the central idempotent which defines A_n^i . Let F^i and G^i denote the images of F and G in $Q(A_n^i, A_n^i)$. If $A_n^i = \Gamma_n^i$, then the identity map on $A_n^i \oplus \cdots \oplus A_n^i$ defines an isomorphism $F^i \to G^i$. If $A_n^i \neq \Gamma_n^i$ then we know that there exists an isomorphism $\rho^i : F^i \to G^i$. ρ^i defines an element of $GQ_{2r}(A_n^i, \Gamma_n^i)$ because as Γ_n^i -quadratic modules $F^i = G^i = \mathbb{H}((A_n^i)^r)$. Since $A_n^i \neq \Gamma_n^i$ it is necessary that A_n^i is a simple factor such that the involution on $k^i = \text{center}(A_n^i)$ is trivial. Thus, by the hypotheses in (b) k^i is perfect, and A_n^i is a matrix ring over k^i . Since $\Gamma_n^i \neq \min$, it

follows that $k^i \subset \Gamma_n^i$. From this it follows that $GQ_{2r}(A_n^i, \Gamma_n^i) = EQ_{2r}(A_n^i, \Gamma_n^i)$ (try first the case $A_n^i = k^i$). Thus, there is an isomorphism $F \to G$ which defines an element $\rho \in EQ_{2r}(A_n, \Gamma_n)$.

It suffices now to assume that n = 1 and to show that if $\rho \in EQ_{2r}(A_1, \Gamma_1)$ such that ρ defines an isomorphism $F \to G$, then there is a $\sigma \in EQ_{2r}(A, \Gamma)$ covering σ such that σ defines an isomorphism $\perp_{i=1}^{r} (a_i, b_i) \to \perp_{i=1}^{r} (c_i, d_i)$. The canonical map $EQ_{2r}(A, \Gamma) \to EQ_{2r}(A_1, \Gamma_1)$ is surjective. In order to use this fact we have insisted that $\rho \in EQ_{2r}(A_1, \Gamma_1)$ rather than in $GQ_{2r}(A_1, \Gamma_1)$.) After picking a representative $\tau \in EQ_{2r}(A, \Gamma)$ for ρ and applying τ to $\perp_{i=1}^{r} (a_i, b_i)$, one can assume that $\rho = 1$. Choose p_i and q_i in g_1 such that $a_i = c_i + p_i$ and $b_i = d_i + q_i$. Let $g = g_1$.

Suppose that $g \subseteq Ann_A(\Gamma/\Lambda)$. Then

$$\begin{pmatrix} 1 & 0 \\ -\bar{q}_i & 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & -p_i \\ 0 & 1 \end{pmatrix} \in EQ_2(A, \Gamma)$

define respectively isomorphisms $(a_i, b_i) \rightarrow (a_i, d_i)$ and $(a_i, d_i) \rightarrow (c_i, d_i)$ (remember that the Λ -quadratic and λ -hermitian forms associated to (c, d) depend only on the classes of c and d in Γ/Λ). It follows that there is a $\sigma \in EQ_{2r}(\Lambda, \Gamma)$ such that $\sigma \equiv 1 \mod g$ and σ defines an isomorphism $\perp_{i=1}^{r} (a_i, b_i) \rightarrow \perp_{i=1}^{r} (c_i, d_i)$.

Suppose that A is g-adically complete. let $q = q_i$. Let $y_1 = \bar{q}aq$ and define inductively $y_i(i > 1)$ by $y_i = \bar{y}_{i-1}ay_{i-1}$. Since A is g-adically complete, it makes sense to define $\alpha = \sum_{i=1}^{\infty} \bar{y}_i ay_i$ and $y = \sum_{i=1}^{\infty} y_i$. Since $\bar{y}ay \in \Gamma$ and since it is checked easily that $\alpha - \bar{y}ay \in \min$, it follows that $\alpha \in \Gamma$. Since $q = b_i - d_i$, it is also true that $q \in \Gamma$. The matrix

$$\begin{pmatrix} 1 & 0 \\ -\bar{q} - \bar{\alpha} & 1 \end{pmatrix} \in EQ_2(A, \Gamma)$$

and defines an isomorphism $(a_i, b_i) \rightarrow (a_i, d_i)$. Similarly one can find a

$$\begin{pmatrix} 1 & -p-\beta \\ 0 & 1 \end{pmatrix} \in EQ_2(A, \Gamma)$$

which defines an isomorphism $(a_i, d_i) \rightarrow (c_i, d_i)$. It follows that there is a $\sigma \in EQ_{2r}(A, \Gamma)$ such that $\sigma \equiv 1 \mod g$ and σ defines an isomorphism $\perp_{i=1}^{r} (a_i, b_i) \rightarrow \perp_{i=1}^{r} (c_i, d_i)$.

(a) is proved similarly to (b). One uses the extra hyperbolic plane (0, 0) in the following way. Let F and G be as in (b). One knows that there is an isomorphism $F \rightarrow G$ and that this isomorphism can be represented by an element $\rho_{2r} \in GQ_{2r}(A_n, \Gamma_n)$, By stability [3], one can write $\rho_{2r} = \tau \varepsilon$ such that $\tau \in GQ_2(A_n, \Gamma_n)$ and $\varepsilon \in EQ_{2r}(A_n, \Gamma_n)$. If

$$\tau = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ and } \tau_1 = \begin{pmatrix} I_r & \mid 0 \\ -a & -b \\ 0 & -c & -b \\ c & -c & d \end{pmatrix},$$

then by Lemma 3 the element $\rho = \tau \varepsilon \tau_1^{-1} \in GQ_{2(r+1)}(A_n, \Gamma_n)$ actually lies in $EQ_{2(r+1)}(A_n, \Gamma_n)$. ρ defines an isomorphism $F \perp (0, 0) \rightarrow G \perp (0, 0)$ and one can lift as in (b) ρ to an isomorphism

$$\sigma: \coprod_{i=1}^r (a_i, b_i) \bot (0, 0) \rightarrow \coprod_{i=1}^r (c_i, d_i) \bot (0, 0).$$

References

- [1] A.A. Albert, Structure of Algebras, A.M.S. Coll Publ. (1939), rev. ed. (1961).
- [2] C. Arf, Untersuchungen über quadratische Formen in Körpern der Charakteristik 2, Teil I, J. reine ang. Math. 183 (1941) 148-167.
- [3] A. Bak, The stable structure of quadratic modules, Thesis, Columbia University (1969).
- [4] A. Bak, On modules with quadratic forms, Lec. Notes in Math. 108 (1969) 55-66.
- [5] A. Bak, The computation of surgery groups of odd torsion groups, Bull. A.M.S. (1974) 1113-1116.
- [6] A. Bak, The computation of surgery groups of finite groups with abelian 2-hyperelementary subgroups, Lec. Notes in Math. 551 (1976) 384-409.
- [7] A. Bak, Definitions and problems in surgery and related groups, General Topology and Appl. 7 (1977) 215-231.
- [8] A. Bak, K-theory of forms, Ann. Math. Studies, Princeton (to appear).
- [9] A. Bak, The computation of even dimension surgery groups of odd torsion groups, Communications in Alg. 6 (14) (1978) 1393-1458.
- [10] A. Bak, Surgery and K-theory groups of quadratic forms over finite groups and orders. (preprint).
- [11] A. Bak and W. Scharlau, Grothendieck and Witt groups of orders and finite groups. Inventiones Math. 23 (1974) 207–240.
- [12] H. Bass, Algebraic K-theory (Benjamin, New York, 1968).
- [13] H. Bass, Unitary algebraic K-theory, Lec. Notes in Math. 343 (1973) 57-265.
- [14] F. Clauwens, L-theory and the Arf invariant, Inv. Math. 30 (1975) 197-206.
- [15] A. Fröhlich and A. McEvett, Forms over rings with involution, J. Alg. 12 (1969) 79-104.
- [16] S. Lang, Algebra (Addison-Wesley, Reading, MA, 1965).
- [17] R. Sharpe, On the structure of the unitary Steinberg group, Ann. Math. 90 (1972) 444-479.
- [18] C.T.C. Wall, On the classification of Hermitian forms I. Rings of algebraic integers, Comp. Math. 22 (1970) 425-451.
- [19] E. Witt, Theorie der quadratischen Formen in beliebigen Körpern, J. reine ang. Math. 176 (1937) 31-44.