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Abstract. The article proves that there are smooth one fixed point actions of the al-
ternating group of degree 5 on the 8-dimensional sphere. It follows that a sphere has a
smooth one fixed point action of some finite group if and only if the dimension of the
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1. INTRODUCTION

This paper completes research stretching over several decades to determine which
spheres have smooth one fixed point actions of finite groups. Except for the 8-dimensional
sphere, the answer has been known for about a decade; namely if n # 8 then the standard
n-dimensional sphere S™ has a smooth one fixed point action of some finite group if and
only if n > 6. In the current paper, it will be shown that S® has a smooth one fixed point
action of the alternating group As of degree 5. Recall that an action is called a one fized
point action, if there is exactly one point which is left fixed by every element of the group.

We review some of the major steps of the past.

A fundamental problem in the theory of transformation groups is determining fixed
point sets of smooth actions of finite groups on disks and spheres. R. Oliver showed
in [28, Theorem 7] that a finite group can act smoothly, without fixed points on some
(closed) disk of undetermined dimension if and only if it is not mod p hyperelementary
for all primes p. A finite group G is called mod p hyperelementary, if it has a normal



p-subgroup P such that the quotient G/P is hyperelementary. The result provides a
necessary condition for a finite group to act smoothly, with exactly one fixed point on
some sphere of undetermined dimension.

E. Stein was the first to find a smooth one fixed point action on a sphere, namely
he showed that S admits a smooth one fixed point action of the special linear group
SL(2,Zs) 37, Proposition 4.3]. Next T. Petrie proved in [34, Theorem A] that a finite,
odd order abelian group having at least three noncyclic Sylow subgroups, e.g. Zpg X Zpgr
where p, ¢, and r are distinct odd primes, has a smooth one fixed point action on some
higher dimensional spheres. The same conclusion holds for any finite group which is not
mod p hyperelementary for all primes p, thanks to [13, Theorem A] and [12, Theorem A|.
The result is the strongest possible one, in view of Oliver’s work on disks.

Aside from Stein’s result, all of the above smooth one fixed point theorems tell us only
that there exist higher dimensional spheres which have smooth one fixed point actions
of finite groups which are not mod p hyperelementary for all primes p. E. Laitinen
and P. Traczyk posed in [14] the problem whether or not S® has a smooth one fixed
point action of As. This was answered affirmatively by the second author. In fact he
proved in [15, Theorem A], [17, Theorem 0.1], and [19, Theorem A] that if n > 6 and
n # 7,8 then S™ has smooth one fixed point actions of As. Thereafter it was shown in
a joint paper [2, Theorem 7] that S” has a smooth one fixed point action of As. This
left S® as the only unsolved case for n > 6. On the other hand, it has been shown
in M. Furuta [11, Theorem 0.1] (cf. [16, Theorem A]), Buchdahl-Kwasik-Schultz [5,
Theorem 1.1, I1.1, and I1.4], and DeMichels [6, Theorem 5.1] that if 0 £ n < 5 then S™
does not have a smooth one fixed point action of any finite group.

It is worthwhile remarking that the existence of a smooth one fixed point action of Aj
on S® implies that for any n > 7, there is a continuous one fixed point action of A5 on
S™, which is everywhere smooth, except possibly at the fixed point. This fact motivated
Buchdahl-Kwasik-Schultz to show in [5, Theorem II.5] that for each n > 6, there is a
locally linear, one fixed point action of A5 on S™. Their arguments, however, do not
provide ways of constructing smooth one fixed point actions on spheres.

The advances above of T. Petrie and the current authors depend on parallel develop-
ments in equivariant surgery theory. In Petrie’s case, it was his invention [33] (cf. [9],
[35]) of equivariant surgery theory under the so-called strong gap hypothesis for singular
sets. Here the surgery groups are those of Wall. In the authors’ case, it was the second
author’s replacement of the strong gap hypotheses in Petrie’s theory, by the gap hypoth-
esis. Here the surgery groups are those of the first author. They are generalizations
of Wall’s groups, which are obtained by using form parameters to adjust the quadratic
form. The procedure for applying equivariant surgery to one fixed point problems starts
with a smooth two fixed point action satisfying one of the gap hypotheses and then uses
equivariant surgery to remove one of the fixed points. However, for the current problem
of establishing a smooth one fixed point action of A5 on S8, we were not able to find a



smooth two fixed point action of A5 on S®, satisfying the gap hypothesis, but only smooth
two fixed point actions of A5 on S®, whose singular sets have dimension up to and includ-
ing 4, which is half of the dimension of S®. This motivated us to develop in [4] equivariant
surgery for smooth actions having dimensions of singular sets up to and including half
the dimension of the manifold. Here the surgery groups generalize those above by using
two form parameters to adjust simultaneously the quadratic and Hermitian forms, rather
than just one parameter for adjusting the quadratic form. The resulting surgery theory
is applied in the current paper to prove the theorem below. It played also a central role
in establishing the smooth analog of Oliver’s theorem in papers [12] and [13] above.

Theorem 1.1. There are smooth one fized point actions of As on S8.
The following corollary follows immediately from the above.

Corollary 1.2. For a natural number n, the following are equivalent:

(1) There is a smooth one fized point action of some finite group on S™.
(2) There is a smooth one fized point action of As on S™.
(3) n>6.

The proof of Theorem 1.1 is organized as follows. In Section 2, we recall the Burnside
ring and certain facts concerning it. This includes showing the existence of a certain
idempotent. In Section 3, we recall equivariant framed maps and use the idempotent
above to construct a G-equivariant framed map, whenever GG is nontrivial and perfect.
In Section 4, we prove Theorem 1.1. We start by showing that a certain two fixed
point, linear action of As on S® has only singular sets of dimension < 4. Then the
results of Section 3 are used to construct a good As-framed map to S®. In order to
show that the surgery obstruction of the map vanishes, we need to know that the map
has certain properties. These are isolated in Proposition 4.1 whose proof is postponed
to Section 5. Applying the equivariant surgery theory in [4], we convert the map to a
homotopy equivalence whose source is a homotopy sphere of dimension 8 with exactly one
fixed point. Using Stein’s trick of taking the equivariant connected sum of copies of this
manifold, we obtain a smooth one fixed point action of A5 on the standard 8-dimensional
sphere S®. This completes the proof of Theorem 1.1. In section 5, we develop a certain
way of performing equivariant surgery which we call the reflection method and apply this
to prove Proposition 4.1.

2. THE BURNSIDE RING AND AN IDEMPOTENT

Let G be a finite group. Let (G) denote the Burnside ring of G, namely the Grothendieck
group of the category of finite G-sets with addition and multiplication induced by disjoint



union and Cartesian product, respectively. For any subgroup H C G, there is a canonical
homomorphism xpy : Q(G) — Z defined by

xn () = |A"] - |BY|
where A and B are finite G-sets, a = [A] —[B], A¥ and B denote the sets of elements in

A and B respectively which are left pointwise fixed by the action of H, and | X| denotes
the number of elements of X. By [8, IV, Theorem 5.7], we obtain

Lemma 2.1. Suppose G is a finite nontrivial perfect group. Then there exists an idem-
potent o in Q(G) such that xg(a) =1 and xg(a) =0 for any H # G.

For a finite G-CW complex X, the n-th equivariant cohomology wf.(X) of X is defined
to be

ling[(R™ & C[G]™)* A (X I {pt}), (R™ & C[G]™)*]7,

where n = ny —n; € Z and W denotes the one point compactification of W, C[G]
the complex regular representation of G, and [A, B]§ the set of G-homotopy classes of
basepoint preserving G-maps from A to B. We refer the reader to [8, pp.140-141] for
details concerning wg(X), e.g. its group structure. For the special case where X is a
point, we obtain

wg(pt) = Lim[(C[G]™)*, (CIG]™)7]§ (= [S(R & C[G]), SR & CIG])]F)

and this becomes a ring whose multiplication is induced by taking composition of maps
(cf. [25]). Furthermore wf(X) is a module over wl(pt), with multiplication defined as
follows. If [f : (C[G]™)* — (C[G]™)*] € wl(pt) and [h: (R™ & C[G]™)" A (X T {pt}) —
(R™ & C[G]™)"] € wi(X), then the product [f][h] € wi(X) is defined to be the G-
homotopy class including the composition (idgs,+ A f) o h. For each subgroup H of G,
there is a canonical homomorphism degy, : w%(pt) — Z defined by

degy ([f]) = deg(f : SR & C[G)" — SR C[G])").

By Segal’s theorem [36, Corollary], there is a canonical ring isomorphism Q(G) — w&(pt)
such that the diagram

o

G) wg (pt)
W\

Z
commutes for every H C G and we identify Q(G) with w(pt) via this isomorphism.

Lemma 2.2 ([33, Lemma 1.8], [34, Lemma 1.6]). Let G and « be as in the previous
lemma. For any finite G-CW complex X and any integer n, the restriction homomorphism
a'wi(X) = o 'wk(XY) is an isomorphism, where a 'wk(X) denotes the localization
of wi(X) with respect to the mutiplicatively closed set {a}.



Lemma 2.3 ([33, Corollary 1.9]). Let G = As and let Y be a finite G-CW complez
such that Y& = {yy,y_}. The w%(pt)-module w% (YY) is free of rank 2 and we identify
wd(y9) = QG) @ QG). The assertion is that there exists an element w € w(Y) such
that

wlye = ([G/G] - o, [G/G]) € Q(G) © Q(q),

where a 1s the element appearing in Lemma 2.1.
Define the subset G(2) of G by

G(2)={geG|g"=e g#e}.
It is regarded as a G-set via conjugation. Let SGW,(Z,G,G(2)) denote the special
Grothendieck—Witt ring defined in [12, p.509]. By definition, the multiplicative identity
element 1¢ of SGWy(Z, G, G(2)) is the equivalence class of (Z, B, «), where B : ZXZ — Z
is the canonical multiplication and « : G(2) — Z is the map g +— 1.

Let subgp(G) denote the category of subgroups of G with morphisms defined by
inclusion and conjugation. For a precise definition, see [1]. Let M : subgp(G) —
((abelian groups)) be a Mackey functor. By definition M is a pair of functors consisting
of a covariant functor and a contravariant functor, both taking the same value on objects.
It is assumed that the pair forms a bifunctor and satisfies the Mackey subgroup property.
See [1]. If K — H is a morphism in subgp(G) then Ind% denotes as usual the covariant
map Indf : M(K) — M(H) and is called induction. If K — H is as above then Resk
denotes as usual the contravariant map Res% : M(H) — M(K) and is called restriction.

Let R : subgp(G) — ((rings)) be a Green ring functor [1] (cf. also [7, p.165]). By defi-
nition, R is a Mackey functor whose contravariant part delivers ring homomorphisms, but
whose covariant part only group homomorphisms, and satisfies the Frobenius reciprocity
law. A Mackey functor M is called an R-module or a Green module over R, if for each
H C G, M(H) is an R(H)-module and the following two properties are satisfied:

(2.1) (Ind¥r) - = Indje(r - Resppx) forall r € R(K) and z € M(H).
(2.2) r- (Indfz) = Indi (Resir) - z) forallr € R(H) and z € M(K).

Lemma 2.4. Let G be a nontrivial finite perfect group, o the idempotent in Lemma 2.1,
and 1g the multiplicative identity of the ring SGWy(Z,G,G(2)). Then, alg = 0 and
hence
SGWy(Z,G,G(2)) = ) | Indf;(SGWo(Z, H, H(2))).
HCG
Consequently, for a module M(—) over SGWy(Z,—,—(2)) the map
Res : M(G) - @ M(H)
HCG
18 injective.

Remark. For the lemma above, the property (2.2) is unnecessary.



Proof. By definition, Res%([G/G] — a) = 0 for all H C G. By [12, Proposition 6.4], we
get
([G/G] = (IG/G] = &))*1a =0,
which implies alg = 0. Since [G/G]| — o = Y 5o an[G/H]| for some integers ay, we
obtain -
lg = ([G/G] - a)lg = Y axlndfly.

HCG

The remainder of the lemma follows from the equality
x = Z ag(Ind$1y) -2 = Z ayInd$ (1 - Res§x)
HCG HCG

for x € M(Q). O

3. EQUIVARIANT FRAMED MAPS

For a finite group G, a pair (f,b) consisting of a G-map f : X — Y between G-manifolds
and an isomorphism b : T(X) @ ex(R™) — f*T(Y) @ ex(R™) of real G-vector bundles,
for some m, is called a G-framed map from X to Y. Here ¢x(R™) denotes the product
bundle over X with fiber R™. If the degree of f is one then (f,b) is also said to be of
degree one. In the case where X and Y are closed, a G-framed cobordism (F, B) between
degree one, G-framed maps (f,b) and (f’, ') is by definition a pair consisting of a degree
one G-map

F:(W,0W) = (IxY,Y xI),
where I = [0, 1], and a G-isomorphism
B:T(W)®ew(R™) = F*(T(I x Y)) ® e (R™)

satisfying the following conditions:

(1) OW = (—X) I X' as oriented G-manifolds,

(2) F|—x)=f as G-maps (—=X) = Y x {0},
(3) F|x = f"as G-maps X' — Y x {1},
(4) Bl-x) = —ide _4,r) ® b as G-isomorphisms

8(,X)(R) & T(—X) D 8(,X)(Rm) — 6(,X)(R) (&) f*T(Y) & 8(,X)(Rm), and
(5) Blx» = id. ) @V as G-isomorphisms

8XI(R) ) T(X,) (&) SXI(Rm) — 8XI(R) ) fI*T(Y) o) €X/(Rm)

(after stabilizing b and ' if necessary), where (—X) is a copy of X but with opposite
orientation.



Let V' be a real G-module with G-invariant inner product and set Y = S(R@ V). The
north and south poles of Y, namely the points (1,0), (=1,0) € RV, will be denoted by
y+ and y_, respectively. We have the canonical isomorphisms

TY)®ey(R)Zey(R)@T(Y)=vV,ReV)STY)ZTRaV)|y Zey(R V).
Define by : T(Y) @ ey(R) — T(Y) @ ey(R) to be the identity map and Define b_ :
TY)®ey(R) = T(Y)®ey(R) by

b_(y, (r,v)) = (y, (=7,v))

fory €Y, r € R and v € V. From the above we obtain G-framed maps 1y := (idy, b;)
and —1ly ¢ := (idy,b_).

Fix small G-invariant disk neighborhoods Uy ; and Uy, of y; and y_ in Y, respectively.
Let Z>( denote the set of nonnegative integers. For a set A of subgroups of G and maps
04, o— : A = Z>g, define the G-manifold Z,_ ,_ by

v+ (H) p—(H)
Zoro = [T | T (G xu Urua) U ] (G %u Uym) |
HeA =1 =1

where Uy, u; and Uy,_ g ; are copies of Uy, and —Uy,; respectively. Define the G-framed

map f,, , from Z,, , to Uy by
o+ (H) - (H)
forw=U | U @ xuyimilvy,n))U U (G xu Uy milvy_s)) | 5
HeA =1 =1

where 1y 4 p; and 1y _ g ; are copies of 1y y and —1y g respectively.

Proposition 3.1. Let G be a finite nontrivial perfect group and V' a real G-module with
VG =0. Let Y denote S(R®V), a (€ Q(G)) the element appearing in Lemma 2.1, and w
(€ w(Y)) the element appearing in Lemma 2.3. Furthermore let A be a set of subgroups
of G and ¢4, ¢ : A — Z>o maps such that

[G/G]—a=) (p:(H) ¢ (H))G/H].

HeA

Then there exists a G-framed map f = (f,b) consisting of a G-map f : X — Y =
S(Re V) and a G-vector bundle isomorphism

b:T(X)®ex(R™) — f*T(Y) @ ex(R™1),
and H-framed cobordisms (Fy, By) between 1y y and Res$ f, consisting of H-maps
Fy:(Wg,0Wy) = (I xY,0(I xY))
and H-vector bundle isomorphisms
By : T(Wy) ® ew, R™) = FET(I xY) @ ey, (R™H1)

respectively, for all proper subgroups H C G such that



(1) flr-1(y,_) is the stabilization of ly,g|uy _,
(2) fly1(vy.,) is the stabilization of fl,, ,_.

Here m is some (large) integer.
Proof. Define Z, and Z _ as the subsets {y,} and {y_} of Y respectively, and set

vi =Y (ps(H) — ¢ (H))[G/H],
HeA
7- =1 -0)[G/G],
where Y = {y,,y_}. It follows immediately from Lemma 2.3 that w|;, = 74 and
w|z_ = v-. By [20, Theorem 4.4], we obtain a G-normal map (f,b") consisting of a
G-map f : X — Y and a G-vector bundle isomorphism

V:T(X)®ex(V') = f\TY)®ex(V),

and, for each H C G, an H-normal cobordism (Fy, B};), between Res% (idy , idr(y)pey (v1))
and Res%(f,b), consisting of an H-map Fy : (Wy,0Wy) — (I x Y,0(I x Y)) and an
H-vector bundle isomorphism

By : TWg) ®ew, (V') = FRT(I XY) ®ew, (V'),

where V' is some real G-module. Using [20, Theorem 3.6], one can replace V' by R™*! for
sufficiently large m, and obtain a G-vector bundle isomorphism b : T(X) @ ex(R™*) —
FT(Y) ® ex(R™') and H-vector bundle isomorphisms By : T(Wg) ® ew, (R™!) —
F;T(I XY) ® ew, (R™) from b and B above. By [20, Theorem 4.4], we can choose
the G-framed map f := (f,b) so as to satisfy the conditions (1) and (2) above. O

We remark that for the G-map f above and any subgroup H of G such that dim V# > 1,
the restriction f# : X# — Y# is of degree 1.

4. PROOF OF THEOREM 1.1

In the current section, we assume throughout that G = As. We begin by recalling basic
properties of As, the alternating group of degree 5. For n = 2, 3 and 5, choose cyclic
subgroups C,, of As of order n so that Cy C N4, (C3) and Cy C N4, (Cs) (see [27, p.339)]).
Since N4, (Cy) is dihedral of order 2n, we denote Na,(Cy) by Ds,. Moreover, N4, (Dy)
is isomorphic to the alternating group of degree 4 and hence we denote N4, (D4) by Aj.
Any subgroup of Ajs is conjugate to one of the subgroups {e}, Cy,, Do, A4 or As, where
n =2, 3 or 5. The group As has precisely five (mutually nonisomorphic) irreducible real
representations, and the dimensions of them are 1, 3, 3, 4 and 5. The two irreducible real
Ajs-representaions of dimension 3 are Galois conjugate to each other. Let R, U(3), U(4)
and U(5) be irreducible real As-representation spaces (with G-invariant inner product)
of dimension 1, 3, 4 and 5, respectively. The dimensions of the H-fixed point set W# of
W =U(3), U(4) and U(5) are as in Table 1.



H {6} 02 03 05 D4 D6 D10 A4 A5
dmUB)?| 3 |1 ][1|1]0]0] 0|00
dmUDF [ 4 [2[2]0[1[1]0[1]0
dmUGE| 5 [3]1 |1 ]2[1]1]0]O

TABLE 1

Define a real As-module V' by
(4.1) V=U@3)eU(5)

and set Y = S(R@® V). Then, the dimensions of the H-fixed point sets Y#, H C Ajs, are
as in Table 2.

H {6} CQ 03 05 D4 D6 D10 A4 A5
dmY#| 8 [4 ]2 ]2]2 |1 1 010

TABLE 2

It follows that
Iso(As,Y) = S(As) \ (Ay),
where Iso(4s, Y) and §(As) denote respectively the set of all isotropy subgroups of Y in G
and the set of all subgroups of G.
Next, recall that the formula
> l@/H)Y| =G|
geG
is valid for any finite group G and any subgroup H of (G. Using the formula, we obtain
Table 3, whose entries are the numbers of elements of (G/H)? when G = As.

H {6} CQ 03 05 D6 D10
(9)=5| 0 [0 ][0 |20
ord(g)=3| 0 | 0] 2|01
(9)=20 [2]0]0]2
g=e 60 (30|20 |12 |10

ol = o) of B

DN O~

TABLE 3

It follows from the table that in the case G = As, the idempotent « in Lemma, 2.1 is
explicitly given by
(4.2) a =[G/G] - [G/A4] — |G/ D] — [G/Ds] + [G/C5] + 2[G/Cs] — [G].

Now set

A: {{6}a CQ, C’3a D6a DlOa A4}



From the formula (4.2), it follows that
[As/4s] —a =) (p+(H) — o—(H))[4s/H],

HeA

for the maps ¢4, ¢ : A — Z>( defined in Table 4 below.

H {6} CQ 03 D6 D10 A4
o+(H)| 1 [0]0]|1] 11
o_(H)| 0 [2]1]0

TABLE 4

Proposition 4.1. Let G = A5 and letV, Y, ¢, and ¢_ be as above. Then, the As-framed
map f = (f,b) and the H-framed cobordisms F = (F, B), H C As, in Proposition 3.1 can
be chosen to satisfy the following additional properties:

(1) For each subgroup H such that {e} C H C As,

the map f%: X" 5 YH
1s a homotopy equivalence.
(2) For each subgroup H = Dg, D1, A4, and for any nontrivial subgroup K of H,
the map Fff Wk — I xY¥

18 an integral homology equivalence.

We shall prove the proposition above in Section 5.
The next remark follows immediately from Proposition 3.1.

Remark 4.2. The map f in Proposition 4.1 has the following properties:
1) fHps)?* =10,
(2) fHp+)** = {24,a,} (one point),
(3) Iso(G, f 1 (Uy4)) = S(G) \ (As), and
(4) Iso(G, f~1(Uy,-)) = S(G) \ (A4).

Let f = (f,b) and Fg = (Fg,Bg), where H C Aj, be the As-framed map and the H-
framed cobordisms described in Proposition 4.1. Note that dim Y* = 4 if and only if H is
a subgroup of order 2, and that dim Y ¥ # 3 for any subgroup K. Since f¢2 : X2 — Y2
is a homotopy equivalence, X°? is a 4-dimensional homotopy sphere and is connected.
Define the doubly parametrized form ring A (cf. [4, p.278]) by

A= (2,450, A5(2), N, wy),

where
As(2) ={geAs| > =¢, g#e},



A= (-1)* and wy : G — {1,—1} is the trivial homomorphism. Then, by [4, The-
orem 7.3], the obstruction o(f) (to convert f : X — Y to a homotopy equivalence
by equivariant surgery on the free part of X) lies in the abelian group Ws(A, A5(2))
(= Ws(Z, As, 0, As(2), A5(2)), according to the notation in [12]).

Applying the framed cobordism invariance theorem [23, Theorem 3.2] to the H-framed
cobordism F, we conclude o(Res% f) = 0 for each H C Ajs. Since Resbo(f) = o(Res$ f),
Lemma 2.4 implies o(f) = 0. Thus, we can perform equivariant surgery on the free part
of X so that the resulting map f': X’ — Y is a homotopy equivalence. Then, X' is a
homotopy sphere with exactly one G-fixed point. Taking the equivariant connected sum
of the right number of copies of X', we obtain a smooth action of G on the 8-dimensional
standard sphere with exactly one fixed point. This is explained in [13, Proposition 1.3]
by letting the F there denote the set of Sylow subgroups of As. O

5. REFLECTION METHOD AND PROOF OF PROPOSITION 4.1

We return in this section to the general situation where G is any finite group. We de-
velop a certain way of performing equivariant surgery which we call the reflection method
and apply it to prove 4.1.

Let f and Fg, H C G, be as in Proposition 3.1.

For an H-invariant subset Z of Wy, a compact H-submanifold N of Wy is called a
product H-cobordism neighborhood of Z with respect to ¥ if N is an H-neighborhood of
Zand ¥: N — I x (X NN) is an H-diffeomorphism such that

(1) ¥(XNN)={0} x (XNN),
(2) the restriction
Ulxay : XNN = {0} x (XN N)
coincides with the canonical map, and
(3) {1} x (XNN))=YNN.

Definition 5.1. Let f be a G-framed map, H a subgroup of G, F gy an H-framed cobor-
dism between f and another G-framed map f’, and K # {e} a subgroup of H. We say
that the pair (f, Fy) is adjusted for (H, K) if

(1) fE: X% — YE is a homotopy equivalence, and

(2) FEK:WE — I x YX is an integral homology equivalence.

We provide next a method which enables us to adjust a pair (f,Fy) as in (5.1), for
(H, K) under the assumption that Ng(K) C H. The following notation
XK ={reX |G, 2K} and
Wi¥ ={weWy | H, D K}
will be used where G, and H, denote the isotropy subgroups of G at x and H at w,
respectively.



Lemma 5.2 (Reflection Method). Let H and K # {e} be proper subgroups of G such
that Ng(K) C H, and let f and Fy be as in Proposition 3.1. Suppose there is a prod-
uct H-cobordism neighborhood N-g of HX>X U HWZ5 in Wy with respect to an H-
diffeomorphism Vs : Nsg — I X (X N Nsg). Then one can perform G-surgery of f
and H-surgery of Fy of isotropy type (K) so that the resulting maps f' and F'y satisfy
the conditions:
(1) 7 X S YK s a homotopy equivalence,
(2) F'% - W' — I x Y is a homotopy equivalence, and
(3) there exists a closed H-reqular neighborhood Uy of HW’g in W'y such that Ug D
Nsk and Uk s a product H-cobordism neighborhood of HW’g with respect to an
H-diffeomorphism vk : Ux = I x (X' NUk) with Yx|n, . = Usk.

Proof. This follows from [17, Theorem 4.2] and its proof. O

Proof of Proposition 4.1. Let G = A5 and H C As. Let f and Fy denote respectively
an As-framed map and H-framed cobordism obtained by Proposition 3.1 where ¢, and
@_ are specified as in Proposition 4.1. Since each maximal subgroup of As is conjugate
to Ay, Dg or Dqg, it suffices to treat the cases H = A4, Dg and Dy,.

Step 1 : (H,K) = (As, As). By construction, X“4 has precisely two points and
fA1 . X4 5 Y4 is a homotopy equivalence. It is clear that ij has two components
diffeomorphic to [0, 1] and the others are diffeomorphic to S!. Perform 1-dimensional A;-
surgery of F 4, to remove all components diffeomorphic to S' and thereby obtain a new
F,, such that Ffj : ij — I x Y44 is a homotopy equivalence. Thus the new ij is
diffeomorphic to I x X4, Hence the new pair (f,F4,) is adjusted for (A4, A4). Moreover
there exists a product As-cobordism neighborhood Uy, of Wﬁf in Wy, with respect to
some Ay-diffeomorphism 94, : U, = I x (X NUy,).

Step 2 : (H, K) = (Dg, D). Note that X>Ps = X45 = f~1(y_) and WD>6D6 = (). There
exists a product Dg-cobordism neighborhood Nsp, of f 1(y-) (= DgX>Po U DeW*)
in Wp, with respect to some Dg-diffeomorphism W< p, : Nop, — I X (X N Nsp,). Since
Ny, (Dg) = Dg, we can apply the Reflection Method above. Doing this, we obtain a pair
(f,Fp,) which is adjusted for (Dg, Dg). Moreover there exists a product Dg-cobordism
neighborhood Up, in Wp, with respect to some Dg-diffeomorphism ¢p, : Up, — I x (XN
Ups)-

Step 3 : (H, K) = (Do, D1o). This is similar to Step 2.

Step 4 : (H,K) = (A4, Ds). Note that X>P+ = X4+ and W37 = W4'. Recall
that in Step 1, we obtained a product A4-cobordsim neighborhood N.p, = Uga, of Wf N
(= Ay X>Pa U A4WA>4D4) in Wy, with respect to Wsp, = 14,. Since Ny, (Dy) = Ay, we
can apply the Reflection Method. Doing this, we obtain a pair (f, F 4,) which is adjusted
for (A4, Dy). Moreover W1* has a product As-cobordism neighborhood Up, in Wy, with
respect to some Ay-diffeomorphism ¢p, : Up, = I x (X N Up,).



Step 5 : (H,K) = (Dy,Cs). Note that X>% = XP and W;%° = W], Recall
that in Step 3, we obtained a product Djj-cobordism neighborhood Ns¢, = Up,, of
ngl(f (= Do X>% U DloWD>f;5) in Wp,, with respect to some ¥s¢, = ¥p,, : Up,y, —
I x (X NUp,,). Since N4, (C5) = Dyg, we can apply the Reflection Method and obtain
a pair (f,Fp,,) which is adjusted for (Dyg,C5). Moreover ngo has a product Dig-
cobordism neighborhood Ug, in Wp,, with respect to some D;g-diffeomorphim ¢, :
Ue, = I x (X NUg).

Step 6 : (H, K) = (Dsg, C3). Note that WD>GC3 = Wpe, but X>¢ O XPe. Recall that in
Step 2, we obtained a product Dg-cobordism neighborhood Up, of W,§603 in Wp,. There
are exactly four subgroups of Aj properly containing C3. They are As, Dg, and two
subgroups isomorphic to A4, say A(1) and A(2). Thus

X>Cg — XD6 U XA(I) U XA(2).
Recall that dim X = 2 and dim X*® = 0, hence dim Wp, = 3 and
dim(X~% N W5%) = 0.

Without loss of generality, we can assume that F' gg is 1-connected, consequently ng is
connected. Then it is easy to find a product Dg-cobordism neighborhood Ns.¢, of X>¢ U
WD>603 in Wp, with respect to some Dg-diffeomorphism ¥, : Nug, = I X (X N Nsg,)-
Since N4, (C3) = Dg, we can apply the Reflection Method and obtain a pair (f, Fp,)
which is adjusted for (Dg, C3). Moreover there is a product Dg-cobordism neighborhood
Ug, of ng in Wp, with respect to some Dg-diffeomorphism ¢, : Ug, — I x (X NUg,).

The next step needs some terminology.

Definition 5.3. Let W be a manifold with boundary OW. A submanifold A of W is
called a neat submanifold of W if the following holds:

(1) A= AN oW.

(2) There exists a collar neighborhood C of 0W in W such that C L oW x I with
lan

Y

¢lanc
respect to some diffeomorphism ¢, and ANC = 0A x I.

Step 7: (H,K) = (A4,Cs). Note that W7 = W*, but X>% D XP4. There are
seven subgroups of As which properly contain D,. They are As, A4, D,, two distinct
subgroups isomorphic to Dg, say D(1) and D(2), and two distinct subgroups isomorphic
to D1, say D(3) and D(4). Thus we have

4
X>C — xDay| | xDPGO
Y
Recall that dim XP® = 1, dim X?* = 2 and dim X> = 4. Hence dimW}* = 3 and
dim ij = 5. Without loss of generality, we can suppose that Fff is 2-connected.
Consequently ij is 1-connected.



Below we shall find a product Ay-cobordism neighborhood Ns¢, of A,X>¢ U W/ﬁ“
(= A X>C U AW ). After this is done, since Na,(C2) = Dy C Ay, we can apply the
Reflection Method and obtain a pair (f, F 4,) which is adjusted for (A4, C). Moreover
there is a product A4-cobordism neighborhood Ug, of A4W242 in W4, with respect to some
Ay-diffeomorphism ¢, : Ug, = I X (X NUg,).

Let Up, be a product A4-cobordism neighborhood of Wfﬁ in Wy, with respect to an A4-
diffeomorphims 1p, obtained in Step 4. By definition, Up, is an A4-tubular neighborhood
of Wﬁ“ in Wy,. Set

0o(Up,) = Up, N Closure(W4, \ Up,), and
Into(UN) = UN N 80(UD4).
The restriction
¢Bi|1X(X>C2ﬂ30(UN)) I x (X7 No(Uy)) — Wf{:f < Up,

is an Aj-embedding. It is easy to see that X>2 \ Inty(Up,) has four components each of
which is diffeomorphic to [0, 1]. They are

I(i) = XPW Into(Up,)

for s =1, 2, 3, 4. Consider the inclusion

v (I1(3),01(i)) = (W52 N Into(Up,), 80(Un,))
for ¢+ =1, 3. Since the map

m (Y'Y N Inty(Up,)) = m(W2 N Into(Up,))
induced by the inclusion is surjective, there exists a map

mi o I x I(i) = W52 N Into(Up,)

satisfying the following properties:

(1) n; is an embedding and Im(7;) is a neat submanifold of Gij N Into(Up,),
(2) milgoyxrqy : {0} x 1(5) = WS> N Into(Up,) coincides with ¢;,

(3) m({1} x I(i)) C Y \ Inte(Up,), and

(4) the restriction of 7; to I x I(3) coincides with the restriction of ¢p!.

Furthermore, putting 7; and 73 in general position, we may suppose that ny, hni, 13
and hns are mutually disjoint for some A € D, . Cs. Then, extending the maps 7, and
13, we get a Dy-embedding

4
n: I x HI(Z) — W52 N Into(Up,)
i=1

whose image is a neat submanifold of ij N Into(Up,). Clearly

A, X7 XP = T[{gDa(X>% N XP1) | gDy € Ay/ Dy}



Thus the map

4
Ay xp,n: I x (Agxp, [[1()) = AsWE N Into(Up,)
i=1
is an As-embedding. Moreover, if U’ is a closed A4-tubular neighborhood of Im(A4 X p, 1)
in Wy, \ Inty(Up, ), then the union

]\/v>c2 = UD4 U UI
is a product A4-cobordism neighborhood of 4, X>¢ U A4Wj4cz in Wa,.

Step 8 : (H, K) = (A4, C3). By Step 6, f© is a homotopy equivalence. Thus it suffices
to modify F4, by As-surgery of isotropy type (C3) (relative to the boundary) so that Fff
becomes an integral homology equivalence. Note that N4, (C3) = Cj, dim Wff = 3 and
dim W7 = 1. Thus by [24, Theorem 1.1], the equivariant surgery obstruction o(F3)
lies in Wall’s group L(Z[C3/Cs), triv). But the group is trivial and hence the obstruction
vanishes. Thus we can adjust (f,F 4,) for (44, Cs).

Step 9: (H, K) = (Dg,C,). By Step 7, f© is a homotopy equivalence. Thus, it suffices
to modify Fp, by Dg-surgery of isotropy type (Cs) (relative to the boundary) so that F g:
becomes an integral homology equivalence. Note that Np,(Cy) = Cs, dim ng =5 and
dim WEGCZ = 2. Thus by [18, Theorem A], the equivariant surgery obstruction O'(ng) lies
in Wall’s group L2(Z[Cy/Cs], triv). But the group is trivial and hence the obstruction
vanishes. Thus we can adjust (f,F p,) for (Dg, Cs).

Step 10 : (H, K) = (D19, C5). This is similar to Step 9.
This completes the proof of Proposition 4.1. O

Remark 5.4. We proved in [19] and [2], respectively, that S® and S7 have smooth one
fixed point actions of As, using the triviality of certain obstruction groups, namely that
Ws(Z[A5), T A5(2); triv) = 0 and W7(Z[As], I'A5(2); triv) = 0, respectively. But replacing
the real As-module V =U(4)®U(4) in (4.1) by V=UB)@U(3) and V =U(3) ® U(4),
respectively, the arguments of the present paper provide alternative proofs of the results
above without employing the triviality of obstruction groups.
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