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SPLITTING ALONG SUBMANIFOLDS AND L-SPECTRA

A. Bak and Yu. V. Muranov UDC 515.16

Abstract. The problem of splitting of homotopy equivalence along a submanifold is closely related to
surgeries of submanifolds and exact sequences in surgery theory. We describe possibilities and methods of
application of L-spectra for the investigation of the problem of splitting of (simple) homotopy equivalence
of manifolds along submanifolds. This approach naturally leads us to commutative diagrams of exact
sequences, which play an important role in calculational problems of surgery theory.
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1. Introduction

Let Xn be an n-dimensional, connected, closed topological manifold, π = π1(X) be its fundamental
group, and w : π → {±1} be the orientation homomorphism. The main problem of geometric topology
is to describe all closed (smooth, piecewise-linear) topological manifolds that are (simply) homotopy
equivalent to X (see [1–3]).

For this, we consider the structural set of equivalence classes of (simple) orientation-preserving homo-
topy equivalences h : M → X, where M is a closed, connected n-manifold of the corresponding category
(O, PL, TOP). We consider in detail the category TOP of topological manifolds and simple homotopy
equivalences (see [1, 3]).

Two simple homotopy equivalences fi : Mi → X, i = 0, 1, are equivalent if there exists an orientation-
preserving homomorphism of manifolds g : M0 → M1 such that f1g is homotopic to f0. The set of
equivalence classes is denoted by Ss

n(X) and is a term of the following exact sequence of the surgery
theory (see [3]):

· · · −−−−→ [ΣX, G/TOP ]
σn+1−−−−→ Ln+1(π, w) −−−−→ Ss

n(X) −−−−→ [X, G/TOP ] σn−−−−→ Ln(π, w). (1)

There exists a similar exact sequence for smooth and piecewise-linear structures on a manifold X
[1]. Elements of the set [X, G/TOP ] are called normal invariants. For n ≥ 5, this set coincides with
concordance classes of normal topological mappings (f, b) : M → X (see [2, 3]). By definition, an
n-dimensional, normal topological mapping (f, b) : M → X consists of the following ingredients:

(i) an n-dimensional topological manifold M and a normal topological block bundle

νM = νM⊂Sn+k : M → BTOP (k),

ρM : Sn+k → Sn+k/Sn+k − E(νM ) = T (νM );

(ii) an n-dimensional topological manifold X and a normal topological block bundle

νX : X → BTOP (k), ρX : Sn+k → T (νX);
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(iii) a mapping f : M → X of degree 1;
(iv) a mapping b : νM → νX of topological block bundles, which covers f and is such that

T (b)∗(ρM ) = ρX ∈ πn+k(T (νX)).

Surgery obstruction groups Ln(π, w) (see [1]) functorially depend on the pair (π, w) and the dimension
of the manifold n mod 4. Surgery obstruction groups are the same for any of the categories O, PL, and
TOP. A mapping σ determines an obstruction of the surgery of a normal mapping to a simple homotopy
equivalence, i.e., σ(f, b) = 0, if the class of the normal cobordism (f, b) contains a simple homotopy
equivalence. Conversely, if σ(f, b) = 0 and n ≥ 5, then the concordance class (f, b) contains a simple
homotopy equivalence (see [1, 3]).

Thus, for describing the set Ss
n(X), we need to know the set of normal invariants, surgery obstruction

groups Ln(π, w) = Ls
n(π, w), and the mapping σ (the assembly mapping). Approaches to these problems

are quite distinct. At the present time, there exist effective methods for calculation of L-groups (see
[4–8]) based on results in number theory and algebraic K-theory. Methods of algebraic and geometric
topology are used for describing normal invariants and assembly mapping (see [1, 3, 9–13]). However, our
knowledge about the set Ss

n(X) in general case is far from complete. The investigation of the assembly
mapping is closely related to the Novikov conjecture on higher signatures, the problem on the realization
of elements of L-groups by normal mappings of closed manifolds, and the series of other classical problems
of surgery theory (see [9–13]).

Let X be a manifold and Y ⊂ X be its subset of codimension q. Then exact sequence (1) of surgery
theory can be included into different commutative diagrams of exact sequences that also contain ob-
struction groups distinct from surgery obstruction groups. The obtained relationships provide us with
abundant additional information and are very useful from both the algebraic and geometrical points of
view since many objects and mappings have an explicit geometrical description. The key role in this
consideration is played by the problem on the splitting of a simple homotopy equivalence f : M → X
along a submanifold Y .

By definition [1, 3], a simple homotopy equivalence f : M → X splits along a submanifold Y if the
mapping f is homotopic to a mapping g transversal to Y , where N = g−1(Y ), and such that

g|N : N → Y, g|(M\N) : M \N → X \ Y

are simple homotopy equivalences. A homomorphism splits along an arbitrary submanifold; this obvious
fact is a simple consequence of the definition. Conversely, if a mapping f does not split along a subman-
ifold, then it is not homeomorphic to a homomorphism. There exists well-developed algebraic methods
for investigating the splitting problem (see [1–3, 14]).

We denote by ∂U the boundary of a tubular neighborhood U of a submanifold Y in a manifold X and
by

F =




π1(∂U) −−−−→ π1(X \ Y )�
�

π1(Y ) −−−−→ π1(X)


 =




A −−−−→ C�
�

B −−−−→ D


 (2)

the quadrate of fundamental groups with orientation, in which all mappings are induced by natural
mappings of manifolds. By the Van Kampen theorem, the quadrate F is a universally repelling quadrate
of groups. By [1, 3], there exist splitting obstruction groups LSn−q(F ), which functorially depend on
the quadrate F and n − q mod 4. Thus, for a simple homotopy equivalence f : M → X, there exists an
obstruction Θ(f) ∈ LSn−q(F ), which vanishes if the mapping f splits along Y . Conversely, if Θ(f) = 0
and n− q ≥ 5, then f splits along Y .

If horizontal mappings in the quadrate F are isomorphisms A ∼= C and B ∼= D, then groups LS∗(F )
are denoted by LN∗(A → B) (see [1]). In the case of one-sided submanifolds (codimension q = 1),
groups LN∗(A→ B) are called Browder–Livesay groups [15] and are used in many problems of geometric
topology (see [14–17]).
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For a normal mapping (f, b) : M → X, there are also defined obstruction groups LPn−q(F ) (see [1–3])
for surgery of a pair (M, N) of manifolds to a simple homotopy equivalence of pairs. These groups
functorially depend on the quadrate F and n − q mod 4. For q ≥ 3, obstruction groups LSn−q(F )
for surgery of a submanifold inside a manifold M coincide with abstract surgery obstruction groups
Ln−q(π1(Y )) and surgery obstruction groups LPn−q(F ) for pairs of manifolds are naturally isomorphic
to the direct sum Ln−q(π1(Y ))⊕ Ln(π1(X)) (see [1, 2]). Thus, the most interesting case is the case of a
manifold with a submanifold of codimension 1 or 2.

In this case, the exact sequence of surgery theory can be included into the commutative diagram

· · · �� Ss
n(X) ��

��

[X, G/TOP ] σ ��

vξ

��

Ln(π1(X))

�
��

· · · �� LSn−q(F ) ��

�
��

LPn−q(F )
p ��

q

��

Ln(π1(X))

��

��

· · · �� LSn−q(F ) �� Ln−q(π1(Y )) �� Ln(π1(X \ Y )→ π1(X)) ��

(3)

whose rows are exact sequences.
Commutative diagram (3) establishes deep connections between different obstruction groups and exact

sequences of surgery theory. All mappings in this diagram have a geometrical description. The mapping
LPn−q(F )

p→ Ln(π1(X)) is the neglecting mapping. We treat a normal mapping of a pair of manifolds
only as a normal mapping to the target manifold X. The mapping LPn−q(F )

q→ Ln−q(π1(Y )) is defined
similarly, but in this case we consider the restriction of the normal mapping to the transversal preimage Y .
Every normal mapping in [X, G/TOP ] (see [2, 3]) determines a normal mapping of pairs (M, N)→ (X, Y )
and, therefore, determines the mapping vξ. By definition, the composition pvξ coincides with the mapping
σ in exact sequence (1) of surgery theory. Every simple homotopy equivalence f : M → X determines
a normal mapping (f, b) (see [1–3]) and, therefore, a normal mapping of pairs. Thus, we obtain the
mapping LSn−q(F )→ LPn−q(F ). Elements of the set Ss

n(X) are equivalence classes of simple homotopy
equivalences f : M → X. Assigning a splitting obstruction along the submanifold Y to f , we obtain
the mapping Ss

n(X) → LSn−q(F ). From the geometric standpoint, the mapping Ln+1(π1(X)) → Ss
n(X)

is an action defined as follows [1]. We represent an element x ∈ Ln+1(π1(X)) as a normal mapping
F : Z → X× [0, 1] of manifolds with boundaries such that ∂0(Z) = F−1(X×0), ∂1(Z) = F−1(X×1), and
the restriction F |∂0(Z) is the given simple homotopy equivalence (f : M → X) ∈ Ss

n(X) (see [1]). Then
the restriction class for the upper boundary{

F |∂1(Z) : ∂1(Z)→ X × 1
} ∈ Ss

n(X)

of the mapping F is a simple homotopy equivalence considered as the result of the action of the element
x on (f : M → X). The mapping Ln(π1(X)) → Ln(π1(X \ Y ) → π1(X)) is a mapping from the relative
exact sequence of L-groups for embedding of manifolds (X \ Y )→ X of the same dimension [1].

Algebraic approaches based on spectra in surgery theory allow one to obtain deeper connections between
different algebraic objects appearing in the classification of geometric structures on pairs of manifolds (see
[1, 14, 18–24]).

2. Splitting Obstruction Groups and L-Spectra

In this section, we assume that all groups are equipped with orientation homomorphisms and group
homomorphisms commute with orientation homomorphisms (if the contrary is not assumed). Surgery
obstruction groups and natural mappings between them such as inducing and transfer are realized on
the spectrum level [1, 3, 18]. In particular, the L-functor from the category F (2n,Gpd) (see [1]) to the
category of Abelian groups passes through the category of spectra.

First, we recall necessary definitions [1, 3, 18, 25].
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A spectrum E consists of a family of cellular spaces (En, ∗), n ∈ Z, and a family of cellular mappings
(εn : SEn → En+1), where SEn denotes the suspension of the space En.

For any mapping εn, there is defined the conjugate mapping (see [25])

(ε′n : En → ΩEn+1).

A spectrum E is called an Ω-spectra if, for any n ∈ Z, conjugate mappings are weak homotopy equiva-
lences [25].

Let f : π → π′ be a homomorphism of oriented groups. Then there are defined Ω-spectra L(π), L(π′),
and L(f) and a cobundle

L(π) −−−−→ L(π′) −−−−→ L(f). (4)
The exact homotopy sequence of cobundle (4) is isomorphic to the relative exact sequence

. . . −−−−→ Ln(π) −−−−→ Ln(π′) −−−−→ Ln(f) −−−−→ Ln−1(π) −−−−→ . . . (5)

of the mapping f (see [1, 18]).
Let F be the commutative quadrate (2) of oriented groups. The definition of L-groups (see [1]) and the

existence of cobundle (4) immediately imply the existence of a spectrum L(F ) (see [25]), which comprises
the following homotopically commutative diagram of spectra:

L(A) −−−−→ L(C) −−−−→ L(A→ C)�
�

�
L(B) −−−−→ L(D) −−−−→ L(B → D)�

�
�

L(A→ B) −−−−→ L(C → D) −−−−→ L(F );

(6)

the rows and columns of this diagram are cobundles.
Another important mapping naturally arising in surgery theory is a transfer. We consider a bundle

p : X → Y with fiber m-manifold Mm over an n-manifold X. There exists a transfer mapping p∗ :
Ln(π1(Y ))→ Ln+m(π1(X)) (see [1, 26, 27]), which is also realized on the spectrum level by the mapping

p! : L(π1(Y ))→ �mL(π1(X)).

In particular, for a (Dq, Sq−1)-bundle p : (X, ∂X) → Y with zero section, where Dq is the standard
q-dimensional disk, we have the following commutative diagram:

L(π1(Y ))
p!

−−−−→ ΩqL(π1(∂X)→ π1(X))

p!
1

�
�

Ωq−1L(π1(∂X)) Ωq−1L(π1(∂X)).

(7)

We consider a disk bundle p : (Xn, ∂Xn) → Y , where q = 1 or q = 2. The presence of a zero section
allows one to consider Y as a submanifold of X of codimension q. In this case, the quadrate of fundamental
groups F (2) becomes

Ψ =




π1(∂X)
∼=−−−−→ π1(X \ Y )�

�
π1(Y )

∼=−−−−→ π1(X)


 =




A −−−−→ A�
�

B −−−−→ B


 . (8)

Therefore, in this case splitting obstruction groups for the pair (X, Y ) are isomorphic to LNn−q(A→ B).
We introduce the spectrum LN(A→ B) as a homotopy cofiber of the mapping of spectra

Ω(p!) : ΩL(π1(Y ))→ Ωq+1L(π1(∂X)→ π1(X))
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and the spectrum LP (Ψ) as a homotopy cofiber of the mapping

Ω(p!
1) : ΩL(π1(Y ))→ ΩqL(π1(X)).

In diagram (7), the mapping p! realizes the transfer mapping on the spectrum level and the mapping

ΩqL(π1(∂X)→ π1(X))→ Ωq−1L(π1(∂X))

realizes the boundary mapping from the relative exact sequence of L-groups for the mapping π1(∂X)→
π1(X). The definitions of groups LNn−q(A→ B) and groups LPn−q(Ψ) (see [1–3]) imply that the obtained
spectra satisfy the isomorphisms

πn(LN(π1(∂X)→ π1(X))) ∼= LNn(π1(∂X)→ π1(X))

and πn(LP (Ψ)) ∼= LPn(Ψ) for any n.
Diagram (7) and the definition of the spectra LN(π1(∂X) → π1(X)) and LP (Ψ) for the splitting

problem with quadrate (8) yield the homotopically commutative diagram of spectra

ΩL(π1(Y )) −−−−→ Ωq+1L(π1(∂X)→ π1(X)) −−−−→ LN(π1(∂X)→ π1(X))�=

�
�

ΩL(π1(Y )) −−−−→ ΩqL(∂X) −−−−→ LP (Ψ),

(9)

where the right vertical mapping is defined as in [25].
Recall that in the homotopy category of spectra, the notions of universally repelling quadrate and

universally attracting quadrate coincide. In what follows, such quadrates of spectra are said to be uni-
versal. A quadrate of spectra is universal if and only if homotopy fibers (cofibers) of parallel mappings
are naturally homotopy equivalent (see [25]). Any universal quadrate of spectra yields a commutative
diagram of exact sequences (so-called Levin braid). For this, it is necessary to write homotopy long exact
sequences of mappings of the quadrate and identify the corresponding homotopy groups.

We apply this procedure to the right quadrate of diagram (9), which is universal since homotopy fibers
of horizontal mappings coincide. A homotopy fiber of the right vertical mapping is homotopy equivalent
to a fiber of the middle vertical mapping Ωq+1L(π1(X)). Considering homotopy long exact sequences
of mappings of the right quadrate of diagram (9) yields the following commutative diagram of exact
sequences:

�� Ln+q(A) ��

���
��

��
��

��
��

Ln+q(B) ��

����
��

��
��

��
�

LNn−1(A→ B) ��

���
��

��
��

��
��

��������������

���
��

��
��

��
�� LPn(Ψ)

������������

���
��

��
��

��
�

Ln+q(A→ B)

		�������������



		
			

			
			

		

�� LNn(A→ B) ��

��











Ln(B−) ��

�������������
Ln+q−1(A) ��

�������������

(10)

where the homomorphism A → B is the homomorphism of oriented groups π1(∂X) → π1(X) and B−
is the oriented group π1(Y ). The last fact must be taken into account since in the quadrate (8) of
fundamental groups, orientations of the right and left group B may be distinct. For example, these
orientations are distinct for one-sided submanifolds of codimension 1 and, in particular, for Browder–
Livesay groups (see, e.g., [14, 19, 28, 29]). As a simple example, we cite the pair (RPn, RPn−1), where
RPn is the n-dimensional real projective space.

In commutative diagram (10), all sequences of the form
• −→ • • −→ •

↗ ↘ ↗ ↘• • • •
↗ ↘ ↗ ↘

... −→ • • −→ • • −→ ...
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are exact. Using the diagram search, we can show that the top and bottom rows of diagram (10) are chain
complexes with isomorphic homologies. We shall see below that this diagram written on the spectrum
level allows one to construct different spectral sequences on surgery theory (see [22, 23, 30, 31]).

If Y ⊂ X is a one-sided submanifold and horizontal mappings in the quadrate Ψ are isomorphisms,
then the groups LN∗(A → B) are Browder–Livesay groups. Diagram (10) for Browder–Livesay groups
was initially constructed in [32] for quadratic extensions of rings in the form of two chain complexes. The
algebraic construction of diagram (10) for quadratic extensions of anti-structures was given in [33]. In
this case, diagram (10) can be efficiently used for calculation of obstruction groups and natural mappings
in L-theory (see [7, 8, 14, 34]). Moreover, diagram (10) allows one to obtain deep geometric results on
representability of elements of Wall groups by normal mappings of closed manifolds (see [16, 17, 30, 35]).
(We discuss this in the following section when investigating spectral sequences in surgery theory.)

Now we consider the problem on splitting of a simple homotopy equivalence f : M → X along a
submanifold Y ⊂ X of codimension q in the general case. There exists the quadrate F of fundamental
groups (2) and we can construct the commutative diagram of spectra

L(π1(Y ))
p! ��























ΩqL(π1(∂U)→ π1(Y )) α ��

δ
��

ΩqL(π1(X \ Y )→ π1(X))

δ1
��

Ωq−1L(π1(∂U))
β �� Ωq−1L(π1(X \ Y ))

(11)

where the left triangle is implied by diagram (9) and the right quadrate is implied by diagram (6).
We define the spectra

LS(F ) = homotopy cofiber
[
Ω(αp!) : ΩL(π1(Y ))→ Ωq+1L(π1(X \ Y )→ π1(X))

]
,

LP (F ) = homotopy cofiber
[
Ω(βp!) : ΩL(π1(Y ))→ ΩqL(π1(X \ Y ))

]

where α, β, and p! are the mapping in diagram (11) (see [1, 3, 24]).
Now we can write the homotopically commutative diagram of spectra

ΩL(π1(Y )) ��

=

��

Ωq+1L(π1(X \ Y )→ π1(X))

��

�� LS(F )

ΩL(π1(Y )) �� ΩqL(π1(X \ Y )) �� LP (F )

(12)

where the horizontal rows are cobundles and the right quadrate is universal. Let LSn(F ) and LPn(F )
be the splitting obstruction groups and surgery obstruction groups for the pair (X, Y ) of manifolds,
respectively. Then (see, e.g., [24]) the following isomorphisms hold:

πn(LS(F )) ∼= LSn(F ), πn(LP (F )) ∼= LPn(F ).

This is implied by the fact that mappings are functorial on the spectrum level and the 5-lemma.
Homotopy long exact sequences of the universal quadrate in diagram (12) generate the following diagram

of exact sequences (see [12, p. 264]):

�� Ln+1(C) ��

����
���

���
���

�
Ln+1(D) Θ ��

����
���

���
���

�
LSn−q(F )

������������

���
��

��
��

��
� LPn−q+1(F )

�������������

����
��

��
��

��
�

Ln+1(C → D)

�� LSn−q+1(F ) ��

��������������
Ln−q+1(B) ��

��������������
Ln(C)

(13)
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where A = π1(∂U), B = π1(Y ), C = π1(X \ Y ), and D = π1(X).
Note that the mapping Θ in diagram (13) coincides with the composition

Ln+1(π1(X))→ Ss
n(X)→ LSn−q(F )

in diagram (3). In particular, this implies that if Θ(x) 	= 0 for some element x ∈ Ln+1(π1(X)), then the
element x acts nontrivially on the set of homotopy triangulations Ss

n(X).
Let (X, Y ) be a pair of manifolds with universal quadrate F (2) for the splitting problem along the

submanifold Y . Then the pair of manifolds (U, Y ) is naturally mapped in the pair (X, Y ). Denote by

Ψ =




A −−−−→ A�
�

B −−−−→ B




the quadrate of fundamental groups in the problem of splitting of a simple homotopy equivalence f :
M → U along the submanifold Y (see [1]).

A mapping of pairs of manifolds induces the mappings of quadrates of fundamental groups Ψ→ F (see
[1, 3]). Recall that we denote the groups LS∗(Ψ) by LN∗(A→ B), where the orientation on the group B
corresponds to the orientation of the right group in the quadrate Ψ [1].

The mapping Ψ → F induces the mapping of the top row of diagram (9) to the top row of diagram
(12) and we obtain the universal quadrate of spectra (see [19])

Ωq+1L(A→ B) −−−−→ Ωq+1L(C → D)�
�

LN(A→ B) −−−−→ LS(F )

.

For this quadrate, the commutative diagram of exact sequences of homotopy groups has the form

�� Ln+1(B) ��



��
���

���
���

�
Ln+q+1(C → D) ��

����
���

���
���

�
Ln+q+1(F ) ��

���
��

��
��

��
�������������

���
��

��
��

��
� Ln+q+2(A→ B)

����������������

����
���

���
���

���
LSn(F )

������������

���
��

��
��

��
�

�� Ln+q+1(F ) ��

		������������
LNn(A→ B) ��

��������������
Ln(B) ��

������������

. (14)

Thus, we have obtained the diagram of exact sequences [12, p. 146].
The mapping Ψ → F induces the mapping of the bottom row of diagram (9) to the bottom row of

diagram (12) and we obtain the universal quadrate of spectra (see [20, 36])

ΩqL(A) −−−−→ LP (Ψ)�
�

ΩqL(C) −−−−→ LP (F )

.

4175



For this quadrate of spectra, the commutative diagram of exact sequences of homotopy groups has the
form

�� Ln+q+1(A→ C) ��

����
���

���
���

�
LPn(Ψ) ��

���
��

��
��

��
�

Ln(B) ��

���
��

��
��

��
����������������

���
��

��
��

��
��

� Ln+q(A)

������������

���
��

��
��

��
�

LPn(F )

��












���
��

��
��

��
��

�� Ln+1(B) ��

��������������
Ln+q(C) ��

������������
Ln+q(A→ C) ��

�������������

(15)

Note that for the Browder–Livesay pair, the groups LPn(Ψ) are isomorphic to the relative groups
Ln+1(p∗), where

p∗ : Ln(π1(Y ))→ Ln(π1(∂U))

is the transfer mapping (see [20, 33]). Thus, if p : A→ B is the left mapping in the quadrate Ψ, then we
obtain the following exact sequence for the one-sided submanifold Y ⊂ X (q = 1):

· · · −−−−→ Ln+1(A→ C) −−−−→ Ln(p∗) −−−−→ LPn−1(F ) −−−−→ Ln(A→ C) −−−−→ · · ·
(see [20]).

In the case where the right column of the quadrate F determines the splitting problem with the quadrate
of fundamental groups

Φ =




C −−−−→ C�
�

D −−−−→ D




and there exists a natural morphism r : F → Φ, additional connections between different splitting
obstruction groups and surgery obstruction groups appear (see [19–21, 23, 36]).

Quadrates of such form naturally appear in a wide class of geometric problems (see [23, 28, 29, 37])
and are called geometric diagrams. Note that for a geometric diagram, there exists a natural mapping
Ψ→ Φ of quadrates of fundamental groups determined by the composition Ψ→ F → Φ.

The mapping r induces a mapping of diagrams (11) for the quadrates F and Φ, respectively. Proceeding
as above (in the case of mappings induced by the mapping Ψ → F ), we obtain the following universal
quadrates of spectra:

LS(F ) −−−−→ L(B)�
�

LN(C → D) −−−−→ L(D)

,

LP (F ) −−−−→ LP (Φ)�
�

L(B) −−−−→ L(D)

,

LS(F ) −−−−→ LP (F )�
�

LN(C → D) −−−−→ LP (Φ)

,

ΩLN rel(F ) −−−−→ ΩL(B → D)�
�

LN(A→ B) −−−−→ LS(F )

,

where the spectrum LN rel(F ) is a cofiber of the natural mapping of spectra

LN(A→ B) −−−−→ LN(C → D)

induced by the mapping Ψ→ Φ.
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For each of obtained universal quadrates, we can write the commutative diagram of exact sequences
(see [19–21, 23, 36]). Thus, we obtain the following diagrams:

�� Ln+1(B → D) ��



��
���

���
���

�
Ln(B) ��

���
��

��
��

��
��

LNn+q(C → D) ��

���
��

��
��

��
����������������

���
��

��
��

��
��

� LSn(F )

��












���
��

��
��

��
��

Ln(D)

�������������

���
��

��
��

��
��

�� LNn+q+1(C → D) ��

		������������
LNn(C → D) ��

�������������
Ln(B → D) ��

��������������

(16)

�� Ln+q(C) ��

���
��

��
��

��
��

LPn(Φ) ��

���
��

��
��

��
Ln(B → D) ��

���
��

��
��

��
��������������

���
��

��
��

��
�� LPn(F )

������������

���
��

��
��

��
�

Ln(D)

������������

���
��

��
��

��
�

�� Ln+1(B → D) ��

�������������
Ln(B) ��

�����������
Ln+q−1(C) ��

������������

(17)

�� Ln+1(B → D) ��

���
��

��
��

��
��

LPn(F ) ��

���
��

��
��

��
��

Ln+q(D) ��

���
��

��
��

��
��������������

���
��

��
��

��
�� LSn(F )

��












���
��

��
��

��
��

LPn(Φ)

������������

���
��

��
��

��
��

�� Ln+q+1(D) ��

�������������
LNn(C → D) ��

��











Ln(B → D) ��

������������

(18)

�� LNn(C → D) ��

���
��

��
��

��
�

Ln(B → D) ��

����
���

���
���

�
Ln+q(F ) ��

���
��

��
��

��
��

��������������

���
��

��
��

��
�� LN rel

n

��












���
��

��
��

��
��

LSn−1(F )

��������������

����
���

���
���

�

�� Ln+q+1(F ) ��

������������
LNn−1(A→ B) ��

��������������
LNn−1(C → D) ��

��������������

(19)

where LN rel
n = LN rel

n (F ) are relative splitting obstruction groups comprising the exact sequence

· · · −−−−→ LNn(A→ B) −−−−→ LNn(C → D) −−−−→ LN rel
n (F ) −−−−→ LNn−1(A→ B) −−−−→ · · ·.

Note that for a geometric diagram of groups in the case of a one-sided submanifold (q = 1), the iso-
morphism LPn(Φ) ∼= Ln+1(j∗) holds, where j∗ : Ln(D) → Ln(C) is the transfer mapping (see [20, 33]).
Commutative diagrams (13)–(19) yield rich information on different groups in surgery theory and the
natural mappings between them. In particular, they are very efficient in calculations.

Now we discuss the realization of other groups and mappings in diagram (3) on the spectrum level. In
[2, p. 571], Ranicki introduced the set Sn(X, Y, ξ) of s-triangulations of a pair of manifolds (X, Y ), where
ξ is the normal bundle of the submanifold Y in the manifold X. This set consists of concordance classes
of mappings f : (M, N)→ (X, Y ) split along Y such that N = f−1(Y ). The set Sn(X, Y, ξ) is a term of
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the exact sequence

· · · −−−−→ Sn(X, Y, ξ) −−−−→ [X, G/TOP ]
vξ−−−−→ LPn−q(F ) −−−−→ · · · , (20)

which can be constructed algebraically (see [2, 3]). In particular, the set Sn(X, Y, ξ) possesses a group
structure.

The properties of the groups Sn(X, Y, ξ) and their connections with different obstruction groups for a
pair of manifolds (X, Y ) are described in [2, Proposition 7.2.6]. These connections can be obtained by
using exact sequence (20) on the spectrum level.

Let L• be the simple-connected covering of a Ω-spectrum L•(Z) [3]. By [3], the homotopy equivalence
L0 
 G/TOP holds. For any topological space X such that π1(X) = π, there exists the following
algebraically exact sequence of surgery theory

· · · −−−−→ Ln+1(π) −−−−→ Sn+1(X) −−−−→ Hn(X,L•) −−−−→ Ln(π) −−−−→ · · · . (21)

The corresponding part of sequence (21) is naturally isomorphic to exact sequence (1) if X is a topo-
logical manifold. Exact sequence (21) is a homotopy long exact sequence of the cobundle of spectra [1,
3]:

X+ ∧ L• → L(π).

Denote by S the homotopy fiber of the obtained mapping of spectra; then we obtain

πn(X+ ∧ L•) = Hn(X,L•) = [X, G/TOP ], πn(S) = Ss
n(X).

By [24], there exists the following commutative quadrate of spectra:

Ωq(X+ ∧ L•)
ΩqA−−−−→ ΩqL(π1(X))�

�
L(π1(Y )) −−−−→ ΩqL(π1(X \ Y )→ π1(X)),

(22)

where A is the assembly mapping. Long exact sequences of horizontal mappings of this quadrate yield
the following commutative diagram:

· · · −−−−→ Ss
n(X) −−−−→ [X, G/TOP ] −−−−→ Ln(π1(X)) −−−−→ · · ·�

�
�

· · · −−−−→ LSn−q(F ) −−−−→ Ln−q(π1(Y )) −−−−→ Ln(π1(X \ Y )→ π1(X)) −−−−→ · · ·
. (23)

Diagram (23) is a part of diagram (3) and is realized on the spectrum level. We also consider the
commutative quadrate of spectra, which is implied by diagram (22) (see [24])

ΩqS −−−−→ Ωq(X+ ∧ L•)�
�

LS(F ) −−−−→ LP (F )

. (24)

We define the spectrum ΩqS(X, Y, ξ) as the homotopy fiber of the mapping ΩqS(X) → LS(F ) in
diagram (24).

Commutative diagram (3) implies that cofibers of horizontal mappings in diagram (24) are homotopy
equivalent, i.e., quadrate (24) is universal and cofibers of vertical mappings are homotopy equivalent.
Therefore, the isomorphisms

πn(S(X, Y, ξ)) = Sn(X, Y, ξ)

hold and the groups Sn(X, Y, ξ) are terms of the exact sequence

· · · −−−−→ Sn(X, Y, ξ) −−−−→ Ss
n(X) −−−−→ LSn−q(F ) −−−−→ · · · .
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The diagram of long homotopy exact sequences for quadrate (24) has the form

�� Ln+1(D) ��

�� 
  

  
  

  
 

LSn−q(F ) ��

����
��

��
��

��
�

Sn−1(X, Y, ξ) ��

��!
!!

!!
!!

!!
!!������������

���
��

��
��

��
� Ss

n(X)

������������

���
��

��
��

��
�

LPn−q(F )

�������������

����
��

��
��

��
�

�� Sn(X, Y, ξ) ��

��""""""""""
[X, G/TOP ] ��

�������������
Ln(D) ��

�������������

. (25)

Commutative diagram (25) coincides with the diagram in [2, p. 284].

3. Spectral Sequences in Surgery Theory

We consider a topological manifold X of dimension n ≥ 5. Let the fundamental group π1(X) = B
of the manifold X have a subgroup A ⊂ B of index 2. We consider a mapping χ : X → RPm of the
manifold X to an m-dimensional real projective space of sufficiently large dimension. Let χ induce an
epimorphism of fundamental groups with kernel A. Denote by Y the transversal preimage χ−1(RPm−1);
it is a one-sided submanifold in X. Deforming the mapping χ, we can assume that the embedding Y ⊂ X
induces an isomorphism of fundamental groups. Thus, the pair (X, Y ) is a Browder–Livesay pair, and we
have the splitting problem along Y and commutative diagram (10) of exact sequences with q = 1.

The interest in diagram (10) for one-sided submanifolds is stipulated by the following two circumstances.
First, all groups and mappings in this diagram have an algebraic description on the level of rings with
anti-structures (see [6, 14, 16, 33]). At the present time, there exists a sufficiently complete description
of groups and mappings for the case of finite 2-groups (see, e.g., [6, 7, 34]). Further, the possibility of
constructing a characteristic submanifold Y ⊂ X by any subgroup of index 2 allows one to obtain deep
results for the problem on the realization of elements of surgery obstruction groups by normal mappings
of closed manifolds [14, 16, 17, 30, 35]. We emphasize the following theorem [16].

Let A→ B be an embedding of index 2 and Θ : Ln+2(B)→ LNn(A→ B) be a mapping in diagram (10).
If Θ(x) 	= 0 for x ∈ Ln+2(B), then the element x cannot be realized by normal mappings of closed
manifolds. Moreover, it acts nontrivially on any element of the set Ss

n(X) for any connected manifold X
with π1(X) = B.

The mapping Θ is called the Browder–Livesay invariant. Some generalizations and the notion of
iterated Browder–Livesay invariant can be found in [17, 29, 30, 35].

A spectral sequence in surgery theory, based on the realization of diagram (10) on the spectrum level,
was constructed in [30]. Differentials in this spectral sequence are closely related to iterated Browder–
Livesay invariants and the problem on realization of elements of surgery obstruction groups by normal
mappings of closed manifolds.

In [30], the construction of the spectral sequence by diagram (10) was performed for Browder–Livesay
pairs. From the algebraic standpoint, we construct diagram (10) for an embedding A → B of oriented
groups of index 2. The realization of diagram (10) on the spectrum level plays the crucial role. Since a
similar realization is valid for codimension 2 (see the quadrate of spectra for diagram (9)), we can construct
a spectral sequence in the general case (see [23]). Recall that there exists the suspension functor Σ in the
category of spectra. For any spectrum E = {En}, this functor from the category of spectra into itself is
defined by the condition (ΣE)n = En+1.

Let Ψ be the quadrate of fundamental groups (8) in the problem of splitting along a submanifold Y of
codimension q = 1, 2. We denote by B− the oriented left group B. We write the universal quadrate of
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spectra in diagram (9), which determines diagram (10), as follows:

L(B)

��##
###

###

ΣqLP (Ψ)

��$$$$$$$$

����
���

��
L(A→ B)

ΣqL(B−)

��$$$$$$$

(26)

Let Ψ− be the universal repelling quadrate of groups with alternated orientation of the group B:

Ψ− =




A −−−−→ A�
�

B −−−−→ B−


 . (27)

If (X, Y ) is a Browder–Livesay pair generated by the quadrate of spectra (26), then quadrate (27) naturally
appears for the problem on splitting of a simple homotopy equivalence f1 : M1 → Y along a one-sided
submanifold Y1 for the Browder–Livesay pair (Y, Y1) (see [35]). As an example, we consider the triple of
manifolds RPn−2 ⊂ RPn−1 ⊂ RPn. Now we can construct the diagram of spectra:

L(B)


















ΣqLP (Ψ)

��%%%%%%%%%

��&&
&&&

&&&
L(A→ B)

ΣqL(B−)

��''''''''
















Σ2qLP (Ψ−)

��%%%%%%%%

��&&
&&&

&&
ΣqL(A→ B−)

Σ2qL(B)

��''''''''

��












Σ3qLP (Ψ−)

��%%%%%%%

��&&
&&&

&&
Σ2qL(A→ B)

Σ3qL(B−)

��''''''''

· · ·

(28)

Diagram (28) contains the universal quadrates of spectra (26) constructed for the quadrates of fundamental
groups Ψ and Ψ−. Diagram (28) can be naturally extended downwards; it can also be extended upwards
by using the loop functor Ω. We introduce the following notation (see [30, 31]):

X0,0 = L(B), X2,2 = Σ2qL(B), X1,0 = ΣqLP (Ψ), X3,2 = Σ3qLP (Ψ), . . . ,

X0,1 = L(A→ B), X2,3 = Σ2qL(A→ B), X1,1 = ΣqL(B−), X3,3 = Σ3qL(B−), . . . ,

X2,1 = Σ2qLP (Ψ−), X4,3 = Σ4qLP (Ψ−), X1,2 = ΣqL(A→ Bξ), X3,4 = Σ3qL(A→ Bξ).

Diagram (28) can be infinitely extended to the left as follows. The spectrum Xk,k−2 is constructed by the
known spectra and mappings

Xk−1,k−2 −−−−→ Xk−1,k−1 ←−−−− Xk,k−1
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such that the quadrate
Xk,k−2 −−−−→ Xk−1,k−2�

�
Xk,k−1 −−−−→ Xk−1,k−1

is a homotopy universally attracting quadrate. A similar construction with homotopy universally re-
pelling quadrates is used for the construction of the spectrum Xk,k+2 [30]. We have obtained the infinite
homotopically commutative diagram of spectra consisting of universal quadrates of spectra:



��
���

�

���
��

��
�� X−1,0

���
��

��
�� X0,0

���
��

��

�������

���
��

��
�� X1,0

�������

���
��

��
X0,1

X2,0

���
��

��

�������
X1,1

�������

���
��

����������� X2,1

�������

���
��

��
X1,2��������� X2,2

�������

���
��

����������� X2,3		������

(29)

The spectral sequence in surgery theory is constructed by using the filtration

· · · −−−−→ X3,0 −−−−→ X2,0 −−−−→ X1,0 −−−−→ X0,0 −−−−→ X−1,0 −−−−→ · · · , (30)

contained in diagram (29) (see [10]). By definition (see [10]), we set

Ep,s
1 = πs−p(Xp,0, Xp+1,0) = πs−p(Xp,i, Xp+1,i) ∀i.

Since the quadrates in diagram (29) are universal, we see that

Ep,s
1 = πs−p(Xp,p, Xp+1,p) = πs−p(Xp−1,p) = πs−p

(
Σ(p+1)q+1LS(Ψ(−)p

)
)

= πs−(q+1)(p+1)LS(Ψ(−)p
).

Then the differential
dp,s

1 : Ep,s
1 → Ep+1,s

1

is determined by the natural composition

πs−p(Xp,p, Xp+1,p)
∼=−−−−→ πs−p(Xp,p+1, Xp+1,p+1) −−−−→ πs−p−1 (Xp+1,p+1, Xp+2,p)

of mappings of homotopy groups.
For one-sided submanifolds (q = 1), there exists the isomorphism Ep,s

1 = LNs+2(A→ B) (see [30]). In
this case, the differential dp,s

1 coincides with the composition

LNs−2p−2(A→ B(−)p
) −−−−→ Ls−2p−2(B(−)p+1

) −−−−→ LNs−2p(A→ B(−)p+1
)

of mappings in diagram (10) for the quadrates Ψ and Ψ− (see [30] for the discussion in algebraic terms).
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For q = 2, the first term of the spectral sequence Ep,s
1 depends on p (see [31]) and there exists the

isomorphism
Ep,s

1 = LSs+p+1(Ψ(−)p
) = LNs+p+1(A→ B(−)p

).

The first differential is still the composition of mappings in diagram (10)

dp,s
1 : LSs+p+1(Ψ(−)p

) −→ Ls+p+1(B(ξ)p+1
) −→ LSs+p−2(Ψ(−)p+1

).

for the quadrate Ψ(−)p
and for the quadrate Ψ(−)p+1

.
We present the main results of [30, 35] on the connection of the spectral sequence in surgery theory

with the realization of elements of Wall groups by normal mappings of closed manifolds. We consider a
restricted filtration for (30) in the case of Browder–Livesay pairs

X∞,0 −−−−→ · · · −−−−→ X3,0 −−−−→ X2,0 −−−−→ X1,0 −−−−→ X0,0 = L(B). (31)

Denote by D the natural mapping

Ln(B) = πn(L(B)) −→ πn(X0,0, X∞,0).

Then we obtain (see [30, 35]) that if D(x) 	= 0, then the element x cannot be realized by normal
mappings of closed manifolds. Another class of elements x ∈ Ln(B) is determined by the following two
conditions:

x ∈ Im [πn(X∞,0)→ πn(X0,0)] ,

x /∈ Ker [πn(X0,0)→ πn(X0,∞)] ;

these elements are called second-type elements (see [30, 35]). Second-type elements cannot be realized by
normal mappings of closed manifolds (see [35]).

From the algebraic standpoint, we can construct the spectral sequence for quadratic extensions of anti-
structures and L-groups with decorations (see [22]). Decorations themselves can also be considered as
relative L-groups. In this case, the spectral sequence has a sufficiently simple structure (see [31]).

Spectral sequences in surgery theory are still poorly studied. There exists an example of nontrivial
second differential (see [30]), but it is unknown whether there exists a spectral sequence with nontrivial
higher-order differentials. It is also known that for q = 1 and manifolds with finite Abelian fundamental
2-groups, all differentials except for the first differential are trivial (see [30]).
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22. A. Cavicchioli, Yu. V. Muranov, and D. Repovš, “Algebraic properties of decorated splitting obstruc-

tion groups,” Boll. U. M. I. (8), 4B, 647–675 (2001).
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