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1 Introduction

In this series of papers, we intend to systematically study subgroups of hy-
perbolic unitary groups U(2n, R, Λ) over a form ring (R, Λ) corresponding
to a symmetry λ (see [6–8, 15, 36]). Our primary objectives are two-fold.
On the one hand, we plan to update the foundational results from [6, 15], re-
moving whenever possible stability conditions or replacing them by weaker
commutativity or finiteness conditions. The excellent recent exposition [36]
concentrates on Steinberg groups, the structure of unitary groups over divi-
sion rings and isomorphism theory, but does not contain proofs of structure
results in full generality. We fill this gap. In particular, we carry over to
unitary groups over form rings the main structure theorems of the past 30
years for general linear groups over associative rings and their extensions to
the usual classical groups [3, 4, 9, 10, 19, 23, 26–30, 32–34, 37–39, 42, 44,
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46–48, 52, 57, 60, 62–65, 67–73, 76, 78–83, 85, 86]. Furthermore, we gene-
ralize to unitary groups over form rings more specialized structure results
relating to the description of various classes of subgroups. In particular, we
carry over results of [17–19, 29, 76, 79] (see [81, 83, 87] for many further
references).

In the first half of this article, we fix the general framework for the rest of
the series. In the second half, we study elementary subgroups EU(2n, R, Λ)
of hyperbolic unitary groups U(2n, R,Λ), as well as relative elementary
groups EU(2n, I, Γ) corresponding to form ideals (I, Γ) in (R, Λ). In par-
ticular, we prove the following result (recall that a ring R is called almost
commutative if it is finitely generated as a module over its center).

Theorem 1.1. Let (R, Λ) be an almost commutative form ring and n ≥
3. Then for any form ideal (I, Γ), the corresponding elementary subgroup
EU(2n, I, Γ) is normal in the hyperbolic unitary group U(2n, R, Λ). More-
over,

EU(2n, I, Γ) = [EU(2n, R, Λ), CU(2n, I, Γ)],

where CU(2n, I, Γ) is the full congruence subgroup of level (I, Γ).

The concept of a form ideal and its application to describing and ana-
lyzing normal subgroups of unitary groups appears for the first time in [6].
Here, the conclusion of the theorem above, as well as the sandwich classifica-
tion of normal subgroups of unitary groups, which will appear in the second
paper of this series, was obtained under the condition that R is almost com-
mutative and n ≥ max(3, dim(Cent(R)) + 2). Unfortunately, [6] was never
published and is not easily available, especially in Russia and China. This
did a lot of harm. In fact, many works appearing up till the late eighties
were proving structure theorems for classical groups over rings covered in
[6] such as zero-dimensional ones. We do not cite these publications in our
bibliography (see, for example, references in [36] and also in [23, 70, 71,
83]).

In [12], we give another proof of the theorem above, based on a variant of
“localization and patching”. There, we also show that the theorem remains
true for n ≥ 2 under the additional assumption RΛ+ΛR = R. However, in
the current paper, we give a direct global proof developing ideas of Suslin
(cf. [37, 39, 57, 65]). Of course, here we also must use “patching” but in
the ring R itself. The proof requires very little information about the local
case; in fact, one assumes only some transitivity properties of the elementary
unitary group. This provides lots of room for generalizations in the style of
[67] or [37–39]. As we will see in Sec. 8, the proof embraces wider classes of
rings than just the almost commutative ones. Another advantage is that,
unlike localization methods, the global approach gives explicit formulae for
decomposing a transvection into elementaries (incidentally, the formulae
from Secs. 5–8 play an important role in subsequent parts of this paper).

Theorem 1.1 was known in many special cases. First, as mentioned
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above, i.e., when n is large relative to some sort of dimension on the ring R,
the result was established by Bak [6, 7] (compare also [15]). For the general
linear group GL(n, R), the analogous result was discovered by Bass [13, 14],
and for some hyperbolic classical groups, the analogous result was obtained
by Vaserstein [66]. Refer to [80, 83] for a systematic bibliography.

Suslin [57] and [65] proved that the elementary subgroup E(n, R) is nor-
mal in the general linear group GL(n, R) whenever n ≥ 3 and R is almost
commutative (see also [19, 33, 36–39, 51, 55, 60, 67, 80, 83] for various
proofs of this result and its generalizations to wider classes of rings). For
the commutative case, the original proof of Suslin [57] is based on solving
linear equations over rings (see [60] for a very elegant reformulation in terms
of anti-symmetric matrices). A particularly simple direct proof of Suslin’s
result based on decomposing unipotents was found in 1987 by Stepanov (see
[55, 85] and the expositions in [56, 80, 83]).

The proof in [65] of the normality of E(n, R) requires “patching”. The
author states explicitly that the result and proof are due to Suslin. The pa-
per [37] improves the result slightly (pushing it to rings algebraic over their
centers). It also corrects some misprints from [65] and organizes the proof
in a better way. However, many ring theoretical arguments are omitted in
[37] as well. To the best of our knowledge, the most systematic exposition
of these ideas is contained in [39]. Another version of this method was pro-
posed by Vaserstein [67] and was christened “localization and patching”. It
consists of throwing in polynomial variables, passing to localizations with
respect to central multiplicative subsets, and using corresponding local re-
sults. In general, the relationship of the patching method of Suslin to the
localization and patching method of Vaserstein is the same as the relation-
ship of the solution of Serre’s problem by Suslin to that by Quillen (see
[45]).

For historical accuracy, note that the first application of Quillen’s method
to linear groups is also due to Suslin. It appeared in his remarkable paper
[57] dedicated to the K1 analog of Serre’s problem. Many authors seem to
ignore that Suslin’s proof of “Quillen’s Theorem” (see Sec. 3 in [57], espe-
cially, Lemma 3.3 and proofs of Lemmas 3.4 and 3.7) already contained all
the ingredients of localization and patching. This method was successfully
used in the late seventies by Suslin’s students Kopeiko and Tulenbaev, and
later by Abe, Costa, and others.

The methods above operate essentially in terms of the center of the
ground ring, as do the published works of the Moscow School. In order for
this to work, one has to impose some commutativity or finiteness conditions
on the rings considered. On the other hand, Golubchik has successfully
used non-commutative localizations (more specifically, Ore localizations, in
particular in [31]) to describe normal subgroups [26–30]. He and Mikhalev
told us that they had applied non-commutative localization to establish the
normality of elementary subgroups, but we have not seen any written proofs.

Observe that some conditions on n and R are necessary here since the
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subgroup E(2, R) is not necessarily normal in GL(2, R) even for some very
good rings R, like Dedekind rings (compare [21, 58, 61]). On the other hand,
using universal localizations, Gerasimov [25] (see also [83]) has shown that,
for any given n, there exist some very nasty rings R for which E(n, R) is not
normal in GL(n, R). Of course, these rings also furnish counterexamples
to the corresponding results for unitary groups. These rings are very far
from being commutative. In fact, some of their factor rings are not weekly
finite (recall that a ring R is called weakly finite if any one-sided invertible
square matrix over R is two-sided invertible; see [19, 22, 83] for a discussion
of this condition and its role in the theory of linear groups). Observe that
normality fails in SO(4, R) (see [43]) by the same reasons as for the group
GL(2, R).

Suslin’s result on the normality of E(n, R) in GL(n, R) was generalized
almost immediately by Suslin and Kopeiko [42, 60] from linear groups to
hyperbolic symplectic groups Sp(2n, R) with n ≥ 2 and orthogonal groups
SO(2n, R) with n ≥ 3 over a commutative ring R (in our terminology, these
groups correspond to the cases when the involution on R is trivial and,
respectively, λ = −1 and Λ = R or λ = 1 and Λ = Λmin). The result for
the symplectic group has been partially reproven in [62]. (Compare also
[32, 36, 44, 46, 47, 56, 70, 71, 76, 79, 80], where one can find other proofs
of these results and some generalizations to groups that are not necessarily
hyperbolic.)

The results for split classical groups fall under the umbrella of Chevalley
groups. The normality of absolute elementary subgroups of simple Cheval-
ley groups of rank at least 2 over an arbitrary commutative ring R was first
proven by Taddei [63, 64] who used “localization and patching” (compare
also [3, 4, 69]). Another approach to prove this result, based on Stepanov’s
idea of decomposition of unipotents, was proposed in [56, 80, 82, 84, 85].

The most general published result for automorphism groups of forms is
due to Golubchik and Mikhalev [32] (compare also [36, 44]). They use a
version of Suslin’s patching method. The proof is not easy to follow. The
existence of certain elements λ, s, t is claimed, but these elements are never
displayed. The formulae suggest that 1 + λ = (1 + λ2)(1 + λ1)(1 + λ1),
but it is not clear why the condition in the next paragraph is satisfied.
Their results are phrased in terms of arbitrary rings with involution (not
just the ring M(n, R)), and assume the Witt index is at least 2 (in their
setting, it is expressed in terms of the behavior of idempotents under the
involution). In our setting, their main result applies to the groups where
λ = −1, Λ = Λmax and n ≥ 2. Actually, their restrictions on λ and Λ are
explained by the fact that in their proof they consider only elements of long
root type. As noted above, for λ 6= −1, this result simply does not hold for
Witt index 2. Analogous results were announced by Vaserstein [72], but a
proof never appeared.

The commutator formula in the theorem above was discovered at the
stable level by Bass and Bak. For classical groups over commutative rings, it
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was obtained independently by Vaserstein, Borevich, Vavilov and Li (see [18,
19, 46, 47, 67, 70, 71, 76, 79]). After the work of Stein [54], it is a common
understanding that questions about relative groups may be reduced to those
for absolute groups by an appropriate change of rings. The first applications
of this idea to demonstrating the normality of relative elementary subgroups
were given by Milnor [53], and Suslin and Kopeiko [60] (compare also [34,
36, 68, 80, 83]).

The rest of this paper is organized as follows. In Secs. 2 and 3, we repro-
duce fundamental definitions and notation concerning unitary groups over
form rings and their elementary subgroups. Most of the material comes from
[6–8, 15, 34, 36], but is updated and adapted to our needs. In Secs. 4 and 5,
we discuss form ideals and the corresponding relative groups. In particu-
lar, we prove the usual results about the generation of relative elementary
groups and reduce the relative case of the theorem above to the absolute
one. In Sec. 6, we introduce and study a notion of ESD-transvections, which
is slightly more general than the usual one. In Sec. 7, we prove certain
Whitehead-type lemmas, which guarantee that an ESD-transvection lies in
EU(2n, R, Λ) if it is defined by columns containing zero elements. Finally,
in Sec. 8, we use Suslin’s patching method to prove the theorem above in
the absolute case.

The paper is essentially self-contained since we prove all the subsidiary
results we need. In fact, we have to do so since we define the group
U(2n, R, Λ) with respect to the ordered basis e1, . . . , en, e−n, . . . , e−1, where
ei is orthogonal to each ej except e−i, and the inner product of e−i and ei is
1. In all previously published works, where hyperbolic unitary groups over
form rings were considered, either the ordered basis e1, e−1, . . . , en, e−n or
the ordered basis e1, . . . , en, e−1, . . . , e−n is used. The ordering in this paper
is inspired by [20] and is more natural in many respects than the alterna-
tives since, for example, under this ordering, the standard Borel subgroup
is represented by upper triangular matrices. We pay a price for this conve-
nience though, namely, we have to restate many of the foundational results.
This paper presents a common background for subsequent papers by the
authors dedicated to the study of the normal structure of U(2n, R, Λ) and
its Steinberg group.

2 Hyperbolic Unitary Groups

In this section, we recall the definition of the hyperbolic unitary groups, etc.

10. Λ-quadratic forms. This notion was invented by Bak and first ap-
peared in [6]. Let R be a (not necessarily commutative) associative ring
with 1. For natural numbers m, n, we denote by M(m, n, R) the addi-
tive group of m × n matrices with entries in R. In particular, M(n, R) =
M(n, n, R) is the ring of matrices of degree n over R. For a matrix x ∈
M(m, n, R), we denote by xij its entry in the position (i, j). Let e = en be
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the identity matrix and eij a standard matrix unit, i.e., the matrix which
has 1 in the position (i, j) and zeros elsewhere. For x ∈ M(m, n, R), we
denote by xt the naive transpose of x, i.e., the matrix x ∈ M(n, m, R)
which has xij in the position (j, i). When the ring R is not commutative,
this transposition does not have good properties and will always be used
in combination with an involution on R (see [14] for a correct definition of
transpose).

Let α 7→ α be an involution on R, i.e., an anti-automorphism of order
two. In other words, for any α, β ∈ R, one has α + β = α + β, αβ = βα,
and α = α.

The ingredient which distinguishes Λ-quadratic forms from ordinary
quadratic forms is the notion of a form parameter Λ, which we define next.

Fix an element λ ∈ Cent(R) such that λλ = 1. Set

Λmin = {α− λα | α ∈ R} , Λmax = {α ∈ R | α = −λα } .
A form parameter Λ is an additive subgroup of R such that
(1) Λmin ⊆ Λ ⊆ Λmax,
(2) αΛα ⊆ Λ for all α ∈ R.
The pair (R, Λ) is called a form ring. Sometimes when the choice of Λ is

clear from the context, we use the shortcut R for (R, Λ) and call R a form
ring. For example, in many cases, Λmin = Λmax so that there is a unique
choice of Λ for a given involution and λ. This is so, for instance, when there
exists a central element ε ∈ Cent(R) such that ε + ε ∈ R∗ (in particular,
when 2 ∈ R∗).

Consider a free right R-module V ∼= R2n of rank 2n. Fix a base e1, . . . ,
e2n of the module V . We may think of elements v ∈ V as columns with
components in R. In particular, ei is the column whose ith coordinate is 1,
while all other coordinates are zeros. Following [20], we will usually number
the base as follows: e1, . . . , en, e−n, . . . , e−1. According to this choice of
base, we write v = (v1, . . . , vn, v−n, . . . , v−1)t, where vi ∈ R.

Denote by p = pn the matrix in M(n, R) which has 1’s along the second
(skew) diagonal and zeros elsewhere.

Now we consider the sesquilinear form f on V which has (with respect

to the fixed base e1, . . . , e−1) the Gram matrix
(

0 p
0 0

)
. In other words,

f(u, v) = u t

(
0 p
0 0

)
v = u1v−1 + · · ·+ unv−n.

Now this form defines two other forms: an even λ-hermitian form h =
f + λf , where f(u, v) = f(v, u), and a Λ-quadratic form q : V → R/Λ by
q(u) = f(u, u) mod Λ. In other words, h is the form with the Gram matrix(

0 p
λp 0

)
, or

h(u, v) = f(u, v)+λf(v, u) = u1v−1 + · · ·+unv−n +λu−nvn + · · ·+λu−1v1.
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This form is in fact λ-hermitian, i.e., h(u, v) = λh(v, u) for any u, v ∈ V .
This fact will be used in subsequent calculations without any reference. We
will often omit h in the expression h(u, v) and write simply (u, v) for the
inner product of u, v with respect to the form h.

In turn, q is defined as follows:

q(u) = u1u−1 + · · ·+ unu−n mod Λ.

We refer to the module V equipped with the λ-hermitian form h and the
Λ-quadratic form q as the hyperbolic Λ-quadratic module of rank 2n over
R (with respect to the symmetry λ and the form parameter Λ).

The following easy fact immediately follows from the definitions of h and
q. It is crucial for our calculations in Sec. 4.

Lemma 2.1. For any u, v ∈ V , one has q(u+v)−q(u)−q(v) = h(u, v)+Λ.

Proof. In fact,

f(u + v, u + v)− f(u, u)− f(v, v) = f(u, v) + f(v, u)

=
(
f(u, v) + λf(v, u)

)
+

(
f(v, u)− λf(v, u)

)
,

where the first summand is equal to h(u, v), whereas the second one belongs
to Λ. 2

20. Hyperbolic unitary groups. These groups were discovered by Bak
and appeared first in [6]. As usual, we denote by GL(n, R) the group of all
two-sided invertible matrices of degree n with entries from R. For a matrix
g ∈ GL(n, R), we denote by g−1 its inverse. For any matrix g ∈ M(n, R),
we denote by g∗ the “hermitian transpose” of g, i.e., the matrix which has
gji in the position (i, j). Clearly, the map g 7→ g∗ is an anti-automorphism
of GL(n, R), i.e., (xy)∗ = y∗x∗ for any x, y ∈ GL(n, R). We consider the
set of Λ-anti-hermitian matrices AH(n, R, Λ) which is defined as

AH(n, R, Λ) = {a ∈M(n, R) | a = −λa∗, aii ∈ Λ ∀ i = 1, . . . , n} .

Now we define our principal object of study. Let U(2n, R, Λ) be the
group consisting of all elements from GL(V ) ∼= GL(2n, R) which preserve
the λ-hermitian form h and the Λ-quadratic form q. In other words, g ∈
GL(2n, R) belongs to U(2n, R, Λ) if and only if h(gu, gv) = h(u, v) and
q(gu) = q(u) for all u, v ∈ V . The following result provides a matrix
description of the elements of U(2n, R, Λ) which is due to Bak [6]. Write a

matrix g of degree 2n in the block form g =
(

a b
c d

)
with respect to the

partition (n, n), where a, b, c, d are matrices of degree n over R.

Lemma 2.2. A necessary and sufficient condition for a matrix g ∈M(2n, R)
to belong to U(2n, R, Λ) is that
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(1) g−1 =
(

pd∗p λpb∗p
λpc∗p pa∗p

)
,

(2) a∗pc, b∗pd ∈ AH(n, R, Λ).

Proof. To belong to U(2n, R, Λ), a matrix g should preserve the forms h
and q. The condition that g preserves h means that h(gu, gv) = h(u, v).
Since this holds for arbitrary u, v ∈ V , one should have g∗hg = h or, in
other words, (

a b
c d

)∗ (
0 p
λp 0

) (
a b
c d

)
=

(
0 p
λp 0

)
.

This means that(
a b
c d

)−1

=
(

0 λp
p 0

) (
a∗ c∗

b∗ d∗

) (
0 p
λp 0

)
.

Multiplying the factors on the right-hand side, we obtain condition (1).
Suppose g already stabilizes h. Clearly, g preserves q if and only if the

Λ-quadratic form associated with the sesquilinear form f(gu, gv)− f(u, v)
is zero, or

z =
(

a b
c d

)∗ (
0 p
0 0

) (
a b
c d

)
−

(
0 p
0 0

)
=

(
a∗pc a∗pd− p
b∗pc b∗pd

)
∈ AH(2n, R, Λ).

Now condition (1) implies that this last matrix is Λmax-anti-hermitian, i.e.,
belongs to AH(2n, R, Λmax). Indeed, the equality(

pd∗p λpb∗p
λpc∗p pa∗p

) (
a b
c d

)
=

(
e 0
0 e

)
implies that

d∗pa + λb∗pc = p,

d∗pb + λb∗pd = 0,

λc∗pa + a∗pc = 0,

λc∗pb + a∗pd = p.

The second and third equalities under the implication amount precisely to
the fact that a∗pc and b∗pd belong to AH(n, R, Λmax), while the last one
says that a∗pd− p = −λb∗pc. In other words, z ∈ AH(2n, R, Λmax).

To belong to AH(2n, R, Λ), the matrix z has to satisfy the additional
condition that zii ∈ Λ for all i = 1, . . . ,−1. In view of the preceding
paragraph, this condition amounts precisely to saying that a∗pc, b∗pd ∈
AH(n, R, Λ). 2

The proof shows that the second condition in Lemma 2.2 may be replaced
by the condition that the diagonal coefficients of the matrices a∗pc and b∗pd
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lie in Λ. In fact, Lemma 2.2 may be stated in an equivalent but slightly
different form.

Lemma 2.3. A necessary and sufficient condition for a matrix g ∈M(2n, R)
to belong to U(2n, R, Λ) is that

(1) g′ij = λ(ε(j)−ε(i))/2g−j,−i for all i, j = 1, . . . ,−1,
(2)

∑
1≤i≤n gijg−ij ∈ Λ for all j = 1, . . . ,−1.

Clearly, in view of (1), condition (2) may be replaced by an analogous
condition imposed on rows rather than on columns.

30. Polarity map. Sometimes it is convenient to express conditions from
Lemmas 2.2 and 2.3 in terms of columns.

A vector u ∈ V is called isotropic if q(u) = 0 or, in other words, f(u, u) ∈
Λ. Obviously, for an isotropic vector, one has h(u, u) = 0. Vectors u, v ∈ V
are called orthogonal if they are orthogonal with respect to h, i.e., (u, v) = 0.
Since the form h is λ-hermitian, the orthogonality relation is symmetric.

The definition of the unitary group implies that any column u of a matrix
g ∈ U(2n, R, Λ) is isotropic. Let u and v be the ith and jth columns of
g ∈ U(2n, R, Λ), respectively, where i 6= −j. Then u and v are orthogonal.

Lemma 2.4. If v = (v1, . . . , v−1)t, where vi ∈ R, is the ith column of a
matrix g from U(2n, R, Λ), then the (−i)th row ṽ of the inverse matrix g−1

is expressed as

ṽ =

{
(λv−1, . . . , λv−n, vn, . . . , v1) if i = 1, . . . , n,
(v−1, . . . , v−n, λvn, . . . , λv1) if i = −n, . . . ,−1.

Proof. Calculate explicitly the (−i)th row of the matrix on the right-hand
side of the formula in (1) of the previous lemma. 2

The formulae for ṽ in Lemma 2.4 differ only by a scalar factor (the
second one of them is obtained from the first one by multiplication by λ).
Thus, we can define the “polarity” map from R2n to the free left module
of rank 2n. Following [22], we denote this module by 2nR. We can identify
2nR with the module consisting of all rows of length 2n with components
from R. Then the polarity map ˜: R2n → 2nR is defined as follows. For a
column u = (u1, . . . , un, u−n, . . . , u−1)t ∈ R2n, we define the row ũ ∈ 2nR
as ũ = (λu−1, . . . , λu−n, un, . . . , u1). Clearly, one has h(u, v) = ũv.

It is clear that the polarity map is involutory linear , i.e., ũ + v = ũ + ṽ

and ũξ = ξũ for all u, v ∈ V and ξ ∈ R. This property is often used in the
sequel without explicit reference. Now we can reformulate Lemma 2.3 in
another form. Let ei be the dual base of the module 2nR. We may think
of ei as the row of length 2n whose ith coordinate is 1, while all other
coordinates are zeros.
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Lemma 2.5. For any v ∈ V and g ∈ U(2n, R, Λ), one has g̃v = ṽg−1.

Proof. Since the polarity map is involutory linear, it is sufficient to prove
the lemma only for the base vectors v = ei. By definition, ˜ maps ei to
e−i if i = 1, . . . , n and to λe−i if i = −n, . . . ,−1. Now gei is precisely the
ith column of g, while ẽ−ig−1 is the (−i)th row of g−1 multiplied by λ if
i = −n, . . . ,−1. It remains to apply the previous lemma. 2

3 Elementary Hyperbolic Unitary Group

In this section, we recall the definition of the elementary unitary group.

10. Elementary unitary transvections. We consider the two following
types of transformations in U(2n, R, Λ) which we call elementary unitary
transvections. Denote the set {1, . . . , n,−n, . . . ,−1} of indices by Ω. Then
Ω = Ω+ ∪ Ω−, where Ω+ = {1, . . . , n} and Ω− = {−n, . . . ,−1}. For an
element i ∈ Ω, we denote by ε(i) the sign of Ω, i.e., ε(i) = 1 if i ∈ Ω+ and
ε(i) = −1 if i ∈ Ω−.

The transvections Tij(ξ) correspond to the pairs i, j ∈ Ω such that i 6= j.
Moreover, if i 6= −j, for any ξ ∈ R, we set

Tij(ξ) = e + ξeij − λ(ε(j)−ε(i))/2ξe−j,−i.

We will refer to these elements as the “elementary short root elements”.
On the other hand, for j = −i and α ∈ λ−(ε(i)+1)/2Λ, we set

Ti,−i(α) = e + αei,−i.

We will refer to these elements as the “elementary long root elements”. Note
that Λ = λΛ. In fact, for any element α ∈ Λ, one has α = −λα, and thus,
Λ coinicdes with the set of products λα, α ∈ Λ. This means that, in the
definition above, α ∈ Λ when i ∈ Ω+ and α ∈ Λ when i ∈ Ω−.

A straightforward calculation shows that these elements actually do be-
long to U(2n, R, Λ). Now we describe these matrices explicitly, depending
on the signs of i and j.

First of all, if the signs of i and j coincide, then the power of λ which ap-
pears in the definition of Tij(ξ) is 1. Thus, the corresponding transvections
have the shape e + ξeij − ξe−j,−i. They are in the image of the hyper-
bolic embedding of the general linear group GL(n, R) in the unitary group
U(2n, R, Λ). More precisely, for any a ∈ GL(n, R), we set

H(a) =
(

a 0
0 p(a∗)−1p

)
.

A straightforward calculation shows that H(a) ∈ U(2n, R, Λ). With this
notation, the transvection Tij(ξ) where i, j ∈ Ω+ is just the image H(tij(ξ))
of the ordinary linear transvection tij(ξ) = e + ξeij under the hyperbolic
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embedding. It is clear that Tij(ξ) = T−j,−i(−ξ) when i, j ∈ Ω− gives the
same set of transvections.

Next, let i ∈ Ω+ and j ∈ Ω−. If i 6= −j, then the correspond-
ing transvection has the shape Tij(ξ) = e + ξeij − λ ξe−j,−i. Clearly,
T−j,−i(ξ) = Tij(−λ ξ). These transvections may be considered together
with the transvections Ti,−i(α) for i ∈ Ω+ as follows. The transvection
Ti,−i(α) may be viewed as the usual linear transvection ti,−i(α) = e+αei,−i,
where α runs over Λ. The transvections of both types above come from
the unipotent embedding of the (additive) group AH(n, R, Λ) of Λ-anti-
hermitian matrices into U(2n, R, Λ). This embedding is defined as follows.

For b ∈ AH(n, R, Λ), set X+(b) =
(

e bp
0 e

)
. A direct calculation shows

that X+(b) ∈ U(2n, R, Λ). Clearly, both types of the transvections above
are in the image of X+. Namely, they are the images of the matrices
ξei,−j − λ ξe−j,i for ξ ∈ R and αeii for α ∈ Λ, respectively.

Finally, let i ∈ Ω− and j ∈ Ω+. If i 6= −j, then the correspond-
ing transvection has the shape Tij(ξ) = e + ξeij − λξe−j,−i. Clearly,
T−j,−i(ξ) = Tij(−λξ). These transvections may be considered together with
the transvections Ti,−i(α) for i ∈ Ω− as follows. The transvection Ti,−i(α)
is the usual linear transvection ti,−i(α) = e + αei,−i, where α runs over
Λ. The transvections of both types above come from the unipotent embed-
ding of the (additive) group AH(n, R, Λ) of Λ-anti-hermitian matrices into
U(2n, R, Λ). This embedding is defined as follows. For c ∈ AH(n, R, Λ), set

X−(c) =
(

e 0
pc e

)
. A direct calculation shows that X−(c) ∈ U(2n, R, Λ).

Clearly, both types of the transvections above are in the image of X−.
Namely, they are the images of the matrices ξe−i,j − λξej,−i for ξ ∈ R and
αe−i,−i for α ∈ Λ, respectively.

20. Elementary relations. In this subsection, we list the obvious rela-
tions among the elementary unitary transvections.

It immediately follows from the definition that

Tij(ξ) = T−j,−i(λ(ε(j)−ε(i))/2ξ). (R1)

The maps Tij : R+ → U(2n, R, Λ) are additive, i.e.,

Tij(ξ)Tij(ζ) = Tij(ξ + ζ). (R2)

Recall that, for any two elements x, y of a group G, one denotes by [x, y] =
xyx−1y−1 their commutator. For h 6= j,−i and k 6= i,−j, one has

[Tij(ξ), Thk(ζ)] = e. (R3)

Finally, we have three remaining elementary relations, corresponding
to the case of two short roots whose sum is a short root, two short roots
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whose sum is a long root, and a short and a long roots whose sum is a root,
respectively.

First, we consider the case of two short roots whose sum is a short root.
Let i, h 6= ±j and i 6= ±h. Then

[Tij(ξ), Tjh(ζ)] = Tih(ξζ). (R4)

Applying relation (R1) to one or both transvections on the right-hand side
of this relation, we can obtain three equivalent forms of this relation:

[Tij(ξ), Th,−j(ζ)] = Ti,−h(−λ(ε(−j)−ε(h))/2(ξζ ),

[T−j,i(ξ), Tjh(ζ)] = T−i,h(−λ(ε(i)−ε(−j))/2ξζ),
[Tji(ξ), Thj(ζ)] = Thi(−ζξ).

The last of these relations is also obtained from (R4) by applying the obvious
formula [x, y]−1 = [y, x]. In what follows, we refer to these relations also
as (R4).

Now we consider the case of two short roots whose sum is a long root.
Let i 6= ±j. Then

[Tij(ξ), Tj,−i(ζ)] = Ti,−i(ξζ − λ−ε(i)ζ ξ ). (R5)

As before, we will use the following versions of this relation, also referring
to them as (R5):

[Tij(ξ), Ti,−j(ζ)] = Ti,−i(λ(ε(−j)−ε(i))/2ξζ − λ(ε(j)−ε(i))/2ζξ ),

[T−j,i(ξ), Tji(ζ)] = T−i,i(−λ(ε(i)−ε(−j))/2ξζ + λ(ε(i)−ε(j))/2ζξ),

[Tji(ξ), T−i,j(ζ)] = T−i,i(−ζξ + λε(i)ξ ζ ).

Finally, we turn to the case of a long root and a short root. If i 6= ±j,
then

[Ti,−i(α), T−i,j(ξ)] = Tij(αξ)T−j,j(−λ(ε(j)−ε(−i))/2ξαξ). (R6)

This equation may be given the following alternative forms, to which we
also refer as (R6):

[Ti,−i(α), T−j,i(ξ)] = Tij(−λ(ε(i)−ε(−j))/2αξ )T−j,j(λ(ε(i)−ε(−j))/2ξαξ ),

[Tji(ξ), Ti,−i(α)] = Tj,−i(ξα)Tj,−j(λ(ε(i)−ε(j))/2ξαξ ).

The relations (R1)–(R6) define the unitary Steinberg group. In fact,
the calculations, where only these relations are used, already hold for the
Steinberg group and not just for the elementary unitary group (compare
with (3.16) and (3.17) of [8]).

30. Elementary unitary group. In this subsection, we introduce the
subgroup of U(2n, R, Λ) which will be the main object of our study in the
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rest of the paper. Namely, the subgroup generated by all elementary unitary
transvections Tij(ξ), i 6= ±j, ξ ∈ R, and Ti,−i(α), α ∈ Λ, is called the
elementary unitary group, denoted by EU(2n, R, Λ). It was first constructed
in [6].

Lemma 3.1. For any b ∈ AH(n, R, Λ) and c ∈ AH(n, R, Λ), one has
X+(b), X−(c) ∈ EU(2n, R, Λ).

Proof. Indeed, X+(b) =
∏

Ti,−j(bij) and X−(c) =
∏

T−i,j(cij), where the
first product is taken over all i, j ∈ Ω+ such that i ≤ j, while the second
one is taken over all i, j ∈ Ω+ such that i ≥ j. 2

As usual, E(n, R) denotes the elementary subgroup of GL(n, R), i.e.,
the subgroup generated by all elementary transvections tij(ξ) for 1 ≤ i 6=
j ≤ n and ξ ∈ R. By definition, the image H(g) of any g ∈ E(n, R) under
the hyperbolic embedding lies in EU(2n, R, Λ). Actually, unless n = 2, it
already lies in the subgroup of EU(2n, R, Λ) generated by the images of X+

and X−. The following result is essentially Proposition 5.1 of [15].

Lemma 3.2. Suppose either n 6= 2 or R = ΛR + RΛ. Then

EU(2n, R, Λ) =
〈
X+(b), X−(c) | b ∈ AH(n, R, Λ), c ∈ AH(n, R, Λ)

〉
.

Proof. Denote the right-hand side of this formula by G. We have to prove
that Tij(ξ) belongs to G for any i, j ∈ Ω+ with i 6= j and ξ ∈ R. If
n = 1, there is nothing to prove. Thus, we may assume n ≥ 2. If n ≥ 3,
we may choose h ∈ Ω+ with h 6= i, j. Then relation (R4) implies that
Tij(ξ) = [Ti,−h(ξ), T−h,j(1)], where the factors on the right-hand side belong
to G. When n = 2, (R6) implies that

Tij(ξα) = [Ti,−j(ξ), T−j,j(α)] Ti,−i(−λ(ε(−j)−ε(i))/2ξαξ ) ∈ G.

By the same relation,

Tij(αξ) = [T−i,j(ξ), Ti,−i(α)] T−j,j(−λ(ε(j)−ε(−i))/2ξαξ) ∈ G.

These two inclusions show that Tij(ΛR + RΛ) ⊆ G. 2

By definition, EU(2n, R, Λ) is generated by both the long and short root
unipotents. However, under some assumptions on Λ, only the short root
unipotents or the long root unipotents would suffice.

Lemma 3.3. Suppose Λ = Λmin and n ≥ 2. Then the group EU(2n, R, Λ)
is generated by elementary short root unipotents.

Proof. Let Ti,−i(α) be an elementary long root unipotent. Since Λ = Λmin,
there exists ξ ∈ R such that α = ξ − λ−ε(i)ξ. Pick up an index j 6= ±i. By
(R5), one has Ti,−i(α) = [Tij(ξ), T−j,i(1)]. 2
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Of course, EU(2n, R, Λ) for n ≥ 2 is never generated by elementary
long root unipotents. But under certain assumptions, it might be generated
by their conjugates. Recall that a conjugate of an elementary long (resp.,
short) root element is called a long (resp., short ) root element or a long
(resp., short ) root unipotent .

Lemma 3.4. Assume ΛR + RΛ = R. Then the group EU(2n, R, Λ) is
generated by long root unipotents.

Proof. Take any i 6= ±j, ξ ∈ R, and α ∈ Λ. Then one can rewrite the
formulae appearing in the proof of Lemma 3.2 as follows:

Tij(ξα) =
(
Ti,−j(ξ)T−j,j(α)Ti,−j(−ξ)

)
T−j,j(−α)Ti,−i(−λ(ε(−j)−ε(i))/2ξαξ),

Tij(αξ) =
(
T−i,j(ξ)Ti,−i(α)T−i,j(−ξ)

)
Ti,−i(−α)Tj,−j(−λ(ε(j)−ε(−i))/2ξαξ),

where all factors on the right-hand side are long root elements. This proves
the lemma. 2

4 Congruence Groups

In this section, we recall the definitions of form ideals and their correspond-
ing relative groups (see [6–8, 15]), which play a crucial role in describing
the normal subgroups of unitary groups.

10. Form ideals. Let (R, Λ) be a form ring. Let I be a (two-sided)
ideal in R, which is invariant with respect to the involution, i.e., I = I.
Set Γmax = I ∩ Λ and Γmin =

{
ξ − λξ | ξ ∈ I

}
+

{
ξαξ | ξ ∈ I, α ∈ Λ

}
. By

definition, Γmin and Γmax depend both on the absolute form parameter Λ and
the ideal I in R. The form parameter Λ is fixed and will not be accounted
in the notation. Sometimes it is necessary to stress the dependence of Γmin

and Γmax on I. In such cases, we write Γmin(I) and Γmax(I).
A relative form parameter Γ in (R, Λ) of level I is an additive subgroup

of I such that
(1) Γmin ⊆ Γ ⊆ Γmax,
(2) αΓ α ⊆ Γ for all α ∈ R.

Again, when we deal with various ideals, we write Γ(I) to indicate that Γ
is a form parameter of level I.

A form ideal in (R, Λ) is a pair (I, Γ), where I is an involution invariant
ideal in R and Γ is a relative form parameter of level I.

Form ideals play the same role in the category of form rings as (two-
sided) ideals in the category of rings. This notion was introduced by Bak [6–
8]. It is crucial for the description of normal subgroups of U(2n, R, Λ), n ≥ 3.
It was used by Bass [15] under the name of a unitary ideal . For commutative
rings with trivial involution, the notion of special submodule is essentially
equivalent to the notion of relative form parameter and was introduced
independently by Abe [1, 3–5]. In the book of Hahn and O’Meara [36],
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they are simply called ideals of form rings. Vaserstein [72] christened form
ideals “quasi-ideals”, which does not seem a good choice since this term is
overcharged already. Finally, in a very important recent paper [23], Costa
and Keller introduce the notion of a radix and discuss the interrelations of
form ideals, Jordan ideals of M(n, R) with transpose as the involution (R is
commutative), and radices. It turns out that, for n ≥ 3, form ideals, Jordan
ideals and radices coincide and correspond to Abe’s special submodules.
However, for n = 2, not all radices are form ideals. This is precisely why it
is much more difficult to describe the normal subgroups of U(4, R, Λ) than
the normal subgroups of U(2n, R, Λ) for n ≥ 3.

20. Doubling a form ring. To treat the relative groups corresponding to
form ideals, we have to recall some notation related to Stein’s relativization
[54].

First, let I be any ideal of a ring R. Then we can define the double
R×I R of R along I by the Cartesian square:

R×I R
π1−→ R

π2 ↓ ↓ π

R −→
π

R/I

In a more down to earth language, R×I R consists of all pairs (a, b) ∈ R×R
such that a ≡ b (mod I), i.e., R×I R =

{
(a, b) ∈ R×R | a−b ∈ I

}
with the

component-wise operations of addition and multiplication and π1(a, b) = a,
π2(a, b) = b. Clearly, Kerπ1 = (0, I) and Kerπ2 = (I, 0). The diagonal
embedding δ : R→ R×I R given by δ(a) = (a, a) splits both π1 and π2.

One can define embeddings ι1, ι2 : I → R ×I R by ι1(c) = (c, 0) and
ι2(c) = (0, c), respectively. Clearly, the image of ι2 coincides with the
kernel of π1. In other words, the sequence 1 → I

ι2−→R ×I R
π1−→R → 1 is

exact. Moreover, it is split by δ. We can rewrite the above in a slightly
different form.

For a pair (R, I), one can define the semidirect product Rn I of R and I
as the set of pairs (a, c) for a ∈ R and c ∈ I with component-wise addition
and multiplication given by (a, c)(b, d) = (ab, ad + cb + cd).

Lemma 4.1. The ring R×I R is isomorphic to the semidirect product RnI
of δ(R) ∼= R and Kerπ1

∼= I.

Proof. Define a map from R ×I R to R n I by (a, b) 7→ (a, b − a). The
definition of multiplication in R n I implies that this is a homomorphism.
The inverse homomorphism is defined by (a, c) 7→ (a, a + c). 2

Of course, if we write the Cartesian squares above in terms of semidirect
products rather than doubles, we must define π1, π2, and δ by π1(a, c) = a,
π2(a, c) = a + c, and δ(a) = (a, 0).
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In the sequel, we identify I with Im ι2 = Kerπ1. Usually, relative ques-
tions for the ideal I in R can be reduced to absolute ones for the ring
R×I R.

Now let (I, Γ) be a form ideal in a form ring (R, Λ). Then we can define
the double of Λ along Γ by exactly the same formula as above:

Λ×Γ Λ =
{
(a, c) ∈ Λ× Λ | a− c ∈ Γ

}
.

It is easy to observe that Λ ×Γ Λ is a form parameter in R ×I R (see [36,
Lemma 5.2.15]).

Lemma 4.2. (R n I, Λ n Γ) is a form ring with respect to the component-
wise involution and λ = (λ, 0).

Another form ring which can be associated with this form ideal is the
factor ring (R/I, Λ/Γmax) (see [36, Lemma 5.2.12]). Then we have a com-
mutative square of form rings:

(R ×I R, Λ×Γ Λ) π1−→ (R, Λ)
π2 ↓ ↓ π

(R, Λ) −→
π

(R/I, Λ/Γmax)

analogous to the Cartesian square above. This commutative square is actu-
ally Cartesian when Γ = Γmax. Since the functor U2n from rings to groups
commutes with limits, the commutative (resp., Cartesian) square of form
rings above leads to the commutative (resp., Cartesian) square of groups
U2n. This will be amply used in the rest of this section and in Sec. 5.

30. Principal congruence subgroups. These groups were introduced in
[6]. Let (I, Γ) be a form ideal of (R, Λ). The principal congruence subgroup

U(2n, I, Γ) of level (I, Γ) in U(2n, R, Λ) consists of those g =
(

a b
c d

)
in

U(2n, R, Λ) which are congruent to e = e2n modulo I and preserve f(u, u)
modulo Γ:

f(gu, gu) ∈ f(u, u) + Γ, u ∈ V.

One can give the following characterization of U(2n, I, Γ) analogous to
Lemma 2.2.

Lemma 4.3. Let (I, Γ) be a form ideal in (R, Λ). A necessary and sufficient
condition for a matrix g ∈ U(2n, R, Λ) to belong to U(2n, I, Γ) is that

(1) g ≡ e (mod I),
(2) a∗pc, b∗pd ∈ AH(n, R, Γ).

Proof. Replace Λ with Γ in the second part of the proof of Lemma 2.2. 2

Clearly, ι2 : I → R n I, ξ 7→ (0, ξ), defines an embedding of the cor-
responding groups. In fact, it is easy to obtain the following split exact
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sequence of groups (see [36, Lemma 5.2.17]):

1→ U(n, I, Γ) ι2−→U(n, R×I R, Λ×Γ Λ)
π1−→←−
δ

U(n, R, Λ)→ 1.

This is precisely Stein’s definition of a relative group.
By definition, U(2n, I, Γ) is a subgroup of U(2n, R, Λ). In fact, it is a

normal subgroup of U(2n, R, Λ). This was first shown by Bak in Theo-
rem 4.1.4 of [7] by a direct computation. However, there is a more elegant
approach based on a variant of Stein’s relativization. Below, we reproduce
the argument (compare also [36, Sec. 5.2] and [34, Lemma 2.6]).

Lemma 4.4. For any form ideal (I, Γ) in (R, Λ), the corresponding prin-
cipal congruence group U(2n, I, Γ) is a normal subgroup of U(2n, R, Λ).

Proof. By the previous subsection, we have a commutative square of groups:

U(2n, R×I R, Λ×Γ Λ) π1−→ U(2n, R, Λ)
π2 ↓ ↓ π

U(2n, R, Λ) −→
π

U(2n, R/I, Λ/Γmax)

Clearly, the kernel of π1 is a normal subgroup of U(2n, R ×I R, Λ ×Γ Λ).
Since π2 is split surjective, this implies that the image of Ker π1 under π2

is a normal subgroup of U(2n, R, Λ). But Kerπ1 = U(2n, ι2(I), ι2(Γ)) and
its image under π2 coincides with U(2n, I, Γ). 2

40. Full congruence subgroups. First, let G be any group, and F and H
subgroups of G. One can define CG(F, H) = {g ∈ G | [g, f ] ∈ H ∀ f ∈ F} .
In general, CG(F, H) is only a subset of G. However, if H is a normal
subgroup of G, then the standard equalities for commutators imply that
CG(F, H) is a subgroup of G. We will use the notation CG(F, H) only when
H E G. Moreover, if F is also a normal subgroup of G, then CG(F, H) is a
normal subgroup of G. The normal subgroup CG(G, H) will be denoted by
CG(H) or, when the group G is clear from the context, simply by C(H).

Return to the case when G = U(2n, R, Λ). Further, let (I, Γ) be a form
ideal in (R, Λ). We can define a normal subgroup CU(2n, I, Γ) of G as
C

(
U(2n, I, Γ)

)
. In other words,

CU(2n, I, Γ) = {g ∈ U(2n, R, Λ) | [g, U(2n, R, Λ)] ⊆ U(2n, I, Γ)} .

This group is called the full congruence subgroup in G of level (I, Γ). Al-
though it is not reflected in the notation, this group depends not only on
(I, Γ), but also on (R, Λ). This definition of the full congruence group is that
given in [6]. Later, this group (also denoted by U′(2n, I, Γ) or U (̃2n, I, Γ))
has been defined slightly differently. For example, in [36],

U (̃2n, I, Γ) = {g ∈ U(2n, R, Λ) | [g, EU(2n, R, Λ)] ⊆ EU(2n, I, Γ)} .
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But in interesting situations, these groups coincide as we will see in the next
part of this work.

For the general linear group GL(n, R), the full congruence subgroup of
level I is the full preimage of the center of the group GL(n, R/I) under
the reduction homomorphism modulo I. This is also true in our case when
the relative form parameter is maximal . Namely, CU(2n, I, Γmax) is the full
preimage of the center of the group U(2n, R/I, Λ/Γmax) under the reduction
homomorphism U(2n, R, Λ)→ U(2n, R/I, Λ/Γmax).

5 Relative Elementary Groups

In this section, we define the relative elementary groups of Bak [6]. They are
the key to establishing the sandwich classification theorem for EU(2n, A, Λ)-
normal subgroups of U(2n, A, Λ), which will appear in the second paper of
this series. Below, we prove a standard result about their generators and
show that the standard commutator formulae follow from the normality of
the absolute elementary subgroup.

10. Relative elementary subgroups. An elementary unitary transvec-
tion Tij(ξ) is called elementary of level (I, Γ) if ξ ∈ I, and moreover,
ξ ∈ λ−(ε(i)+1)/2Γ if i = −j. Denote the subgroup generated by all (I, Γ)-
elementary transvections by

FU(2n, I, Γ) =
〈
Tij(ξ) | ξ ∈ I with ξ ∈ λ−(ε(i)+1)/2Γ if i = −j

〉
.

By definition, FU(2n, I, Γ) is a subgroup of the absolute elementary
subgroup EU(2n, R, Λ). However, the subgroup FU(2n, I, Γ) is very sel-
dom normal in EU(2n, R, Λ). The elementary subgroup EU(2n, I, Γ) of level
(I, Γ) is defined as the normal closure of FU(2n, I, Γ) in EU(2n, R, Λ):

EU(2n, I, Γ) = FU(2n, I, Γ)EU(2n,R,Λ)
.

Although it is not reflected in the notation, the group EU(2n, I, Γ) depends
also on R and Λ. Since the principal congruence subgroup U(2n, I, Γ) is
normal in U(2n, R, Λ) and contains all elementary transvections of level
(I, Γ), it follows that EU(2n, I, Γ) ≤ U(2n, I, Γ).

The following result is a relative analog of Lemma 3.2.

Lemma 5.1. Suppose either n 6= 2 or I = ΛI + IΛ. Then

EU(2n, I, Γ) =
〈
X+(b), X−(c) | b ∈ AH(n, I, Γ), c ∈ AH(n, I, Γ)

〉EU(2n,R,Λ)
.

Proof. For n 6= 2, the proof of Lemma 3.2 carries over without any changes.
For n = 2, one takes ξ ∈ I, α ∈ Λ, and observes that ξαξ ∈ Γmin ≤ Γ. Now
the same argument as in Lemma 3.2 shows that Tij(ΛI + IΛ) is contained
in the right-hand side for any i, j ∈ Ω+ with i 6= j. 2
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The following result does not hold for n = 2 without some additional
assumptions on the ring R.

Lemma 5.2. Suppose either n 6= 2 or I = ΛI + IΛ. Then

EU(2n, I, Γ) = [EU(2n, I, Γ), EU(2n, R, Λ)].

Proof. By definition, the right-hand side is contained in the left-hand side.
Indeed, setting ξ = 1 in (R4), we obtain that Tij(ζ) for i 6= ±j and ζ ∈ I
belongs to the right-hand side. Now (R6) (again with ξ = 1) implies that

Tj,−j(α) = [Ti,−i(−λ(ε(−j)−ε(−i))/2α), T−i,−j(1)] Tij(λ(ε(−j)−ε(−i))/2α)

belongs to the right-hand side for α ∈ Γ or α ∈ Γ, depending on the sign
of j. Thus, all the generators of EU(2n, I, Γ) as a normal subgroup of
EU(2n, R, Λ) are contained in the right-hand side. But it is itself normal in
EU(2n, R, Λ). 2

The following obvious fact will be often used without reference.

Lemma 5.3. Suppose EU(2n, I1, Γ1) ≤ U(2n, I2, Γ2). Then I1 ≤ I2 and
Γ1 ≤ Γ2.

20. Generation of relative elementary subgroups. As we know from
the preceding subsection, it is not true in general that EU(2n, I, Γ) is gene-
rated by elementary transvections of level (I, Γ). In fact, fix i 6= j and
consider matrices

Zij(ξ, ζ) = Tji(ζ)Tij(ξ)Tji(−ζ),

where ξ ∈ I, ζ ∈ R if i 6= −j, and ξ ∈ λ−(ε(i)+1)/2Γ, ζ ∈ λ−(ε(i)+1)/2Λ
otherwise. (Starting from this point, we usually do not distinguish between
the cases i 6= −j and i = −j. We simply write ξ ∈ I or ζ ∈ R assuming
ξ ∈ Γ and ζ ∈ Λ automatically when i = −j.) In general, these matrices
do not belong to FU(2n, I, Γ). However, this is essentially the unique coun-
terexample. The following result is a unitary version of a result by Suslin
and Vaserstein [75] (see also [10, 67, 83]).

Proposition 5.1. Let n ≥ 3. For any form ideal (I, Γ), the corre-
sponding relative elementary group EU(2n, I, Γ) is generated by all matrices
Zij(ξ, ζ), where either ξ ∈ I, ζ ∈ R and i 6= ±j, or ξ ∈ λ−(ε(i)+1)/2Γ,
ζ ∈ λ−(ε(i)+1)/2Λ and i = −j.

Proof. Since Zij(ξ, 0) = Tij(ξ) is a usual elementary unitary transvection,
the subgroup generated by all Zij(ξ, ζ) contains FU(2n, I, Γ). By definition,
EU(2n, I, Γ) is generated by matrices xTij(ξ) = xTij(ξ)x−1, where x ∈
EU(2n, R, Λ), ξ ∈ I and i 6= j. We will proceed by induction on the length
t of a shortest expression of x as a product of elementary matrices. When
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t = 0, there is nothing to prove. Suppose t = 1. If (h, k) 6= (j, i), we
can apply (R3)–(R6) and the definition of a relative form parameter to
conclude that z = Thk(ζ)Tij(ξ) belongs to FU(2n, I, Γ), and if (h, k) = (j, i),
then z = Zij(ξ, ζ). If t ≥ 2, we can write x in the form Thk(ζ)y, where
y ∈ EU(2n, R, Λ), ζ ∈ R and h 6= k. Now we may apply the formula
abc = a[b, c] · ac valid for any three elements a, b, c of a group. Thus,

Thk(ζ)yTij(ξ) = Thk(ζ)[y, Tij(ξ)] Thk(ζ)Tij(ξ).

On the other hand, since y is shorter than x, the commutator [y, Tij(ξ)] is a
product of factors of the form Zlm(ω, ϑ), where ω ∈ I, ϑ ∈ R, l 6= m. Now
for w = Thk(ζ)Zlm(ω, ϑ), we have three options:

If (h, k) 6= (l, m), (m, l), then w ∈ Zlm(ω, ϑ) FU(n, I, Γ) by (R3)–(R6).
If (h, k) = (m, l), then w = Zlm(ω, ϑ + ζ).
Finally, let (h, k) = (l, m). If l 6= −m, we can argue exactly as in the

case of the general linear group. Namely, take an index p 6= ±h,±k and
express Tlm(ω) as Tlm(ω) = [Tlp(1), Tpm(ω)]. Then

Tlm(ζ)Zlm(ω, ϑ) = Tlm(ζ)Tml(ϑ)Tlm(ω)

= Tlm(ζ)Tml(ϑ)[Tlp(1), Tmp(ω)]

= [Tlm(ζ)Tml(ϑ)Tlp(1), Tlm(ζ)Tml(ϑ)Tpm(ω)]
= [Tmp(ϑ)Tlp(1 + ζϑ), Tpl(−ωϑ)Tpm(ω(1 + ϑζ))].

Now decomposing the last commutator into four factors using the formula
[ab, cd] = a[b, c]·ac[b, d]·[a, c]·c[a, d], we see that all these factors are products
of transvections from FU(2n, I, Γ) and factors of the form Zij(ξ, ζ) belonging
to EU(2n, I, Γ) (see [10] or [83] for a detailed calculation).

The proof for the case l = −m is similar and even easier. Pick up p 6= ±l
and express Tl,−l(ω) = [Tp,−p(−µω), T−p,−l(1)]Tpl(µω) as in Lemma 5.2,
where µ = λ(ε(−l)−ε(−p))/2. Then

Tl,−l(ζ)Zl,−l(ω, ϑ) = Tl,−l(ζ)T−l,l(ϑ)Tl,−l(ω)

= Tl,−l(ζ)T−l,l(ϑ)[Tp,−p(−µω), T−p,−l(1)]Tpl(µω).

This expression is a product of a matrix from FU(2n, I, Γ) and the commu-
tator

[Tl,−l(ζ)T−l,l(ϑ)Tp,−p(−µω), Tl,−l(ζ)T−l,l(ϑ)T−p,−l(1)]
= [Tp,−p(−µω), T−p,−l(1 + ϑζ)T−p,l(−ϑ))].

Decomposing this commutator according to the formula [a, bc] = [a, b]·b[a, c],
one obtains a product of a matrix from FU(2n, I, Γ) with the commutator
T−p,−l(1+ϑζ)[Tp,−p(−µω), T−p,l(−ϑ))], which in turn is a product of a matrix
from FU(2n, I, Γ) and a matrix of the form Zpl(ξ, ζ). This completes the
proof. 2

30. Relativization. In this subsection, we show how relative results
follow from the results for the absolute case. In particular, the theorem



Elementary Subgroups of the Unitary Groups 179

in the introduction follows from the special case (I, Γ) = (R, Λ), i.e., from
the normality of the absolute elementary subgroup. This idea is due to
Stein [54] and was applied to establish the normality of relative elementary
subgroups by Milnor [53], Suslin and Kopeiko [60], and others.

Everything said above about the congruence groups modulo a form ideal
applies also to the relative elementary groups. In particular, we have the
following split exact sequence of groups (see [36, Lemma 5.3.22]):

1→ EU(n, I, Γ) ι2−→EU(n, R×I R, Λ×Γ Λ)
π1−→←−
δ

EU(n, R, Λ)→ 1.

As above, we may identify ι2(EU(2n, I, Γ)) with EU(2n, ι2(I), ι2(Γ)). The
following easy observation (see [53, Lemma 4.2] for the linear case) reduces
questions about relative elementary subgroups to ones about absolute ele-
mentary subgroups.

Lemma 5.4. Let (I, Γ) be a form ideal of a form ring (R, Λ). Then

ι2(U(2n, I, Γ)) ∩ EU(2n, R×I R, Λ×Γ Λ) = ι2(EU(2n, I, Γ)).

Proof. Clearly, the right-hand side is contained in the left-hand side. Con-
versely, let (a, b) be an element from

ι2(U(2n, I, Γ)) ∩ EU(2n, R×I R, Λ×Γ Λ)
= U(2n, ι2(I), ι2(Γ)) ∩ EU(2n, R×I R, Λ×Γ Λ).

Then (a, b) ∈ U(2n, ι2(I), ι2(Γ)) implies that a = e and b ∈ U(2n, I, Γ). On
the other hand, since (e, b) ∈ EU(2n, R ×I R, Λ×Γ Λ), it can be expressed
in the form (e, b) = (c1, c1d1) · · · (ct, ctdt), where ci ∈ EU(2n, R, Λ) and di ∈
EU(2n, I, Γ) are some elementary unitary transvections. Clearly, c1 · · · ct =
e. Now we may rewrite b in the form

b = (c1d1c
−1
1 )(c1c2d2c

−1
2 c−1

1 ) · · · (c1 · · · ctdtc
−1
t · · · c−1

1 ) ∈ EU(2n, I, Γ).

Thus, (e, b) ∈ U(2n, ι2(I), ι2(Γ)). 2

Corollary 5.1. The normality of the absolute elementary subgroup implies
all other statements of Theorem 1.1.

Proof. First, we prove that all relative elementary subgroups are normal.
Indeed, let a ∈ U(2n, R, Λ), β ∈ EU(2n, I, Γ). Since EU(2n, R×I R, Λ×ΓΛ)
is normal in U(2n, R×I R, Λ×Γ Λ), one has

(e, aba−1) = (a, a)(e, b)(a, a)−1 ∈ EU(2n, R×I R, Λ×Γ Λ).

On the other hand, aba−1 ∈ U(2n, I, Γ). Thus, by the above lemma, aba−1

∈ EU(2n, I, Γ). Now we prove the second commutator formula. Let a ∈
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EU(2n, R, Λ), b ∈ CU(2n, I, Γ). The normality of EU(2n, R×I R, Λ ×Γ Λ)
in U(2n, R×I R, Λ×Γ Λ) implies that

(e, [a, b]) = [(a, a), (e, b)] ∈ EU(2n, R×I R, Λ×Γ Λ).

On the other hand, [a, b] ∈ U(2n, I, Γ) by the definition of CU(2n, I, Γ).
Again by the above lemma, this implies that [a, b] ∈ EU(2n, I, Γ). 2

6 Eichler–Siegel–Dickson Transformations

In this section, we introduce transformations which play a crucial role in
what follows.

10. ESD-transvections. Let u, v be two orthogonal vectors in V such
that u is isotropic. Let ξ ∈ R and α ∈ Λ. We introduce

Tuv(ξ, α) = e + uξṽ − vλ ξũ− uλξ
(
f(v, v) + α

)
ξũ.

As we will see, this matrix always belongs to the unitary group.

Lemma 6.1. For any orthogonal vectors u, v with u isotropic and any
ξ ∈ R, α ∈ Λ, one has Tuv(ξ, α) ∈ U(2n, R, Λ).

Proof. Denote Tuv(ξ, α) by g. We have to prove that g preserves both h
and q. Start with h. Let x, y be arbitrary vectors from V . Clearly,

(gx, gy)− (x, y) = (gx− x, gy − y) + (gx− x, y) + (x, gy − y).

Here, gx−x = uξ(v, x)− vλ ξ(u, x)−uλξ
(
f(v, v)+α

)
ξ(u, x), and the same

holds for y. Since the vectors u and v are orthogonal and u is isotropic, one
has (gx − x, gy − y) = (−vλξ(u, x),−vλξ(u, y)) = (u, x)ξ(v, v)ξ(u, y). On
the other hand,

(gx− x, y) = (v, x) ξ(u, y)− (u, x)λξ(v, y)− (u, x)λξ( f(v, v) + α )ξ(u, y),

(x, gy − y) = (x, u)ξ(v, y)− (x, v)λ ξ(u, y)− (x, u)λξ(f(v, v) + α)ξ(u, y).

Since h is λ-hermitian, the first summand of (gx − x, y) cancels with the
second summand of (x, gy − y) and vice versa. Finally,

(gx− x, y) + (x, gy − y) = −(u, x)λξ αξ(u, y)− (x, u)λξαξ(u, y)

= −(u, x)ξ
(
λ
(
f(v, v) + α

)
+ f(v, v) + α

)
ξ(u, y).

Since α ∈ Λ, this sum cancels with f(gx − x, gy − y) and the preservation
of h is established.

Now we pass to the Λ-quadratic form q. Take an arbitrary vector x ∈ V .
Lemma 2.1 asserts that q(gx) − q(x) = q(gx − x) + (x, gx − x) + Λ. Thus,
it remains only to show that f(gx− x, gx− x) + (x, gx− x) ∈ Λ. The first
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summand equals (u, x)ξf(v, v)ξ(u, x), while the second summand equals
(x, u)ξ(v, x) − (x, v)λ ξ(u, x)− (x, u)λξ(f(v, v) + α)ξ(u, x). Finally,

f(gx−x, gx−x)+(x, gx−x) = (x, u)ξ(v, x)−(x, v)λ ξ(u, x)−(x, u)λξαξ(u, x).

The last summand in this expression has the form ζαζ for ζ = (x, u)ξ and
thus belongs to Λ by definition (recall that α ∈ Λ). On the other hand,

(x, u)ξ(v, x) − (x, v)λ ξ(u, x) = (x, u)ξ(v, x) − λ(v, x)ξ(x, u) ∈ Λ

again by the definition of Λ. Thus, the form q is also preserved by g, which
completes the proof of the lemma. 2

20. Basic properties of ESD-transvections. In this subsection, we
state some obvious properties of the elements Tuv(ξ, α). The definition
of ESD-transvections and Lemma 2.5 immediately imply that a conjugate
of an ESD-transvection by an element of U(2n, R, Λ) is again an ESD-
transvection.

Lemma 6.2. For any g ∈ U(2n, R, Λ), one has

gTuv(ξ, α)g−1 = Tgu,gv(ξ, α + f(v, v)− f(gv, gv)).

Note that the expression α + f(v, v) − f(gv, gv) on the right-hand side
belongs to Λ by the definition of U(2n, R, Λ).

Lemma 6.3. For any ξ, ζ ∈ R, Tuv(ξζ, α) = Tuξ,v(ζ, α) = Tu,vζ(ξ, ζαζ ).

In particular, this lemma shows that the parameter ξ in the definition of
ESD-transvections is optional and can be concealed either in u or in v, for
example, Tuv(ξ, α) = Tuξ,v(1, α). However, we think that it is not advisable
to do so, especially when one wants to speak about one-parameter subgroups
of ESD-transvections, etc. In some situations, it is convenient to assume
u and v enjoy some special properties, for example, they are unimodular.
This can be done only if we explicitly keep the parameter ξ.

The following lemma establishes the additivity property of Tuv(ξ, α) in
v when u is fixed.

Lemma 6.4. For any two vectors v, w orthogonal to an isotropic vector u,
for any ξ, ζ ∈ R and α, β ∈ Λ, one has

Tuv(ξ, α)Tuw(ζ, β) = Tu,vξ+wζ (1, ξαξ + ζβζ − ζf(w, v)ξ + λξf(w, v) ζ ).

The formulae expressing additivity in the first argument are more com-
plicated. We state them in the next subsection for elements of short root
type.

30. Elements of long and short root types. Now we introduce two
special types of ESD-transvections. These are really the only ones which
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appear in the analysis of conjugates of elementary unitary transvections.
For an isotropic vector u ∈ V and an element α ∈ Λ, we denote the element
Tu0(1,−α) by Tu(α) and call it an element of long root type. One has

Tu(α) = e + uλαũ.

For two orthogonal vectors u, v ∈ V such that u is isotropic and an
element ξ ∈ R, we denote the element Tuv(ξ, 0) by T •

uv(ξ). One has

T •
uv(ξ) = e + uξṽ − vλ ξũ− uλξf(v, v)ξũ.

If v is also isotropic, we denote the element Tuv(ξ,−f(v, v)) by Tuv(ξ).
Clearly,

Tuv(ξ) = e + uξṽ − vλ ξũ.

We call the elements T •
uv(ξ) and Tuv(ξ) elements of short root type. Clearly,

the elementary unipotents introduced in the previous section may be inter-
preted as elements of root type.

Lemma 6.5. For any i 6= ±j, ξ ∈ R, and α ∈ Λ, one has

Ti,−i(α) = Tei(λ(ε(i)+1)/2α),

Tij(ξ) = Tei,e−j (λ−(ε(j)+1)/2ξ) = T •
ei,e−j

(λ−(ε(j)+1)/2ξ).

In particular, Lemma 6.2 implies that a conjugate of an elementary
unitary transvection is an ESD-transvection. More precisely, a conjugate
of Ti,−i(α) is an element of long root type, while a conjugate of Tij(ξ) for
i 6= ±j is an element of short root type.

Remark. The reader may ask why Tuv(ξ, α) depends on two parameters.
It is because of extra-short roots. In U(2n, R, Λ), there are no extra-short
roots, but there are extra-short root subgroups. Indeed, look at the group
U(2n+1, R). It is well known that the corresponding root system is not re-
duced, and has roots of three different lengths: long, short, and extra-short ,
the last ones being halves of the long ones. The extra-short root subgroups
are not abelian (see, for example, [2, 20]). The extra-short roots disappear
when one passes to U(2n, R), but the corresponding root subgroups survive.

Actually, any ESD-transvection may be presented as a product of com-
muting short and long root type elements. This essentially reduces the
study of the ESD-transvection to these two cases.

Lemma 6.6. One has Tuv(ξ, α) = T •
uv(ξ)Tu(−ξαξ ). If v is also isotropic,

then Tuv(ξ, α) = Tuv(ξ)Tu(−ξ(f(v, v) + α)ξ ).

40. Basic properties of elements of root type. Some of the formulae
for ESD-transvections simplify considerably when restricted to the elements
of root type.



Elementary Subgroups of the Unitary Groups 183

Lemma 6.7. Let u be an isotropic vector. Then for any α, β ∈ Λ and
ξ ∈ R, one has Tu(α)Tu(β) = Tu(α + β) and Tuξ = Tu(ξαξ ).

The analogous additivity formula holds for elements of short root type.

Lemma 6.8. Let u, v be orthogonal isotropic vectors. Then for any ξ, ζ ∈
R, one has Tuv(ξ)Tuv(ζ) = Tuv(ξ + ζ).

The following additivity property of elements of long root type (compare
with the proof of Lemma 3.4) plays a crucial role in the second part of the
work.

Lemma 6.9. Let u, v be orthogonal isotropic vectors. Then for any α ∈ Λ,
one has Tu(α)Tv(α) = Tu+v(α)Tu,v(−λα).

The following lemma (compare with [60, Lemma 1.7]) establishes the
additivity property of elements of short root type Tuv(ξ) in u when v is
fixed.

Lemma 6.10. Let u, v be orthogonal isotropic vectors which are both or-
thogonal to w. Then for any ξ, ζ ∈ R, one has

T •
uw(ξ)T •

vw(ζ) = T •
uξ+vζ,w(1)Tuξ,vζ( f(w, w) ).

The following lemma expresses symmetry of Tuv(ξ) with respect to u
and v when both of them are isotropic (compare with Formula (h) on page
214 of [36], although the involution seems to be missing there).

Lemma 6.11. Assume both u and v are isotropic. Then Tuv(ξ)=Tv,−u(λξ ).

7 Whitehead Type Lemmas

In this section, we prove that a unitary transvection Tu,v(ξ, α) belongs to
EU(2n, R, Λ) if u or v (or both) have zero components.

10. Heisenberg group. In this subsection, we describe the explicit shape
of elements from the unipotent radical of the standard parabolic subgroup
P1. This will be used in subsequent subsections.

Lemma 7.1. Let v = (v2, . . . , vn, v−n, . . . , v−2)t be any vector of length
2n− 2. Then the matrices

Y +
• (v) =

1 −λṽ −λf(v, v)
0 e v
0 0 1

 , Y −
• (v) =

 1 0 0
v e 0

−f(v, v) −ṽ 1
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belong to EU(2n, R, Λ). Moreover,

Y +
• (v)−1 =

1 λṽ −f(v, v)
0 e −v
0 0 1

 , Y −
• (v)−1 =

 1 0 0
−v e 0

−λf(v, v) ṽ 1

 .

Proof. A direct calculation shows that

Y +
• (v) =

∏
Ti,−1(vi), Y −

• (v) =
∏

Ti1(vi),

where both products are taken over i = 2, . . . ,−2 in the natural order.
It remains to observe that all factors on the right-hand side belong to
EU(2n, R, Λ). The formulae for the inverse matrices are verified by a straight-
forward calculation. 2

Lemma 7.2. Let v = (v2, . . . , vn, v−n, . . . , v−2)t be an isotropic vector of
length 2n− 2. Then the matrices

Y +(v) =

1 −λṽ 0
0 e v
0 0 1

 , Y −(v) =

1 0 0
v e 0
0 −ṽ 1


belong to EU(2n, R, Λ). Moreover, Y +(v)−1 = Y +(−v) and Y −(v)−1 =
Y −(−v).

Proof. Since v is isotropic, one has f(v, v) ∈ Λ. Clearly,

Y +(v) = T1,−1(λf(v, v))Y +
• (v), Y −(v) = T−1,1(f(v, v))Y −

• (v),

where the factors on the right-hand sides belong to EU(2n, R, Λ). The last
statement of the lemma follows from the fact that ũu = (u, u) = 0 since u
is isotropic. 2

The following lemma is straightforward. It will be used in the sequel of
this paper.

Lemma 7.3. For any u, v ∈ R2n−2, one has

[Y +
• (u), Y +

• (v)] = T1,−1(λṽu− λũv),
[Y −

• (u), Y −
• (v)] = T−1,1(ṽu− ũv).

In fact, the matrices Y +
• (v), . . . , Y −(v) introduced above are ESD-trans-

vections corresponding to the case when the first of the vectors u, v is a
standard base vector, namely,

Y +
• (v) = T •

e1,v(−λ), Y −
• (v) = T •

e−1,v(−1),

and, respectively,

Y +(v) = Te1,v(−λ), Y −(v) = Te−1,v(−1).
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Now we start proving that an ESD-transvection is elementary if u and/or
v has enough zeros in one sense or another.

20. Whitehead–Vaserstein lemma for P1: long root type. In this
subsection, we consider the elements of the form Tu(α) = Tu0(1,−α), where
u is an isotropic vector and α ∈ Λ. Recall that Tu(α) = e + uλαũ.

Lemma 7.4. Suppose ui = u−i = 0 for some i ∈ I. Then for all α ∈ Λ,
one has Tu(α) ∈ EU(2n, R, Λ).

Proof. Since EU(2n, R, Λ) is normalized by all permutation matrices H(π),
where π ∈ Sn, without loss of generality, we may assume i = 1. Let v be the
column of height 2n−2 which is obtained from u by dropping the coordinates
with indices ±1. Then v is isotropic. A direct calculation using the fact
that ṽv = 0 shows that Tu(α) = T−1,1(α)Y +(v)T−1,1(−α)Y −(vα)Y +(−v),
where all factors on the right-hand side belong to EU(2n, R, Λ) by the pre-
vious lemma. 2

Lemma 7.5. Suppose ui = 0 for some i ∈ I. Then Tu(α) ∈ EU(2n, R, Λ)
for all α ∈ Λ.

Proof. By the same reason as in Lemma 7.4, since EU(2n, R, Λ) is nor-

malized by the matrix
(

0 p
λp 0

)
, without loss of generality, we may assume

u−1 = 0. Present u in the form u = v+e1u1, where v is the column obtained
from u by changing its first coordinate to 0. Since u−1 = 0, the vector v is
isotropic. Then

Tu(α) = Tv(α)Y +(vλαu1)T1,−1(λu1αu1),

where the two first factors belong to EU(2n, R, Λ) by Lemmas 7.3 and 7.4,
and the third one by the definition of Λ. 2

30. Whitehead–Vaserstein lemma for P1: general case. In this
subsection, we consider the elements of the form T •

uv(ξ) = Tuv(ξ, 0), where
u, v are orthogonal vectors, u is isotropic, and ξ ∈ R. Note that we do not
assume v to be isotropic.

Lemma 7.6. Suppose ui = u−i = vi = v−i = 0 for some i ∈ I. Then
T •

uv(ξ) ∈ EU(2n, R, Λ) for all ξ ∈ R.

Proof. As in Lemma 7.5, without loss of generality, we may assume u1 =
u−1 = v1 = v−1 = 0. Let x and y be the columns of height 2n − 2
which are obtained from u and v, respectively, by dropping the coordinates
with indices ±1. Then x, y are orthogonal and x is isotropic, in particular,
x̃x = x̃y = ỹx = 0. On the other hand, f(y, y) = f(v, v), and thus,
ỹy = f(v, v) + λf(v, v). Now a direct calculation using these equalities
shows that T •

uv(ξ) = Y −(xλξ)Y +• (−y)Y −(−xλξ)Y +• (y−xλξf(v, v) ), where
the right-hand side belongs to EU(2n, R, Λ) by Lemmas 7.1 and 7.2. 2
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Lemma 7.7. Suppose ui = vi = 0 for some i ∈ I. Then T •
uv(ξ) ∈

EU(2n, R, Λ) for all ξ ∈ R.

Proof. As in the previous lemmas, without loss of generality, we may assume
u1 = v1 = 0. Present u and v in the form u = x + e1u1 and v = y + e1v1,
where x and y are the columns obtained from u and v, respectively, by
changing their first coordinates to 0. Since u−1 = v−1 = 0, the vectors x
and y are orthogonal and x is isotropic. Thus,

T •
uv(ξ) = T •

xy(ξ)Y
+
• (xξ v1 − yλ ξ u1)T1,−1(u1ξ v1 − λv1ξ u1),

where the first two factors belong to EU(2n, R, Λ) by Lemmas 7.5 and 7.1,
respectively, and the last one by the definition of Λ. 2

Now assume the vector v is also isotropic. Then the following version of
the preceding lemma holds.

Lemma 7.8. Suppose ui = vi = 0 for some i ∈ I. Then Tuv(ξ) ∈
EU(2n, R, Λ) for all ξ ∈ R.

Proof. Recall that Tuv(ξ) = T •
uv(ξ)Tu(ξf(v, v)ξ ). But the factors on the

right-hand side belong to EU(2n, R, Λ) by Lemmas 7.7 and 7.5. 2

Of course, this could be proven directly because, for example, the for-
mula in the proof of Lemma 7.6 may be simplified to the commutator rela-
tion Tuv(ξ) = [Y −(xλξ), Y +(−y)].

Now we can prove the “Whitehead–Vaserstein lemma” which says, in
particular, that the Eichler subgroup TU(2n − 2, R, Λ) is contained in the
elementary group EU(2n, R, Λ) of larger degree.

Proposition 7.1. Let u, v be any orthogonal vectors with u isotropic.
Assume ui = vi = 0 for some i. Then Tuv(ξ, α) ∈ EU(2n, R, Λ) for all
ξ ∈ R and α ∈ Λ.

Proof. From Sec. 6, we know that Tuv(ξ, α) = Tuv(ξ, 0)Tu0(ξ, α). But the
factors on the right-hand side belong to EU(2n, R, Λ) by Lemmas 7.8 and
7.5, respectively. 2

40. Kopeiko–Taddei lemma. Here, we show that the addition formulae
for ESD-transvections from Sec. 6 (see Lemmas 6.4 and 6.9) imply that
Tuv(ξ, α) belongs to the elementary group if u has two zeros in symmetric
positions. As is known from [42, 62], this already suffices to prove the
normality in the classical symplectic case (when λ = −1 and the involution
is trivial).

Lemma 7.9. Suppose ui = u−i = 0 and v = eivi + e−iv−i. Then
Tuv(ξ, α) ∈ EU(2n, R, Λ) for all ξ ∈ R and α ∈ Λ.

Proof. Without loss of generality, we may assume i = 1. By Lemmas 6.6 and
7.4, it is enough to prove that Tuv(ξ, α) ∈ EU(2n, R, Λ) for some α ∈ Λ,
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for example, for α = 0. But in this case, one easily sees that T •
uv(ξ) =

Y +(λxξ v1)Y −(xξ v−1). 2

Lemma 7.10. Suppose ui = u−i = 0 for some i and let v be any vector
orthogonal to u. Then Tuv(ξ, α) ∈ EU(2n, R, Λ) for all ξ ∈ R and α ∈ Λ.

Proof. Express v in the form v = x + z, where x = e1v1 + e−1v−1 and
z = v − x. By Lemmas 6.4 and 6.3, one has Tuv(ξ, α) = Tux(ξ, β)Tuz(ξ, γ)
for appropriate β, γ ∈ Λ. Now the second factor on the right-hand side
belongs to EU(2n, R, Λ) by Lemma 7.6 and the first one by Lemma 7.9. 2

8 Normality of the Elementary Subgroup: Suslin’s Approach

In this section, we prove the normality of EU(2n, R, Λ) in U(2n, R, Λ) for
the case where R is almost commutative and n ≥ 3. We do it following the
Suslin approach in [57, 60, 65]. For long root elements in the case λ = −1
and Λ = Λmin, this approach was also used in [31]. For short root elements
in the symplectic group, it was used in [42, 62]. Here, we show how it works
in the general case.

10. Unitary Suslin lemma. The original Suslin’s proof [57] of the normal-
ity of E(n, R) in GL(n, R) (n ≥ 3) over a commutative ring R was based on
the following observation, which is sometimes referred to as Suslin’s lemma
(compare [12, 36, 51]). Recall that a row u = (u1, . . . , un) ∈ nR is called
unimodular if u1R + · · · + unR = R, i.e., the (right) ideal generated by
the components of u coincides with R. It is equivalent to saying that there
exists a column w ∈ Rn such that uw = 1. Suslin’s lemma asserts that, if
u ∈ nR is a unimodular row of length n ≥ 2, then any solution v ∈ Rn of
the homogeneous linear equation uv = 0 is a linear combination of solutions
ujei − uiej , i 6= j, which have at most two non-zero coordinates.

First, we state a unitary analog of this lemma for the commutative case.
Note that unimodularity of a column u is equivalent to the unimodularity of
the corresponding row ũ. It is clear that, if u is unimodular, there exists a
column w such that h(u, w) = 1. We are interested in decomposing columns
orthogonal to u into sums of columns having enough zero coordinates.

Lemma 8.1. Suppose u ∈ R2n is a unimodular column of height n ≥ 2
over a commutative ring R. Then any vector v ∈ R2n orthogonal to u may
be expressed as a linear combination of vectors uij = λ(ε(i)−1)/2u−jei −
λ(ε(j)−1)/2u−iej, i 6= j, which are all orthogonal to u and have at most two
non-zero coordinates.

Proof. It is clear that that all the vectors uij are orthogonal to u. Now
the lemma is proven by essentially the same formula as the original Suslin’s
lemma. Namely, fix w ∈ R2n such that h(u, w) = 1. Then a direct calcu-
lation using the definition of h and the equalities h(u, v) = 0, h(u, w) = 1,
shows that v =

∑
(wjvi −wivj)uij , where the sum is taken over all i < j in

our sense, i.e., by such pairs (i, j) that either the signs of i and j coincide
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and i < j in the usual sense, or else i ∈ I+ and j ∈ I−. 2

Now we state a non-commutative version of this lemma (compare [37,
65]). Let R0 = Cent(R) be the center of the ring R. For an element ξ ∈ R,
we denote by O(ξ) the ideal in R0 of all central multiples of ξ, i.e., of all
elements from R0 which have the form ξζ = ζξ for some ζ ∈ R. Note that
we do not assume below that u is unimodular. The price we pay is that
we express only certain multiples of the vector v as a linear combination of
vectors orthogonal to u with at most 2 non-zero coordinates.

Lemma 8.2. Suppose u ∈ R2n is a column of height n ≥ 2 and θ =
uiζ = ζ ui (ζ ∈ R) is a central multiple of ui for a fixed i. Then for any
vector v ∈ R2n orthogonal to u, its multiple vθ may be expressed as a sum
vθ =

∑
j 6=i wj,−i, where each of the vectors wj,−i is orthogonal to u and has

at most two non-zero coordinates.

Proof. Set wj,−i = vjθej − λ(1−ε(i))/2λ(ε(j)+1)/2ζ u−jvje−i. Every wj,−i is
orthogonal to u, and if one lets w =

∑
j 6=−i wj,−i, then clearly, wj = vjθ for

all j 6= −i. Finally,

w−i = λ(1−ε(i))/2
∑
j 6=−i

λ(ε(j)+1)/2ζ u−jvj = ζ uiv−i = v−iθ. 2

The decompositions of root type elements in the following subsections
are based on this lemma. In the next subsection, we will apply the lemma
to an isotropic vector v = u. In this case, we want our summands to be
isotropic as well. Clearly, wi,−i is not isotropic. But actually, we do not need
to decompose vθ into summands which have only two non-zero elements. It
is usually enough that each summand has one zero element. Therefore, we
are usually done simply by presenting vθ in the form vθ = wj,−i+(vθ−wj,−i)
for some j 6= ±i.

20. Decomposition of long root unipotents. In this subsection, we
decompose a long root unipotent Tu(α) under the assumption that α ∈ θΛθ
for some θ ∈ O(ui), i = 1, . . . ,−1.

Proposition 8.1. Let u ∈ R2n be an isotropic column and α ∈ Λ. As-
sume n ≥ 3 and α ∈ θΛθ for θ ∈ O(ui), i = 1, . . . ,−1. Then Tu(α) ∈
EU(2n, R, Λ).

Proof. Without loss of generality, we may assume α = θβθ, where θ ∈
O(u−1) and β ∈ Λ. By Lemma 6.7, one has Tu(θβθ ) = Tuθ(β). On the
other hand, the column uθ may be decomposed as uθ = v +w, where v and
w are orthogonal isotropic vectors of the form

v = (ζ, u2θ, 0, . . . , 0, 0)t, w = (u1θ − ζ, 0, u3θ, . . . , u−2θ, u−1θ)t.

Indeed, let ξ ∈ R be such that θ = u−1ξ = ξ u−1 ∈ R0. Then one may
take ζ = −ξ u2u−2. A direct check using the fact that u is isotropic
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and ζ central shows that v and w are indeed orthogonal and isotropic.
By Lemma 6.10, one has Tuθ(β) = Tv(β)Tw(β)Tvw(β), where all factors
on the right-hand side are elementary: the first two by the Whitehead–
Vaserstein lemma (Lemma 7.5) and the last one by the Kopeiko–Taddei
lemma (Lemma 7.10). 2

30. Decomposition of short root unipotents. In this subsection,
we decompose a short root unipotent Tuv(ξ) under the assumption that
ξ ∈ O(ui)O(uj)R for some j 6= ±i.

Proposition 8.2. Let u ∈ R2n be an isotropic vector, v ∈ R2n any vector
orthogonal to u, and ξ ∈ R. Assume n ≥ 3 and ξ ∈ O(ui)O(uj)R for some
i 6= ±j. Then Tuv(ξ) ∈ EU(2n, R, Λ).

Proof. Without loss of generality, we may assume ξ = ηθρ, where η ∈
O(u−1), θ ∈ O(u−2), and ρ ∈ R. By Lemma 6.3, one has Tuv(ηθρ) =
Tu,vη(θρ). On the other hand, by Lemma 8.2, the column vη may be de-
composed into a sum of columns wj,−i, all of which are orthogonal to u and
have at most two non-zero coordinates. By Lemmas 6.4 and 6.6, one has

Tu,vη(θρ) = Tu,wi,−i(θρ)Tu(∗)
∏

j 6=±i

Tu,wj,−i(θρ).

The second factor on the right-hand side is elementary by the previous
section, every factor in the product is elementary by the Kopeiko–Taddei
lemma (since all wj,−i, j 6= ±i, are isotropic). It remains only to consider
the first factor.

We cannot apply the Kopeiko–Taddei lemma to the element Tu,wi,−i(θρ)
since wi,−i is not isotropic. But we can repeat arguments from the previous
section to apply the Whitehead–Vaserstein lemma. Namely, by Lemma 6.3,
one has Tu,wi,−i(θρ) = Tuθ,wi,−i(ρ). As in the proof of Proposition 8.1, we
can decompose the column uθ as uθ = w + z, where w and z are orthogonal
isotropic vectors of the form

w = (0, ζ, u3θ, 0, . . . , 0, 0)t, z = (u1θ, u2θ − ζ, 0, u4θ, . . . , u−2θ, u−1θ)t.

Moreover, since u and w are orthogonal to wi,−i, so is z. By Lemma 6.10,
one has

Tuθ,wi,−i(ρ) = Tw,wi,−i(ρ)Tz,wi,−i(ρ)Tw,z(∗).
Here, the first two factors on the right-hand side are elementary by the
Whitehead–Vaserstein lemma (w−3 = z3 = 0 together with the correspond-
ing elements in wi,−i) and the last one by the Kopeiko–Taddei lemma (w is
isotropic and w1 = w−1 = 0). This completes the proof. 2

40. Partitions of 1. In this subsection, it is shown that, when a sin-
gle unimodular column u is replaced by all columns cu, where c ranges over
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EU(2n, R, Λ), then the elements appearing in Propositions 8.1 and 8.2 actu-
ally generate the whole ring R0. Our argument reproduces, with an obvious
complication due to the presence of an involution, the original argument of
Suslin (see [65, Lemma 1], [37, Lemma 3], or [39, pp. 18–20]).

The only divergence from the proof of the linear case is that maximal
ideals of the ring R0 are not necessarily invariant with respect to the invo-
lution. As a result, it is possible that θ does not belong to a maximal ideal
m ∈ Max(R0), whereas θ does. It is technically more convenient to pass to
a subring A of R0, in which the involution is trivial, and to prove a formally
stronger fact that the products of multiples of (cu)i lying in A generate the
whole ring A as c ranges over EU(2n, R, Λ).

Let A be the subring generated by the norms of elements from R0, i.e.,
by all θθ, where θ ∈ R0. Clearly, A also contains the traces of elements
from R0. Indeed, θ + θ = (1 + θ)(1 + θ)− θθ − 1 ∈ A. Clearly, there are at
most two maximal ideals m1, m2 ∈ Max(R0), m1 = m2, lying over a given
maximal ideal m ∈ Max(A). For a maximal ideal m ∈ Max(A), we denote
by Am = Sm

−1A, Rm = Sm
−1R, etc. the localizations of A, R, etc. with

respect to the multiplicative set Sm = A\m. As usual, we denote by Rad(R)
the Jacobson radical of a ring R.

Lemma 8.3. Let (R, Λ) be an almost commutative form ring. Then for
any maximal ideal m ∈ Max(A), the ring Qm = Rm/ Rad(Rm) is classically
semisimple and the canonical morphism φ = φm : R→ Qm is surjective.

Proof. First, observe that Rm is algebraic over Am. Indeed, being a root of
the equation x2− (θ+θ )x+θθ = 0 with the coeffitients in A, every element
θ ∈ R0 is algebraic over A. Since R is a finitely generated module over R0,
it is also algebraic over A and our claim follows.

Next, we prove that m is contained in Rad(Rm). Indeed, take arbitrary
µ ∈ m and ξ ∈ Rm. We have to prove that 1 + µξ is invertible in Rm.
Since Rm is algebraic, the subalgebra Am(ξ) ⊆ Rm is finite-dimensional.
Since Rad(Am) = mAm, Nakayama’s lemma implies that m is contained in
every maximal ideal of Am(ξ), and thus, µ ∈ Rad(Am(ξ)). Hence, 1 + µξ is
invertible in Am(ξ).

Now it is easy to prove that φ is surjective. In fact, let ξ/θ ∈ Rm,
where ξ ∈ R and θ ∈ Sm. Since θA + m = A, there exist η ∈ A and
µ ∈ m such that θη + µ = 1. Multiplying this equality by ξ/θ, we obtain
ξ/θ = ηθ + µξ/θ ∈ ηθ + Rad(Rm).

Finally, observe that Qm = Rm/ Rad(Rm) is a finitely generated module
over (R0)m/ Rad((R0)m). The latter ring is either a field (R0)m/m(R0)m

or a direct sum of two fields (R0)m/m1(R0)m ⊕ (R0)m/m2(R0)m. Thus, the
ring Rm/ Rad(Rm) is both semisimple and artinian. 2

We set Γm = φm(Λ). Then the homomorphism φm : (R, Λ)→ (Qm, Γm)
of form rings is surjective. Thus, we obtain an epimorphism of the corre-



Elementary Subgroups of the Unitary Groups 191

sponding elementary unitary groups

φm : EU(2n, R, Λ) −→ EU(2n, Qm, Γm).

Since Qm is semisimple, the elementary unitary group EU(2n, Qm, Γm) has
very strong transitivity properties (see [6, 36, 49, 66]). In particular, for
all n ≥ 3, the group acts transitively on the set of all isotropic unimodular
vectors (see [36, Theorem 9.1.3] or [49, Theorem 8.1] for much stronger
results).

Lemma 8.4. Let u ∈ R2n be a unimodular isotropic column over an
almost commutative ring R. Then the ideal in R0 generated by all θθ,
where θ ∈ O((cu)−1) and c runs over EU(2n, R, Λ), coincides with R0.

Proof. Let m ∈ Max(A) be any maximal ideal of A. Then the vector φm(u)
is an isotropic unimodular vector over a classically semisimple ring Qm. The
transitivity of EU(2n, Qm, Γm) and the surjectivity of φm imply that there
exists c ∈ EU(2n, R, Λ) such that φm((cu)−1) ∈ Qm

∗ or, in other words,
(cu)−1 is invertible in Rm. This means that ((cu)−1)−1 = ξ/θ, where ξ ∈ R
and θ ∈ Sm. Thus, (cu)−1ξ = ξ(cu)−1 = θ ∈ Sm ∩ O((cu)−1). Clearly,
θθ = θ2 ∈ Sm ∩ O((cu)−1). Thus, for every m ∈ Max(A), there exist
c ∈ EU(2n, R, Λ) and θ ∈ O((cu)−1) such that θθ /∈ m. 2

Lemma 8.5. Let u ∈ R2n be a unimodular isotropic column over an
almost commutative ring R. Then the ideal in R0 generated by all ηθ, where
η ∈ O((cu)−1), θ ∈ O((cu)−2) and c runs over EU(2n, R, Λ), coincides with
R0.

Proof. We argue as in Lemma 8.4. Let m ∈Max(A) be any maximal ideal of
A. Again, the transitivity of EU(2n, Qm, Γm) and the surjectivity of φm im-
ply that there exists c ∈ EU(2n, R, Λ) such that φm((cu)−1), φm((cu)−2) ∈
Qm

∗ or, in other words, (cu)−1, (cu)−2 are invertible in Rm. This means
that ((cu)−1)−1 = ξ/η and ((cu)−2)−1 = ζ/θ, where ξ, ζ ∈ R and η, θ ∈ Sm.
Then (cu)−1ξ = ξ(cu)−1 = η ∈ Sm ∩ O((cu)−1) and (cu)−2ζ = ζ(cu)−2 =
θ ∈ Sm ∩ O((cu)−2). Clearly, ηθ = ηθ ∈ Sm ∩ O((cu)−1)O((cu)−2).
Thus, for every m ∈ Max(A), there exists c ∈ EU(2n, R, Λ) such that
O((cu)−1)O((cu)−2) 6⊆ m. 2

Note that we actually used very little of the ring Qm. Nothing changes in
the proof of the last two lemmas if only EU(2n, Qm, Γm) acts transitively on
the set of isotropic unimodular columns. This is the case, for example, when
n ≥ asr(Qm)+2 (see [49, Theorem 8.1]) or even better when n ≥ ΛS(Qm)+1
(see Sec. 3 and the proof of Lemma 4.1 in [11]). One may impose various
other ring theoretic conditions on R to guarantee the validity of the last
two lemmas. For example, the proof works when R is algebraic over R0 and
satisfies some further finiteness conditions as in [37–39] or when R is von
Neumann regular, etc.
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50. Proof of Theorem 1.1 in the absolute case. Corollary 5.1 shows
that we only have to prove the theorem in the absolute case. In view of
Lemmas 6.2 and 6.5, this amounts to proving that Tu(α) and Tuv(ξ) belong
to EU(2n, R, Λ), where u and v are, respectively, the ith and jth columns
of a matrix g ∈ U(2n, R, Λ), α ∈ Λ, and ξ ∈ R. In fact, we will prove the
stronger statement that these elements belong to EU(2n, R, Λ) whenever u
is a unimodular isotropic column and v is orthogonal to u.

First, we prove that unipotent elements of long root type Tu(α) belong
to EU(2n, R, Λ) whenever u is unimodular. Indeed, if θ ∈ O((cu)−1), where
c ∈ EU(2n, R, Λ), then Tu(θαθ) = c−1Tcu(θαθ )c ∈ EU(2n, R, Λ) by Propo-
sition 8.1. But since u is unimodular, Lemma 8.4 shows that the elements
θθ generate the unit ideal in R0 as c ranges over EU(2n, R, Λ). Choose
c1, . . . , ct ∈ EU(2n, R, Λ) such that there exists a partition of 1 of the form
θ1θ1 + · · ·+ θtθt = 1, where θh ∈ O((chu)−1). Then

Tu(α) =
∏

Tu(θhαθh) =
∏

ch
−1Tchu(θhαθh)ch,

where all the factors on the right-hand side belong to EU(2n, R, Λ).
Now we prove that unipotent elements of short root type Tuv(ξ) belong

to EU(2n, R, Λ) whenever u is unimodular. Indeed, if η ∈ O((cu)−1) and
θ ∈ O((cu)−2), where c ∈ EU(2n, R, Λ), then

Tuv(ηθξ) = c−1Tcu,cv(ηθξ)c ∈ EU(2n, R, Λ)

by Proposition 8.2. But since u is unimodular, Lemma 8.5 shows that the
elements θη generate the unit ideal in R0 as c ranges over EU(2n, R, Λ).
Choose c1, . . . , ct ∈ EU(2n, R, Λ) such that there exists a partition of 1 of
the form θ1η1+ · · ·+θtηt = 1, where ηh ∈ O((chu)−1) and θh ∈ O((chu)−2).
Then

Tuv(ξ) =
∏

Tuv(θhξηh) =
∏

ch
−1Tchu,chv(θhξηh)ch,

where all the factors on the right-hand side belong to EU(2n, R, Λ). This
completes the proof of the theorem for the absolute case, and thus, for all
cases in view of Sec. 5. 2

Remark. In fact, nothing changes in the proof for all other situations men-
tioned in the preceding subsection. In particular, we have proven the fol-
lowing result: Let (R, Λ) be a form ring. Assume n ≥ 3, and for all maximal
ideals m ∈Max(A), the group EU(2n, Rm, Λm) acts transitively on the set of
all unimodular isotropic columns of height 2n over Rm. Then for any form
ideal (I, Γ), the corresponding elementary subgroup EU(2n, I, Γ) is normal
in U(2n, R, Λ) and

EU(2n, I, Γ) = [EU(2n, R, Λ), CU(2n, I, Γ)].

As mentioned after the proof of Lemma 8.5, the condition of Corollary 5.1 is
satisfied, for example, when n ≥ asrRm +2 for all m ∈Max(A) (see [49]) or
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even better, when n ≥ ΛS(Rm)+1 for all m ∈ Max(A) (see [11]). One could
state many further generalizations like this in the style of [67] or [37–39].
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[64] G. Taddei, Normalité des groupes élémentaire dans les groupes de Chevalley
sur un anneau, Contemp. Math. 55 (2) (1986) 693–710.



196 A. Bak, N. Vavilov

[65] M.S. Tulenbaev, Schur multiplier of the group of elementary matrices of finite
order, J. Sov. Math. 17 (4) (1981) 2062–2067.

[66] L.N. Vaserstein, Stabilization of unitary and orthogonal groups over a ring,
Math. USSR Sbornik 10 (1970) 307–326.

[67] L.N. Vaserstein, On normal subgroups of GLn over a ring, in: Algebraic
K-Theory, Lecture Notes in Mathematics, Vol. 854, Springer-Verlag, Berlin,
1981, pp. 456–465.

[68] L.N. Vaserstein, The subnormal structure of general linear groups, Math.
Proc. Cambridge Phil. Soc. 99 (1986) 425–431.

[69] L.N. Vaserstein, On normal subgroups of Chevalley groups over commutative
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