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Abstract Let A be a module finite R-algebra such that the Bass-Serre dimen-
sion (R) 5 1. Let M, M ′ and P be A-modules. Then M⊕A⊕P ∼= M ′⊕A⊕P
implies M ⊕ A ∼= M ′ ⊕ A, providing the following holds: (1) P is finitely
generated and projective. (2) M is finitely presented. (3) There is a 2-sided
ideal I in A such that the general linear group GL2(A) acts transitively on
the (A/I)-unimodular vectors in A/I ⊕A/I and for almost all maximal ide-
als m of R there is locally an Am-homomorphism fm : Mm −→ Am such that
modulo the Jacobson radical(Am), image (fm) ⊇ Im.

1. Introduction

The purpose of this note is to extend a recent cancellation result of Hambleton
and Kreck [H-K, Theorem A] for modules over a separable order to modules
over a module finite R-algebra where dimension (R) ≤ 1. We define the
dimension dim(R) of a commutative ring R to be 0 (resp. 1) if it is semilocal
(resp. there is a finite set M of maximal ideals of R such that for each element
s ∈ R\ ∪

m∈M

m, the quotient ring R/Rs is semilocal.) This notion of dimension

is weaker than that of Bass-Serre dimension which was used by H. Bass in
his fundamental work on cancellation, cf. [B, IV].

Our main result is the following.

� THEOREM 1.1 Let A be a module finite R-algebra such that
dim(R) 5 1. Let M, M ′, and P be A-modules. Suppose the following condi-
tions hold.
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(1.1.1) There is a 2-sided ideal I in A such that the general linear group
GL2(A) acts transitively on the (A/I)-unimodular vectors in A/I ⊕ A/I.
(1.1.2) M is finitely presented (this is automatic if A is Noetherian and M
is finitely generated) and for all but a finite number of maximal ideals m of
R, there is locally an Am-homomorphism fm : Mm −→ Am such that modulo
the Jacobson radical(Am) the image (fm) ⊇ Im.
If P is finitely generated and projective then P ⊕ A ⊕ M ∼= P ⊕ A ⊕ M ′

implies A ⊕ M ∼= A ⊕ M ′. �

It is very likely that there are appropriate generalizations of (1.1) to
module finite R-algebras A where the only condition imposed on A is that R
is finite dimensional. As Hambleton and Kreck [H-K] have shown, one can
expect such results to find applications in the classification of 2-dimensional
C.W. complexes.

� COROLLARY 1.2 Let A be a module finite R-algebra such that
dim(R) 5 1. Let M, M ′ and P be A-modules. Suppose the following condi-
tions hold.

(1.2.1) There is a 2-sided ideal I in A such that A/I is commutative and each
element of the special linear group SL2(A/I) lifts to GL2(A); e.g., SL2(A/I)
is equal to the elementary group E2(A/I).

(1.2.2) Condition (1.1.2) above.

If P is finitely generated and projective then P ⊕ A ⊕ M ∼= P ⊕ A ⊕ M ′

implies A ⊕ M ∼= A ⊕ M ′. �

PROOF The conclusion above will follow from (1.1), once we show
that condition (1.1.1) is satisfied. It suffices to show that SL2(A/I) acts
transitively on unimodular vectors of A/I ⊕ A/I. Let a, c ∈ A/I such that
(a, c) ∈ A/I ⊕ A/I is unimodular. Choose elements b, d ∈ A/I such that

ad + bc = 1. The matrix

(

a b
c d

)

has determinant 1, i.e. ∈ SL2(A/I),

and

(

a b
c d

) (

1
0

)

=

(

a
c

)

. It follows that SL2(A/I) acts transitively on the

unimodular vectors in A/I ⊕ A/I. Q.E.D.

� COROLLARY 1.3 Let R be a Dedekind ring with field of fractions
F . Let A be an R-order on a finite separable semisimple F -algebra. Let
M, M ′, and N be finitely generated A-modules. Let I be a 2-sided ideal of A
such that conditions (1.1.1) and (1.1.2) are satisfied. Suppose that N is R-
torsion free and that there is a natural number r such that for each maximal
ideal m of R, Nm is a direct summand of (Am ⊕ Mm)r. Then N ⊕ A ⊕ M ∼=
N ⊕ A ⊕ M ′ implies A ⊕ M ∼= A ⊕ M ′. �
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PROOF Clearly, N ⊕ A ⊕ A ⊕ M ∼= N ⊕ A ⊕ A ⊕ M ′. By Swan’s
cancellation theorem [S, (9.4) and (9.7)], A ⊕ A ⊕ M ∼= A ⊕ A ⊕ M ′. Since
dim(R) 5 1, it follows now from Theorem (1.1) that A ⊕ M ∼= A ⊕ M ′.
Q.E.D.

� COROLLARY 1.4 (Hambleton - Kreck [H-K, Theorem A]) Let A
be a separable R-order as in (1.3). Let M, M ′ and N be finitely generated
A-modules where N is as in (1.3). Suppose there is a 2-sided ideal I in A such
that the ring A/I is also a separable R-order and the following conditions
hold.
(1.4.1) GL2(A) acts transitively on the (A/I)-unimodular vectors of A/I ⊕
A/I.
(1.4.2) There is a natural number k such that for all but a finite number of
maximal ideals m of R, ((A/I)k ⊕ M)m has a direct summand isomorphic to
Am. Then N ⊕ A ⊕ M ∼= N ⊕ A ⊕ M ′ implies A ⊕ M ∼= A ⊕ M ′. �

PROOF The conclusion of Hambleton - Kreck will follow from (1.3),
once we show that condition (1.1.2) is satified.

Let B = A/I. For almost all maximal ideals m of R, there are by
hypothesis Am-homomorphisms f : Am −→ Bk

m
⊕ Mm and g : Bk

m
⊕ Mm −→

Am such that gf = 1Am
. Write f = (f1, f2) where f1 : Am −→ Bk

m
and

f2 : Am −→ Mm and write g = (g1, g2) where g1 : Bk
m

−→ Am and g2 :
Mm −→ Am. For a ∈ Im, f1(a) = f1(1)a = 0; thus, a = gf(a) = g2f2(a).
Thus, g2f2|Im

= 1Im
. Thus, Mm contains a direct summand isomorphic to Im.

Q.E.D.

In the next section, we recall a few definitions and then prove Theorem
(1.1). Our methods are elementary and require little beyond a familiarity
with semilocal rings, Nakayama’s lemma, and localization.

2. Proof of Theorem 1.1

We begin by recalling a few definitions.

Let A be an associative ring with identity and q a 2-sided ideal in A. Let
M = M1⊕· · ·⊕Mn be a direct sum of right A-modules. If f : Mi −→ Mj(i 6=
j) is an A-homomorphism and f its unique extension to an A-endomorphism
of M such that f(Mk) = 0 for all k 6= i, we set ε(f) = 1M +f . Clearly ε(f) is
an A-automorphism of M with inverse ε(−f). ε(f)is called the elementary

transformation defined by f . If image (f) ⊆ Mjq then ε(f) is called a
q-elementary transformation. Let E(M1 . . . , Mn) denote the subgroup of
AutA(M) generated by all elementary transformations ε(f) where f ranges
over all A-homomorphisms f : Mi −→ Mj such that i 6= j, 1 ≤ i ≤ n, 1 ≤
j ≤ n. Let E(M1, . . . , Mn; q) denote the normal subgroup of E(M1, . . . , Mn)
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generated by the q-elementary transformations. If M1 = · · · = Mn = A then
by definition En(A) = En(M1, . . . , Mn) and En(A, q) = E(M1, . . . , Mn; q).

Let M be a right A-module. An element m ∈ M is called unimodular

if there is an A-homomorphism f : M −→ A such that f(m) = 1. It
follows that m = (m1, . . . , mn) ∈ M1 ⊕ · · · ⊕ Mn is unimodular ⇔ there

are A-homomorphisms fi : Mi −→ A(i = 1, . . . , n) such that
n
∑

i=1

fi(m) =

1 ⇔ there are A-homomorphisms fi : Mi −→ A(i = 1, . . . , n) such that
(f1(m1), . . . , fn(mn)) ∈ An = A ⊕ · · · ⊕ A (n times) is unimodular. A vector
(a1, . . . , an) ∈ An is unimodular ⇔ there are elements b1, . . . , bn ∈ A such

that
n
∑

i=1

biai = 1.

If M is a right A-module and m ∈ M , one defines oM(m) = {f(m)|f ∈
HomA(M, A)}. Clearly, oM(m) is a left ideal in A and m is unimodular
⇔ oM(m) = A.

� LEMMA 2.1 Let A be an associative ring with identity. Let (a1, . . . , an) ∈
An be unimodular. Then there is an element b ∈ A such that (a1, . . . , an−1, (ban)2)
is unimodular. �

PROOF By definition, there are elements c1, . . . , cn ∈ A such that
1 = c1a1 + · · ·+ cnan. Thus, an = an(c1a1 + · · ·+ cnan). Thus, 1 = c1a1 · · ·+
cnan = c1a1+· · ·+cn−1an−1+cn[an(c1a1+· · ·+cnan)] = (cnanc1+c1)a1+· · ·+
(cnancn−1 + cn−1)an−1 + (cnan)2. Thus, (a1, . . . , an−1, (cnan)2) is unimodular.
Q.E.D.

� LEMMA 2.2 Let A be a semilocal ring and let q be a 2-sided ideal
in A. Let a be a left ideal in A. Let M be a right A-module. Let (a, m) ∈
A ⊕ M such that m ∈ Mq and a + oA⊕M(a, m) = A. Then there is an
A-homomorphism f : M −→ Aq such that a + oA(a + f(m)) = A. �

PROOF By definition, there is an A-homomorphism g : M −→ A such
that a + oA⊕A(a, g(m)) = A. Since m ∈ Mq, g(m) ∈ q. It follows from (2.1)
that a + oA⊕A(a, (bg(m))2) = A for some b ∈ A. By [B, III (2.8)], there is
an element c ∈ A such that a + oA(a + c(bg(m))2) = A. Define f to be

the compositon of the A-homomorphisms M
g

−→ A
cbg(m)b
−→ A where cbg(m)b

denotes left multiplication by cbg(m)b. Clearly, f has the desired properties.
Q.E.D.

� LEMMA 2.3 Let A be a module finite R-algebra. Let q be a 2-sided
ideal in A. Let M be a finite set of maximal ideals in R. Let M be a right A-
module. If (a, m) ∈ A⊕M is a unimodular element such that m ∈ Mq then
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there is an A-homomorphism f : M −→ Aq such that A(a + f(m)) k As for
some s ∈ R \ ∪

m∈M

m. �

PROOF Let p = ∩
m∈M

m. R/p is a semilocal ring (with maximal ideals

{m/p|m ∈ M}). Since A is module finite over R, A/Ap is module finite over
R/Rp and hence semilocal. By hypothesis, there is an A-homomorphism
g : M −→ A such that (a, g(m)) is unimodular. Since m ∈ Mq, g(m) ∈ q.
By (2.1), (a, (bg(m))2) is unimodular for some b ∈ A. By [B, III (2.8)], there
is an element c ∈ A such that a+c(bg(m))2 is a unit mod Ap. Let f denote the

composition of M
g

−→ A
cbg(m)b
−→ A where cbg(m)b denotes left multiplication

by cbg(m)b. Then a+f(m) is a unit in A/Ap. Let S denote the multiplicative
set R \ ∪

m∈M

m. Since the ideal S−1Ap in S−1A is contained in the Jacobson

radical(S−1A) and S−1A/S−1Ap = A/p, it follows from Nakayama’s lemma
[B, III (2.2)] that a+f(m) is a unit in S−1A. Thus, there are elements d ∈ A
and s ∈ S such that s−1d(a + f(m)) = 1 in S−1A. Thus, there is an element
t ∈ S such that the equality td(a + f(m)) = ts holds in A. Q.E.D.

� PROPOSITION 2.4 Let A be a module finite R-algebra such that
dim(R) 5 1. Let M be a finitely presented right A-module. Let I be a
2-sided ideal in A with the following properties.

(2.4.1) There is a subgroup G of the general linear group GL2(A), which acts
transitively on the (A/I)-unimodular vectors in A/I ⊕ A/I.

(2.4.2) there is a finite set M of maximal ideals of R such that for each
maximal ideal m /∈ M, there is locally an Am-homomorphism fm : Mm −→
Am such that modulo the Jacobson radical(Am), the image (fm) ⊇ Im.

Let q be a 2-sided ideal in A and let G(q) be a subgroup of the q-relative gen-
eral linear group GL2(A, q), which acts transitively on the (A/I)-unimodular
vectors u of A/I ⊕ A/I such that u ≡ (1, 0) mod (q + I)/I. (If q = A, one
can take G(q) = G.) If v, w ∈ A⊕A⊕M are unimodular elements such that
v ≡ w mod q, i.e v − w ∈ (A ⊕ A ⊕ M)q, then there is an automorphism
σ in the normal closure of < E(A, A, M ; q), G(q) > by < E(A, A, M), G >
such that σv = w. �

PROOF The proof will be divided into two steps.
Step 1: There is an element ρ ∈< E(A, A, M), G > such that ρw = (1, 0, 0) ∈
A ⊕ A ⊕ M .
Step 2: If w = (1, 0, 0) then there is an element τ ∈< E(A, A, M ; q), G(q) >
such that τv = (1, 0, 0).

Assume Steps 1 and 2 have been established. The proof is then completed
as follows. By Step 1, there is a ρ such that ρw = (1, 0, 0). Clearly, ρv ≡ ρw

5



mod q. Thus, according to Step 2, there is a τ ∈< E(A, A, M ; q), G(q) >
such that τρv = ρw. Clearly, (ρ−1τρ)v = w and ρ−1τρ is in the normal
closure of < E(A, A, M ; q), G(q) > under < E(A, A, M), G >.

Step 1 is the special case of Step 2 where q = A. Thus, it suffices to
prove Step 2.

Let v = (1 + a, b, m) be a unimodular element in A ⊕ A ⊕ M such
that a, b ∈ q and m ∈ Mq. Enlarge M to a finite set, denoted again by
M, such that if m is a maximal ideal /∈ M and s ∈ R \ m then A/As is
semilocal. This can be done, since dim(R) 5 1. By Lemma (2.3), there is
an A-homomorphism f : A ⊕ M −→ Aq such that A(a + f(b, m)) k As for
some s ∈ R \ ∪

m∈M

m. Clearly, ε(f)v = (1 + a + f(b, m), bm). Thus, we can

assume right from the start that A(1 + a) k As for some s ∈ R \ ∪
m∈M

m.

Since (1 + a, b, m) is unimodular, there is an A-homomorphism f :
M −→ A such that (1 + a, b, f(m)) ∈ A ⊕ A ⊕ A is unimodular. Applying
Lemma (2.2) to the vector (1 + a, b, f(m)) over the semilocal ring A/As, we
can find an A-homomorphism g : A −→ Aq such that (1 + a, b + gf(m)) is
unimodular over A/As. But, since A(1 + a) k As, it follows that (1 + a, b +
gf(m)) is unimodular over A. Clearly, ε(gf)v = (1+a, b+gf(m), m). Thus,
we can assume right from the start that v = (1 + a, b, m) where (1 + a, b)
is unimodular. By hypothesis, there is an element τ ∈ G(q) such that τ ⊕
1M(v) = (1 + a′, b′, m) where a′, b′ ∈ I ∩ q. Thus, we can assume v = (1 +
a, b, m) where a, b ∈ I∩q and (1+a, b) is unimodular. Moreover, by applying
if necessary an elementary transformation ε(f) to v, where f : A −→ A(I∩q)
has the property that A(1 + a + f(b)) ⊇ As for some s ∈ R \ ∪

m∈M

m, we can

assume that A(1 + a) ⊇ As.

Let V (Rs) = {m|m a maximal ideal of R, m ⊇ Rs}. Evidently, V (Rs)∩
M = ∅. Thus, R/Rs is semilocal and V (Rs) is finite. Let m ∈ V (Rs). Let
fm : Mm −→ Am be as in the hypothesis of the proposition. Since M is
finitely presented, we can apply [B, III (4.5)] to find an A-homomorphism
f [m] : M −→ A and an element s[m] ∈ R \m such that (s[m])−1f [m] = fm. Let
t[m] ∈ R\m such that t[m] ≡ (s[m])−1 mod (Rmm). Let g[m] = t[m]f [m]. Let J [m]

denote the inverse image in A of the Jacobson radical (Am/Ams). Each g[m]

has the property that mod J [m], image (g[m]) ⊇ I. Let x[m] ∈ M such that
mod J [m], g[m]x[m] = b − g[m](m). Let r[m] ∈ R such that r[m] ≡ 1 mod m

and r[m] ≡ 0 mod m′ for each m′ 6= m ∈ V (Rs). Let x =
∑

m∈V (Rs)

x[m]r[m].

Since (1 + a, b) is unimodular, we can find an A-homomorphism h : A ⊕
A −→ M such that h(1 + a, b) = x. Clearly, ε(h)(1 + a, b, m) = (1 +
a, b, m + h(1 + a, b)) = (1 + a, b, m + x). Since (1 + a, b) is unimodular and
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g[m](m+x) ≡ g[m](m)+g[m]x[m] ≡ g[m](m)+(b−g[m](m) = b mod J [m], we see
that (1 + a, m + x) ∈ A⊕M is unimodular mod J [m]. Thus, (1 + a, m + x)
is unimodular over Am/Ams = (A/As)m for each m ∈ V (Rs). Thus, by
Nakayama, (1 + a, m + x) is unimodular over A/As. (More specifically, one
can argue as follows. Choose c, d ∈ A such that c(1 + a) + db = 1 and
let g =

∑

m∈V (Rs)

x[m]g[m]. It suffices to show that A(ca + dg(m + x)) ≡ A

mod As. By the local-global principle, it suffices to show that for all maximal
ideals of R/Rs, equivalently for all m ∈ V (Rs), Am(ca + dg(m + x)) ≡ Am

mod (Ams). By Nakayama’s lemma [B, III (2.2)], it suffices to show that
Am(ca + dg(m + x)) ≡ Am mod AmJ [m]. But ca + dg(m + x)) ≡ ca + db = 1
mod Am mod J [m].) Since A(1 + a) ⊇ As, it follows that (1 + a, m + x)
is unimodular over A. Choose h′ : A ⊕ M −→ A such that h′(1 + a, m +
x) = 1 − b. Clearly, ε(h′)ε(h)(1 + a, b, m) = (1 + a, 1, m + x). Choose
h′′ : A −→ A such that h′′(1) = −a. If τ = ε(h)−1ε(h′)−1ε(h′′)ε(h′)ε(h) then
τ(1 + a, b, m) = (1, b′, m′) for suitable b′ and m′. Furthermore, since image
(h′′) ⊆ I ∩q, τ ∈ E(A, A, , M ; q). Thus, b′ ≡ 0 mod q and m′ ≡ 0 mod Mq.
Letting h1 : A −→ A such that h1(1) = −b′ and h2 : A −→ M such that
h2(1) = −m′, we obtain that ε(h2)ε(h1)τ(1 + a, b, m) = (1, 0, 0). Q.E.D.

� THEOREM 2.5 Let A be a module finite R-algebra such that
dim(R) 5 1. Let M be a finitely presented right A-module. Let I be a 2-sided
ideal in A satisfying (2.4.1) and (2.4.2). If M ′ and P are right A-modules
and P is finitely generated and projective then P ⊕ A ⊕ M ∼= P ⊕ A ⊕ M ′

implies A ⊕ M ∼= A ⊕ M ′. �

PROOF The proof follows the pattern of that in Bass [B, IV (3.5)].
Choose Q such that P ⊕ Q ∼= An for some n. If n = 0 then P = 0 and
we are done. Thus, we can assume n > 0. It suffices now to show that
An+1 ⊕ M ∼= An+1 ⊕ M ′ implies An ⊕ M ∼= An ⊕ M ′ for any n > 0. Let
v = (1, 0, . . . , 0) ∈ An+1 ⊕ M, w = (1, 0, . . . , 0) ∈ An+1 ⊕ M ′, and identify
An+1 ⊕ M with An+1 ⊕ M ′. By Proposition (2.4), there is a transformation
σ ∈< E(A, . . . , A, M), G > such that σv = w. σ induces an isomorphism

A⊕An ⊕M/vA
∼=

−→ A⊕An ⊕M ′/wA. But An ⊕M ∼= A⊕An ⊕M/vA and
An ⊕ M ′ ∼= A ⊕ An ⊕ M ′/wA. Q.E.D.

� THEOREM 2.6 Let A be a module finite R-algebra such that
dim(R) ≤ 1 and R is Noetherian. Let M, M ′, and N be finitely generated
right A-modules (and therefore finitely presented, because A is Noetherian).
Let B denote the A-endomorphism ring EndA(N) of N and suppose that the
canonical A-homomorphisms Hom A(N, M) ⊗B N −→ M, f ⊗ n 7→ f(n),
and Hom A(N, M ′) ⊗B N −→ M ′, f ⊗ n 7→ f(n) are isomorphisms; e.g., M
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and M ′ are direct summands of a direct sum of N ’s. Let I be a 2-sided ideal
in B such that I and the right B-module HomA(N, M) satisfy conditions
(2.4.1) and (2.4.2). Let Q be a right A-module which is a direct summand of
a direct sum of finitely many copies of N . Then Q⊕N ⊕M ∼= Q⊕N ⊕M ′

implies N ⊕ M ∼= N ⊕ M ′. �

PROOF Since N finitely generated over A and A is module finite over
R with R Noetherian, it follows that B is module finite over R. Consider the
functor ((right A-modules)) −→ ((right B-modules)), X 7→ Hom A(N, X).
Applying the functor to the isomorphism Q⊕N⊕M ∼= Q⊕N⊕M ′, we obtain
an isomorphism Hom A(N, Q)⊕B⊕ Hom A(N, M) ∼= Hom A(N, Q)⊕B⊕
Hom A(N, M ′). Since Q is a direct summand of a direct sum of finitely

many copies of N , it follows that Hom A(N, Q) is finitely generated and
projective over B. Hom A(N, M) is finitely presented over B, since it is
finitely generated already over R and B is Noetherian. Thus, we can apply
Theorem (2.5). By the conclusion of that theorem, B⊕ Hom A(N, M) ∼= B⊕
Hom A(N, M ′). Applying the functor −⊗B N to the isomorphism above, we

obtain an isomorphism N⊕ Hom A(N, M)⊗BN ∼= N⊕ Hom A(N, M ′)⊗BN .
But by hypothesis, Hom A(N, M) ⊗B N ∼= M and Hom A(N, M ′) ⊗B N ∼=
M ′. Q.E.D.

REMARK 2.7 One can replace in (2.4) and (2.5) (resp. (2.6)) the
hypothesis that M is finitely presented by the weaker hypothesis that M
contains a direct summand M0 such that M0 is finitely presented and the
ideal I (resp. I) in A (resp. B) satisfies (2.4.2) with respect to the submodule
M0 (rersp. Hom A(N, M0)). The details are a little tedious, but not difficult.
We shall skip them.
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