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Abstract Let A be a module finite R-algebra such that the Bass-Serre dimen-
sion (R) £ 1. Let M, M’ and P be A-modules. Then M ASP = M'©ADP
implies M & A = M’ @ A, providing the following holds: (1) P is finitely
generated and projective. (2) M is finitely presented. (3) There is a 2-sided
ideal I in A such that the general linear group GLy(A) acts transitively on
the (A/I)-unimodular vectors in A/I @& A/I and for almost all maximal ide-
als m of R there is locally an A,-homomorphism f™: M, — A, such that
modulo the Jacobson radical(Ay,), image (f™) 2 Ip.

1. Introduction

The purpose of this note is to extend a recent cancellation result of Hambleton
and Kreck [H-K, Theorem A] for modules over a separable order to modules
over a module finite R-algebra where dimension (R) < 1. We define the
dimension dim(R) of a commutative ring R to be 0 (resp. 1) if it is semilocal
(resp. there is a finite set 9 of maximal ideals of R such that for each element
s € R\mgmm, the quotient ring R/ Rs is semilocal.) This notion of dimension

is weaker than that of Bass-Serre dimension which was used by H. Bass in
his fundamental work on cancellation, cf. [B, IV].

Our main result is the following.
[0 THEOREM 1.1 Let A be a module finite R-algebra such that

dim(R) £ 1. Let M, M’, and P be A-modules. Suppose the following condi-
tions hold.



(1.1.1) There is a 2-sided ideal T in A such that the general linear group
G Ly(A) acts transitively on the (A/I)-unimodular vectors in A/I @& A/I.
(1.1.2) M is finitely presented (this is automatic if A is Noetherian and M
is finitely generated) and for all but a finite number of maximal ideals m of
R, there is locally an A,-homomorphism f™: M, — A, such that modulo
the Jacobson radical(Ay,) the image (f™) D In.
If P is finitely generated and projective then P& AP M X P H A M
impliess A M =2 A M. O

It is very likely that there are appropriate generalizations of (1.1) to
module finite R-algebras A where the only condition imposed on A is that R
is finite dimensional. As Hambleton and Kreck [H-K]| have shown, one can
expect such results to find applications in the classification of 2-dimensional
C.W. complexes.

[0 COROLLARY 1.2 Let A be a module finite R-algebra such that
dim(R) < 1. Let M, M’ and P be A-modules. Suppose the following condi-
tions hold.

(1.2.1) There is a 2-sided ideal I in A such that A/I is commutative and each
element of the special linear group SLy(A/I) lifts to GLy(A); e.g., SLa(A/I)
is equal to the elementary group Fy(A/I).

(1.2.2) Condition (1.1.2) above.

If P is finitely generated and projective then P& AP M X P H A M
implies A M =2 A M. O

PROOF The conclusion above will follow from (1.1), once we show
that condition (1.1.1) is satisfied. It suffices to show that SLy(A/I) acts
transitively on unimodular vectors of A/I & A/I. Let a,c € A/I such that
(a,c) € AJI & A/I is unimodular. Choose elements b,d € A/I such that

ad + bc = 1. The matrix CCL Z has determinant 1, i.e. € SLy(A/I),

and <CCL fi) (é) = <CCL) It follows that SLo(A/I) acts transitively on the
unimodular vectors in A/ & A/I. Q.E.D.

[0 COROLLARY 1.3 Let R be a Dedekind ring with field of fractions
F. Let A be an R-order on a finite separable semisimple F-algebra. Let
M, M’, and N be finitely generated A-modules. Let I be a 2-sided ideal of A
such that conditions (1.1.1) and (1.1.2) are satisfied. Suppose that N is R-
torsion free and that there is a natural number r such that for each maximal
ideal m of R, N, is a direct summand of (A, ® My,)". Then N Ad M =
N& AP M implies ApM=ZAd M. O



PROOF Clearlyy, NG A ADM X NG AP AD M. By Swan’s
cancellation theorem [S, (9.4) and (9.7)], A Ao M = Ad Ad M'. Since
dim(R) = 1, it follows now from Theorem (1.1) that A& M = A& M.
QE.D.

O COROLLARY 1.4 (Hambleton - Kreck [H-K, Theorem A]) Let A
be a separable R-order as in (1.3). Let M, M’ and N be finitely generated
A-modules where N is as in (1.3). Suppose there is a 2-sided ideal [ in A such
that the ring A/I is also a separable R-order and the following conditions
hold.

(1.4.1) GLy(A) acts transitively on the (A/I)-unimodular vectors of A/I &
A/l

(1.4.2) There is a natural number k such that for all but a finite number of

maximal ideals m of R, ((A/I)* ® M)y, has a direct summand isomorphic to
An. Then N A M=NDAG M impliess Ao M=Ad M. O

PROOF The conclusion of Hambleton - Kreck will follow from (1.3),
once we show that condition (1.1.2) is satified.

Let B = A/I. For almost all maximal ideals m of R, there are by
hypothesis Ay-homomorphisms f : Ay, — BY & M, and g : BX & M,, —
Ay such that gf = 14,. Write f = (f1, fo) where f; : An, — BF and
fo 1 Anw — My and write g = (g1, 92) where ¢g; : BE — A, and g, :
My — Aw. For a € Iy, fi(a) = fi(l)a = 0; thus, a = gf(a) = g2/f2(a).
Thus, g2 fo|r, = 11,. Thus, My, contains a direct summand isomorphic to Iy,
Q.E.D.

In the next section, we recall a few definitions and then prove Theorem
(1.1). Our methods are elementary and require little beyond a familiarity
with semilocal rings, Nakayama’s lemma, and localization.

2. Proof of Theorem 1.1
We begin by recalling a few definitions.

Let A be an associative ring with identity and q a 2-sided ideal in A. Let
M = M &---® M, be adirect sum of right A-modules. If f : M; — M, (i #
) is an A-homomorphism and f its unique extension to an A-endomorphism
of M such that f(M;) = 0 for all k # 4, we set €(f) = 15+ f. Clearly €(f) is
an A-automorphism of M with inverse e(—f). €(f)is called the elementary
transformation defined by f. If image (f) C M;q then e(f) is called a
g-elementary transformation. Let E(M; ..., M,) denote the subgroup of
Aut (M) generated by all elementary transformations €(f) where f ranges
over all A-homomorphisms f : M; — M, such that ¢ # 5,1 < i < n,1 <
j <n. Let E(Mj,..., M,;q) denote the normal subgroup of E(Mj, ..., M,)



generated by the g-elementary transformations. If My =--- = M, = A then
by definition E, (A) = E,(M,...,M,) and E,(A,q) = E(M, ..., M,;q).
Let M be a right A-module. An element m € M is called unimodular
if there is an A-homomorphism f : M — A such that f(m) = 1. Tt
follows that m = (mq,...,m,) € My & --- @& M, is unimodular < there

are A-homomorphisms f; : M; — A(i = 1,...,n) such that > fi(m) =
i=1

1 & there are A-homomorphisms f; : M; — A(i = 1,... ,n)_such that
(fi(m), ..., fu(my)) € A" =A&--- @ A (n times) is unimodular. A vector
(a,...,a,) € A™ is unimodular < there are elements by,..., b, € A such
i=1
If M is a right A-module and m € M, one defines oy (m) = {f(m)|f €
Homa(M, A)}. Clearly, op(m) is a left ideal in A and m is unimodular
< oy (m) = A.

OLEMMA 2.1 Let A be an associative ring with identity. Let (ay,...,a,) €
A™ be unimodular. Then there is an element b € A such that (ay, ..., a, 1, (ba,)?)
is unimodular. [J

PROOF By definition, there are elements cq,...,¢, € A such that
1 =cia1+ -+ cpay,. Thus, a, = a,(cra; + -+ -+ cpay). Thus, 1 =craq -+
Cplp = 101+ -+ Cp1n_1FCplan(crar+- -+ cpa,)] = (cpanci+cr)ag+- - -+
(CnlnCpn-1+ Cn1)an_1+ (cna,)?. Thus, (ay,...,a, 1, (cha,)?) is unimodular.

Q.E.D.

0 LEMMA 2.2 Let A be a semilocal ring and let q be a 2-sided ideal
in A. Let a be a left ideal in A. Let M be a right A-module. Let (a,m) €
A @ M such that m € Mq and a + oagum(a,m) = A. Then there is an
A-homomorphism f : M — Aq such that a +oa(a + f(m)) = A. O

PROOF By definition, there is an A-homomorphism g : M — A such
that a + oaga(a, g(m)) = A. Since m € Mq, g(m) € q. It follows from (2.1)
that a + oasa(a, (bg(m))?) = A for some b € A. By [B, III (2.8)], there is

an element ¢ € A such that a + oa(a + c¢(bg(m))?) = A. Define f to be

the compositon of the A-homomorphisms M — A P9 A where cbg(m)b

denotes left multiplication by cbg(m)b. Clearly, f has the desired properties.
Q.E.D.

U LEMMA 2.3 Let A be a module finite R-algebra. Let q be a 2-sided
ideal in A. Let 9T be a finite set of maximal ideals in R. Let M be a right A-
module. If (a,m) € A® M is a unimodular element such that m € Mq then
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there is an A-homomorphism f : M — Aq such that A(a+ f(m)) 2 As for
some s € R\ U m. O
me

PROOF Let p = ﬂmm. R/p is a semilocal ring (with maximal ideals
me

{m/p|m € M}). Since A is module finite over R, A/Ap is module finite over
R/Rp and hence semilocal. By hypothesis, there is an A-homomorphism
g : M — A such that (a,g(m)) is unimodular. Since m € Mq,g(m) € q.
By (2.1), (a, (bg(m))?) is unimodular for some b € A. By [B, III (2.8)], there

is an element ¢ € A such that a+c(bg(m))? is a unit mod Ap. Let f denote the

composition of M -2+ A 9 4 where cbg(m)b denotes left multiplication

by cbg(m)b. Then a+ f(m) is a unit in A/Ap. Let S denote the multiplicative
set R\ Y m. Since the ideal S~'Ap in S7'A is contained in the Jacobson
me

radical(S™'A) and S~'A/S 1 Ap = A/p, it follows from Nakayama’s lemma
[B, I1I (2.2)] that a+ f(m) is a unit in S~*A. Thus, there are elements d € A
and s € S such that s7'd(a+ f(m)) =1 in S7'A. Thus, there is an element
t € S such that the equality td(a + f(m)) = ts holds in A. Q.E.D.

U0 PROPOSITION 2.4 Let A be a module finite R-algebra such that
dim(R) = 1. Let M be a finitely presented right A-module. Let I be a
2-sided ideal in A with the following properties.

(2.4.1) There is a subgroup G of the general linear group G Ls(A), which acts
transitively on the (A/I)-unimodular vectors in A/I & A/I.

(2.4.2) there is a finite set 9 of maximal ideals of R such that for each
maximal ideal m ¢ 9, there is locally an A,-homomorphism f™: M, —
Ay such that modulo the Jacobson radical(Ay,), the image (f™) 2 Iy,

Let g be a 2-sided ideal in A and let G(q) be a subgroup of the g-relative gen-
eral linear group G Lo (A, q), which acts transitively on the (A/I)-unimodular
vectors u of A/I & A/I such that u = (1,0) mod (q+ I)/I. (If ¢ = A, one
can take G(q) = G.) f v,w € A A® M are unimodular elements such that
v=w modgq,iev—wé€ (AdAD M)q, then there is an automorphism
o in the normal closure of < F(A, A, M;q),G(q) > by < E(A, A, M),G >
such that ov = w. O

PROOF The proof will be divided into two steps.

Step 1: There is an element p €< E(A, A, M), G > such that pw = (1,0,0) €
AAD M.

Step 2: If w = (1,0,0) then there is an element 7 €< E(A, A, M;q),G(q) >
such that 7v = (1,0, 0).

Assume Steps 1 and 2 have been established. The proof is then completed
as follows. By Step 1, there is a p such that pw = (1,0,0). Clearly, pv = pw
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mod ¢. Thus, according to Step 2, there is a 7 €< E(A, A, M;q),G(q) >
such that 7pv = pw. Clearly, (p~'7p)v = w and p~'7p is in the normal
closure of < E(A, A, M;q),G(q) > under < E(A, A, M),G >.

Step 1 is the special case of Step 2 where g = A. Thus, it suffices to
prove Step 2.

Let v = (1 + a,b,m) be a unimodular element in A ® A @& M such
that a,b € q and m € Mq. Enlarge 91 to a finite set, denoted again by
M, such that if m is a maximal ideal ¢ 9 and s € R\ m then A/As is
semilocal. This can be done, since dim(R) = 1. By Lemma (2.3), there is
an A-homomorphism f : A@® M — Aq such that A(a + f(b,m)) 2 As for
some s € R\ U m. Clearly, e(f)v = (1 4+ a+ f(b,m),bm). Thus, we can

assume right from the start that A(1 + a) 2 As for some s € R\ U m.
me

Since (1 + a,b,m) is unimodular, there is an A-homomorphism f :
M — A such that (14 a,b, f(m)) € A® A® A is unimodular. Applying
Lemma (2.2) to the vector (1 + a,b, f(m)) over the semilocal ring A/As, we
can find an A-homomorphism g : A — Aq such that (1 +a,b+ gf(m)) is
unimodular over A/As. But, since A(1+ a) 2 As, it follows that (14 a,b+
gf(m)) is unimodular over A. Clearly, ¢(¢gf)v = (14a,b+ gf(m), m). Thus,
we can assume right from the start that v = (1 + a,b,m) where (1 + a,b)
is unimodular. By hypothesis, there is an element 7 € G(q) such that 7 ®
Iy(v) = (14 d, b, m) where a/,b' € I Nq. Thus, we can assume v = (1 +
a,b,m) where a,b € INg and (1+a, b) is unimodular. Moreover, by applying
if necessary an elementary transformation €(f) to v, where f : A — A(INq)
has the property that A(1+a+ f(b)) 2 As for some s € R\ mgmm, we can

assume that A(1+a) O As.

Let V(Rs) = {m|m a maximal ideal of R,m D Rs}. Evidently, V(Rs)N
M = &. Thus, R/Rs is semilocal and V(Rs) is finite. Let m € V(Rs). Let
f™: My — Ay be as in the hypothesis of the proposition. Since M is
finitely presented, we can apply [B, III (4.5)] to find an A-homomorphism
fI™: M — A and an element s™ € R\ m such that (s[™)=1f" = f™ Let
tm € R\m such that t™ = (s™)~! mod (Rym). Let g™ = ¢™ fm Let Jm
denote the inverse image in A of the Jacobson radical (Ay/Ays). Each g™
has the property that mod JI™, image (g[m]) D I. Let zI™ € M such that
mod JI™, g™z = b — g™ (m). Let r™ € R such that 7™ = 1 mod m
and 7™ = 0 mod m’ for each m’ # m € V(Rs). Let x = Y g™y

meV (Rs)

Since (1 4 a,b) is unimodular, we can find an A-homomorphism h : A &
A — M such that h(1 4+ a,b) = z. Clearly, ¢(h)(1 + a,b,m) = (1 +
a,b,m + h(1+a,b)) = (1 +a,b,m + x). Since (1 + a,b) is unimodular and



g™ (m+2) = g™(m)+ g™z = g™(m)+ (b—g™(m) =b mod J™ we see
that (1+a,m+x) € A® M is unimodular mod J™. Thus, (1+a,m + z)
is unimodular over An,/Ans = (A/AS)y for each m € V(Rs). Thus, by
Nakayama, (1 4+ a,m + ) is unimodular over A/As. (More specifically, one
can argue as follows. Choose ¢,d € A such that ¢(1 4+ a) +db = 1 and

let g = > g™ Tt suffices to show that A(ca + dg(m + z)) = A
meV (Rs)
mod As. By the local-global principle, it suffices to show that for all maximal

ideals of R/Rs, equivalently for all m € V(Rs), An(ca + dg(m + x)) = An
mod (Ays). By Nakayama’s lemma [B, IIT (2.2)], it suffices to show that
An(ca+dg(m+z)) = An mod AnJ™. But ca+dg(m+z)) =ca+db=1
mod A, mod J™.) Since A(1 +a) O As, it follows that (1 + a,m + )
is unimodular over A. Choose I/ : A® M — A such that h'(1 + a,m +
z) = 1 —0b. Clearly, ¢(h')e(h)(1 + a,b,m) = (1 + a,1,m + z). Choose
h": A — A such that (1) = —a. If 7 = e(h)'e(W)"Le(h")e(h')e(h) then
7(1 4+ a,b,m) = (1,0, m’) for suitable ¥ and m/. Furthermore, since image
(W) CIng, 7€ E(A A, ,M;q). Thus, ¥ =0 mod g and m' =0 mod Mgq.
Letting h; : A — A such that hy(1) = =V and hy : A — M such that
ha(1) = —m/, we obtain that e(hs)e(hy)7(1 + a,b,m) = (1,0,0). Q.E.D.

U0 THEOREM 2.5 Let A be a module finite R-algebra such that
dim(R) = 1. Let M be a finitely presented right A-module. Let I be a 2-sided
ideal in A satisfying (2.4.1) and (2.4.2). If M’ and P are right A-modules
and P is finitely generated and projective then P AP M X PH Ad M’
implies Ao M =ZAp M. O

PROOF The proof follows the pattern of that in Bass [B, IV (3.5)].
Choose ) such that P & @ = A™ for some n. If n = 0 then P = 0 and
we are done. Thus, we can assume n > 0. It suffices now to show that
A M = AL @ M’ implies A" @ M = A™ @ M’ for any n > 0. Let
v=(1,0,...,0) € A" & M,w = (1,0,...,0) € A" & M’ and identify
A" @ M with A"t @ M’. By Proposition (2.4), there is a transformation
o €< E(A,...,;A,M),G > such that ov = w. o induces an isomorphism
AGA" B M/vA — A® A" M'JwA. But A& M = Ad A" @® M/vA and
Areo M =2 Ag Ao M JwA. Q.E.D.

0 THEOREM 2.6 Let A be a module finite R-algebra such that
dim(R) < 1 and R is Noetherian. Let M, M’, and N be finitely generated
right A-modules (and therefore finitely presented, because A is Noetherian).
Let B denote the A-endomorphism ring End4(N) of N and suppose that the
canonical A-homomorphisms Hom 4(N, M) @ N — M, f ®n — f(n),
and Hom 4(N,M')®@p N — M’, f ® n — f(n) are isomorphisms; e.g., M
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and M’ are direct summands of a direct sum of N’s. Let J be a 2-sided ideal
in B such that J and the right B-module Hom (N, M) satisfy conditions
(2.4.1) and (2.4.2). Let @ be a right A-module which is a direct summand of
a direct sum of finitely many copies of N. Then Q& N &M = Qd N & M’
impliess N M =N @ M'. O

PROOF Since N finitely generated over A and A is module finite over
R with R Noetherian, it follows that B is module finite over R. Consider the
functor ((right A-modules)) — ((right B-modules)), X +— Hom 4(N, X).
Applying the functor to the isomorphism Q&N DM = QHN D M’, we obtain
an isomorphism Hom 4(N,Q)® B&® Hom 4(N,M) = Hom 4(N,Q)®B®
Hom (N, M’). Since @ is a direct summand of a direct sum of finitely
many copies of N, it follows that Hom 4(V, Q) is finitely generated and
projective over B. Hom (N, M) is finitely presented over B, since it is
finitely generated already over R and B is Noetherian. Thus, we can apply
Theorem (2.5). By the conclusion of that theorem, B& Hom 4(N, M) = B&
Hom 4(N, M’). Applying the functor —®pg N to the isomorphism above, we
obtain an isomorphism N&® Hom 4(N, M)®pN = N@ Hom 4(N, M')®pN.
But by hypothesis, Hom 4(N, M) ®p N =2 M and Hom 4(N,M') @ N =
M'. Q.ED.

REMARK 2.7 One can replace in (2.4) and (2.5) (resp. (2.6)) the
hypothesis that M is finitely presented by the weaker hypothesis that M
contains a direct summand M, such that M, is finitely presented and the
ideal I (resp. J) in A (resp. B) satisfies (2.4.2) with respect to the submodule
My (rersp. Hom 4(NV, My)). The details are a little tedious, but not difficult.
We shall skip them.
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