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Abstract. The article applies concepts of structure and dimension in arbitrary
categories to establish that nonstable net K1 of a net of finite Bass-Serre dimension

is a nilpotent by Abelian group.

Introduction

This article together with the articles Mundkur [Mu] and Hazrat [H] apply con-
cepts of structure and dimension in arbitrary categories to prove structural results
for classical-like groups defined over rings and related objects. The current paper
provides applications to net groups associated to the general linear group, the paper
[Mu] to the general linear group, and the paper [H] to the general quadratic group.
Each article including the current one has a short, self-contained introduction to a
different aspect of the general theory of structure and dimension in categories and
of group valued functors on categories with structure and dimension, which is de-
veloped in Bak [Bk4] and Bak [Bk5]. The current articles are intended to illustrate
this theory. The main application in the present article is to prove that nonstable
K1 of a major net of rank > 4 and finite Bass-Serre dimension is a nilpotent by
Abelian group.

We describe the general theory as it pertains to the current paper. An arbitrary
category C is structured by fixing a class of commutative diagrams called structure
diagrams and a class of functors called infrastructure functors on directed quasi-
ordered sets with values in C, whose direct limits exist in C. In the current article
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the diagrams are commutative squares. A function d : Obj(C)→ Z>0∪{∞} is called
a dimension function, if it satisfies a certain property called reduction relating it to
the structure on C. Let τ : S→ G denote a natural transformation of group valued
functors S and G on C. The dimension filtration of τ on G is defined by

Gi(A) =
⋂

A→B
d(B)6i

Ker
(
G(A)→ G(B)/ Im

(
S(B)→ G(B)

))

for any integer i > 0 and object A of C. Let E = Im(τ). The main result used
in the current paper for group valued functors on a category with structure and
dimension is the following: If τ is good with respect to the structure on C then
G0 > G1 > · · · > E is a descending central series such that Gi(A) = E(A) for all
i > d(A). Moreover, if the coset space G(A)/E(A) is an Abelian group for all 0-
dimensional objects A then the quotient functor G/G0 takes its values in Abelian
groups. In this case, the quotient functor G/E is a nilpotent by Abelian group on
all finite dimensional objects of C.

Let ((ν-nets)) denote the category of all nets corresponding to an equivalence
relation ν on a subset of the natural numbers. Let ((major ν-nets)) denote the full
subcategory of all major ν-nets. Let G : ((ν − nets)) → ((groups)), σ 7→ G(σ),
denote the usual group valued functor associating to each ν-net σ, its group G(σ).
Let E(ν, σ) denote the elementary subgroup of G(σ) and St(ν, σ) the Steinberg
group of σ. The main results concerning ν-nets are obtained by exhibiting ((ν-
nets)) as a category with structure and dimension whose dimension function is the
Bass-Serre dimension of a net. It is then shown that the natural transformation
π : St(ν,− ) → G(−) is good on the category ((major ν-nets)) and that for any
0-dimensional ν-net σ, G(σ)/E(ν, σ) is an Abelian group. It follows now from the
general theory above that the dimension filtration G > G0

> G1
> · · · > E(ν,− ) on

G makes the quotient functor K1G := G /E(ν,− ) into a nilpotent by Abelian group
valued functor on finite dimensional major ν-nets. This allows one to deduce that
each sandwich E(ν, σ) 6 H 6 C(ν, σ) in the sandwich classification theorem for
subgroups H of the general linear group normalized by a block diagonal elementary
subgroup, has the property that the quotient C(ν, σ)/E(ν, σ) is a G0([ν] + σ)-
nilpotent group for any finite dimensional ν-net σ.

The rest of the paper is organized as follows. In section 1, a certain group
homomorphism χ is constructed, which plays a crucial role in section 2 in showing
that the filtration G0 > G1 > · · · is a descending central series. When χ is bijective,
it turns out that its inverse is the connecting map in a certain nonabelian Mayer-
Vietoris sequence. This result is included for completeness, but is not necessary for
proving the main results. Section 2 develops notions of structure and dimension
in arbitrary categories and proves the main results for dimension filtrations on
group valued functors. Section 3 recalls nets and net groups and establishes stable
properties of these groups. Section 4 proves the injective stability theorem for
the functor K1 of nets. The surjective stability theorem is known by work of
Vavilov [Vv]. Section 5 studies nets over quasi-finite rings. In particular, it shows
that elementary subgroups of net groups are normal and that the so-called standard
commutator formula holds. Golubchik’s sandwich classification theorem is recalled.
Section 6 exhibits the categories ((ν-nets)) and ((major ν-nets)) as categories with
structure and dimension and shows that the natural transformation π : St(ν,− )→
G(−) is good on the category ((major ν-nets)). A nonstable K2–K1 Mayer-Vietoris
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sequence for nets is also proved. Section 7 puts together the results of sections 2,
5, and 6 to prove our main results concerning net groups.

1. The map χ and a nonabelian Mayer-Vietoris sequence

The materials in this section are taken in a selfcontained way from Bak [Bk2]
and [Bk3] (unpublished). We begin by sharpening the Mayer-Vietoris sequences
in[Bk2], following the exposition given in [Bk3]. In the second half of the section, we
investigate the equivariant properties of the connecting map in the Mayer-Vietoris
sequence.

1.1. Let R be a category and let G,E, S be functors from R to ((groups)). Suppose
that for any object A ∈ R, these functors satisfy the following conditions.

(i) E(A) is a normal subgroup of G(A) and the inclusion map defines a natural
transformation of functors.

(ii) S(A) is a central extension of E(A) and the covering S(A)
π
→E(A) defines a

natural transformation of functors.

1.2. For each object A in R, define the groups

K1(A) = G(A)/E(A) and K2(A) = Ker(S(A)→ E(A)).

Clearly K1 and K2 are functors from R to ((groups)).
For a commutative square

(∗)

A
ϕ

−−−−→ B

ψ

y
yψ′

C
ϕ′

−−−−→ D

in R consider the corresponding squares of groups

(G− square)

G(A)
ϕ

−−−−→ G(B)

ψ

y
yψ′

G(C)
ϕ′

−−−−→ G(D)

(S− square)

S(A)
ϕ

−−−−→ S(B)

ψ

y
yψ′

S(C)
ϕ′

−−−−→ S(D).

Factoring K2(A), K2(B) and K2(C) out of the right hand square, one obtains the
commutative square

(factor-square)

E(A)
ϕ

−−−−→ E(B)

ψ

y
yρ

E(C)
ω

−−−−→ S(D)/(K2(B) K2(C)) .

Note that we denote functorial group homomorphisms in the diagrams above with
the same letters used for the corresponding morphisms in the category R, e.g. we
write ϕ instead of G(ϕ), S(ϕ) and E(ϕ), but we introduce into the factor-square
the new letters ω and ρ to denote the group homomorphisms induced from the
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functorial ones on the S-level. We shall use such notation when it cannot cause
confusion.

1.3. A commutative diagram

K2(B) K1(B)
↘ ↗ ↘

K2(D)
∂
−−−→K1(A) K1(D)

↗ ↘ ↗
K2(C) K1(C)

will be called a Mayer–Vietoris sequence if the following conditions are satisfied.

(i) The square is exact, i.e. the canonical homomorphism from K1(A) to the
pullback of the diagram K1(C)→ K1(D)← K1(B) is surjective.

(ii) The intersection of the kernels of the maps K1(A)→ K1(B) and K1(A)→
K1(C) coincides with Im(∂).

(iii) The set {bc | b ∈ Im(K2(B) → K2(D)), c ∈ Im(K2(C) → K2(D))} formed
by the product of the images of K2(B) and K2(C) in K2(D) coincides with
Ker(∂).

The purpose of this section is to construct for certain commutative squares (∗) in
R, a Mayer–Vietoris sequence which is functorial over these squares.

1.4. Following [Bk2] we define the kinds of squares that will be needed. The square
(∗) will be called:

(i) weak E-fibred, if factor-square is a fibre square.
(ii) E-surjective, if given b ∈ G(B) and c ∈ G(C) such that ψ′(b)ϕ′(c) ∈ E(D),

there are elements b′ ∈ E(B) and c′ ∈ E(C) such that

ψ′(b′)ϕ′(c′) = ψ′(b)ϕ′(c).

(iii) S-surjective, if given d ∈ K2(D), there are elements b ∈ S(B) and c ∈ S(C)
such that d = ψ′(b)ϕ′(c).

(iv) G-fibred, if G-square is a fibre square.

The next lemma provides conditions which are easier to check in practice than
those in (1.4)(i)-(iii). It will be used in the Goodness Lemma 6.9.

1.5. Excision Lemma. Let (∗) be a G-fibred square and θ : S(B)/ ImS(ϕ) →
S(D)/ ImS(ϕ′) the map of coset spaces induced by S-square.

If θ is injective and
Ker E(ϕ′) 6 E(ψ)

(
Ker E(ϕ)

)

then the square (∗) is weak E-fibred.
If θ is surjective then the square (∗) is E-surjective and S-surjective.

Proof. Let b ∈ E(B) and c ∈ E(C) be such that ω(c) = ρ(b) and let b′ and c′

be preimages in S(B) and S(C), respectively. Obviously we can choose b′ and c′

such that S(ϕ′)(c′) = S(ψ′)(b′). We have θ(b′ Im S(ϕ)) = 1 · ImS(ϕ′) and since θ is
injective, there is an element a′ ∈ S(A) such that S(ϕ)(a′) = b′. Let ā denote the
image of a′ in E(A). Since the element E(ψ)(ā)−1c belongs to Ker E(ϕ′), it follows
from the hypotheses in the lemma that it has a preimage ã ∈ Ker E(ϕ). If a = āã
then it is easy to check that E(ϕ)(a) = b and E(ψ)(a) = c. The uniqueness of such
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an element a follows immediately from condition (1.4)(iv). Thus we have shown
that factor-square is fibred.

The surjectivity of θ immediately implies that each element from S(D) can be
written as product S(ϕ)(b′)S(ψ)(c′) for some b′ ∈ S(B), c′ ∈ S(C). The rest of the
proof is very easy and will be left to the reader.

1.6. Let

Ẽ = G(ϕ)−1
(
E(B)

)
∩ G(ψ)−1

(
E(C)

)
.

Obviously E(A) 6 Ẽ. Consider the commutative diagram

E(B)
ρ

−−−→ S(D)/(K2(B) K2(C))
ϕ
↗ ↘

Ẽ E(D) .

↘ψ ↗
E(C)

ω
−−−→ S(D)/(K2(B) K2(C))

Define a function χ : Ẽ→ S(D)/(K2(B) K2(C)) by the formula

χ(a) = ρϕ(a−1)ωψ(a).

1.7. Lemma. χ is a homomorphism from Ẽ to K2(D)/(K2(B) K2(C)). Suppose
that (∗) is a G-fibred square.

If (∗) is S-surjective then χ is an epimorphism.
If (∗) is weak E-fibred then Kerχ = E(A).

Proof. Since G-square is commutative, the image of χ lies in the subgroup
K2(D)/(K2(B) K2(C)) which is central in S(D)/(K2(B) K2(C)) by (1.1)(ii). Hence

χ(a′)χ(a) = ρϕ(a−1)χ(a′)ωψ(a) = ρϕ(a−1)ρϕ(a′
−1

)ωψ(a′)ωψ(a) = χ(a′a)

for any a, a′ ∈ Ẽ. Thus χ is a homomorphism.
Let d̄ ∈ K2(D)/(K2(B) K2(C)) and d be a preimage of d̄ in K2(D). By (1.4)(iii)

there are elements b ∈ S(B) and c ∈ S(C) such that d = ψ′(b)ϕ′(c). Hence,
d̄ = ρπ(b)ωπ(c) (where π denotes as in (1.1) the natural transformation S → E).
Since the image of d̄ in E(D) is trivial, it follows that E(ψ′)π(b)−1 = E(ϕ′)π(c).
By (1.4)(iv), there is an element a ∈ G(A) such that ϕ(a) = π(b)−1 and ψ(a) =

π(c). Obviously a ∈ Ẽ, since π(b)−1 ∈ E(B) and π(c) ∈ E(C). But χ(a) =
ρϕ(a−1)ωψ(a) = ρπ(b)ωπ(c) = d̄. Thus χ is surjective.

Clearly E(A) 6 Ker(χ) because factor-square is commutative. Suppose ωψ(a) =

ρϕ(a) for some a ∈ Ẽ. Since (∗) is weak E-fibred, there is by definition (1.4)(i) an
element a′ ∈ E(A) such that ϕ(a′) = ϕ(a) and ψ(a′) = ψ(a). But, since G-square is
a fibre square, a = a′ which proves the last assertion of the lemma.

Suppose that (∗) is G-fibred, weak E-fibred, and S-surjective. Define the homo-
morphism ∂ : K2(D)→ K1(A) as the composite map

K2(D) � K2(D)/
(
K2(B) K2(C)

) χ−1

−→ Ẽ/E(A) � K1(A).
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1.8. Theorem. There is a functorial Mayer–Vietoris sequence (1.3) for G-fibred,
weak E-fibred, S-surjective, E-surjective squares (∗).

Proof. The proof is absolutely the same as that of Theorem 5.31 of [Bk2] (using
(1.7) instead of [Bk2, Lemma 5.29]).

In fact, exactness of the K1-square follows from (1.4)(iv) and E-surjectivity;
exactness at the term K2(D) follows from S-surjectivity; and exactness at K1(A)
follows from the condition that (∗) is weak E-fibred. Of course, in the last two cases
we must change the definition of χ′ in the obvious way if χ is not an isomorphism.

In subsequent sections, the Mayer-Vietoris sequence in (1.8) will not be fully
used, but the homomorphism χ which is used to construct it, will play a crucial
role. Furthermore it will be important that χ is equivariant in a certain sense. For
the sake of precision and clarity, we define and establish the equivariance of χ in
a purely group theoretic context. The arguments refine those given already above
and are taken from [Bk3].

1.9. For the rest of this section, let

SA−−→ SB
↙ ↙

SC −→ SDy y
GA− −→ GBy ↙

y ↙
GC−−→ GD

be a commutative cube of groups. For X = A,B,C or D, let EX = Im(SX →
GX) and KX = Ker(SX → GX). Assume that KD 6 center(SD). Define the

group ẼA = {a ∈ GA | image of a in GX (X = B,C) lies in EX}. Define the
homomorphisms ϕ, ψ, ρ, and ω as in the commutative diagram

EB
ρ

−−−→ SD/(KBKC)
ϕ
↗ ↘

ẼA ED
↘ψ ↗

EC
ω
−−−→ SD/(KBKC)

and set

χA : ẼA → KD/KBKC

a 7→ (ρϕ(a))−1(ωψ(a)).

Since KD 6 center(SD), it follows that χA is a group homomorphism.

1.10. Key Lemma. Suppose that the cube in (1.9) satisfies the following condi-
tions.

(i) The group KD is central in SD.
(ii) The groups EX are perfect for X = B,C.
(iii) The maps SB/SA → SD/SC and EC → ED are injective.
(iv) The G-square is fibred.
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Let JA 6 GA be a subgroup satisfying the following conditions.

(v) Im(JA → GX) (X = B,C) normalizes EX .
(vi) Im(JA → GD) 6 ED. Lift in the obvious way the action of JA on ED by

conjugation to an action of JA on SD.

Then JA normalizes ẼA and leaves each element of KD fixed, the homomorphism

χA : ẼA → KD/KBKC is JA-equivariant, and KerχA = EA. In particular the

action of JA on ẼA/EA is trivial.

Proof. Since JA normalizes EB and EC , it follows from the definition of ẼA that

JA normalizes ẼA. Since KD 6 center(SD), the obvious lifting to SD of the con-
jugation action of JA on ED leaves each element of KD fixed. Let JA act on EB
and EC by conjugation. To show that χA is JA-equivariant, it suffices to show that
all the homomorphisms in the second diagram in (1.9) are JA-equivariant. The
homomorphisms EB → ED and EC → ED are clearly JA-equivariant. Since EB
and EC are perfect and KD/KBKC 6 center(SD/KBKC), it follows that the ho-
momorphisms ρ : EB → SD/KBKC and ω : EC → SD/KBKC are JA-equivariant
(cf. [M, lemma 5.4]). The remaining homomorphisms in the second diagram in
(1.9) are obviously JA-equivariant and thus χA is JA-equivariant. From the JA-
equivariance of χA and the triviality of the JA-action on KD/KBKC , it follows

that the JA-action on ẼA/KerχA is trivial. But the third and fourth conditions in
the lemma show as in the proof of (1.7) that KerχA = EA.

There are frequently situations in which all of the hypotheses of (1.10) hold
except the one that the map EC → ED is injective. In order to get around this
problem and still have the final conclusion of (1.10) hold, one develops a relative
version of the above.

Let G and Ḡ be groups with an action of G on Ḡ by automorphisms of Ḡ. The
semidirect or smash product of this action is denoted by ḠoG. By definition,
ḠoG is a group whose underlying set is the Cartesian product Ḡ×G and whose
multiplication is given by (σ̄, σ)(ρ̄, ρ) = (σ̄(σ ◦ ρ̄), σρ). A precrossed module of
the action is a group homomorphism f : Ḡ → G which is G-equivariant under the
action of G on itself by conjugation. This implies of course that Im(f) is normal
in G. The group Ḡ o G is called the smash product group associated to f . A
precrossed module f : Ḡ → G is called a crossed module if the action of Ḡ
on itself induced from that of G on Ḡ is the conjugation action. This implies of
course that Ker(f) 6 center (Ḡ). A homomorphism of precrossed modules is a
commutative diagram

Ḡ −−−−→ G

f̄

y
yf

H̄ −−−−→ H

of groups such that the group homomorphism f̄ is G-equivariant. A homomorphism
of crossed modules defines a homomorphism ḠoG→ H̄oH, (σ̄, σ) 7→ (f̄(σ̄), f(σ)),

of groups. Let G
1

−→ G denote the crossed module defined by the action of G on
itself by conjugation and the identity map 1 : G→ G.

1.11. Corollary. [Bk3] Let
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(SĀ → SA)−−−−−−−−−−−→ (SB
1
−→ SB)

↙ ↙

(SC̄ → SC)−−−−−−−−−−→ (SD
1
−→ SD)y y

(GĀ → GA)−−−−−−− −−−−−−−−→(GB
1
−→ GB)y ↙

y ↙

(GC̄ → GC)−−−−−−−−−−→(GD
1
−→ GD)

be a commutative cube of precrossed modules such that the associated cube of groups

SĀ o SA−−−−−−−−−→SB o SB
↙ ↙

SC̄ o SC −−−−−−−−→SD o SDy y
GĀ oGA−−−−− −−−−−→GB oGBy ↙

y ↙
GC̄ oGC−−−−−−−−→GD oGD

and the subgroup JA 6 GA 6 GĀ o GA of GĀ o GA satisfy the assumptions of
(1.10), except possibly the third and fourth assumptions. Let EX̄ = Im(SX̄ → GX̄)

(X = A,C) and let ẼĀ = {ā ∈ GĀ | image of ā in GB (resp. GC̄) lies in EB (resp.
EC̄)}. Assume the following.

(i) The maps SB/SĀ → SD/SC̄ and EC̄ → ED are injective.

(ii)

GĀ −−−−→ GBy
y

GC̄ −−−−→ GD

is a fibred subsquare of

GA −−−−→ GBy
y

GC −−−−→ GD
of normal subgroups and the action of GX on GX̄ (X = A,C) is by conju-
gation.

(iii) The map ẼĀ/EĀ → ẼA/EA is surjective.
(iv) EA is JA-invariant.

Then the action of JA on the coset space ẼA/EA is trivial. (No assertion is being

made concerning the normality of EA in ẼA.)

Proof. Obviously ẼĀ is JA-invariant. We show next that EĀ is JA-invariant and

normal in ẼĀ and that the action of JA on ẼĀ/EĀ is trivial. Let KX̄ = Ker(SX̄ →

GX̄) (X = A,C). Define χĀ : ẼĀ → KD/KBKC̄ and χ : ẼĀ o ẼA → KD o
KD/(KB o KB)(KC̄ o KC) as in (1.9). Then χ = χĀ o χA. The proof of (1.10)
shows that χ is JA-equivariant. Since the action of of JA on KD o KD is trivial,

it follows that the action of JA on ẼĀ o ẼA/KerχĀ o KerχA is trivial. But the
first and second assumptions in the corollary imply as in the proof of (1.7) that

KerχĀ = EĀ. Thus EĀ is JA-invariant and normal in ẼĀ and the action of JA
on ẼĀ/EĀ is trivial. The map ẼĀ/EĀ → ẼA/EA of coset spaces is obviously JA-
equivariant and by the third assumption in the corollary, it is surjective. Thus the

action of JA on ẼA/EA is trivial.
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2. Dimension Theory and group valued functors

The materials in this section are taken from Bak [Bk3] (unpublished). We de-
fine the notion of a category with structure and introduce one kind of dimension
function on a category with structure. A category with structure equipped with
a dimension function is called a category with dimension. Let τ : S → G be a
natural transformation of group valued functors S,G : C → ((groups)) on a cat-
egory C with dimension. We define the dimension filtration G = G−1 > G0 >

G1 > · · · > Gi > · · · > Im(S → G) of τ on G and show under certain condi-
tions that G0 > G1 > · · · > Gi > · · · is a descending central series such that
Gi(A) = Im(S(A)→ G(A)) whenever i > dimension(A).

Recall that a quasi-ordered set is a set I together with a reflexive, transitive
relation 6 on I. A quasi-ordered set (I,6) is called directed if given i, j ∈ I, there
is a k ∈ I such that i 6 k and j 6 k. An equivalent definition of a quasi-ordered
set is a category whose objects form a set and for any pair i, j of objects, Mor(i, j)
has at most one element.

2.1. Definition. A category with structure is a category C together with
a class S(C) of commutative squares in C called structure squares and a class
I(C) of functors called infrastructure functors whose domain categories are di-
rected quasi-ordered sets and whose target category is C, satisfying the following
conditions.

(i) S(C) is closed under isomorphism of commutative squares. For each object
A of C, the constant or trivial square

A
1

−−−−→ A

1

y
y1

A −−−−→
1

A

is in S(C).
(ii) I(C) is closed under isomorphism of functors. For each object A of C, the

constant or trivial functor FA : {∗} → C, ∗ 7→ A, is in I(C), where {∗}
denotes the directed quasi-ordered set with precisely one element ∗. For
each (F : I → C) in I(C), the direct limit lim−→

I

F exists in C.

2.2. Definition. Let (C, S(C), I(C)) be a category with structure. Let d : Obj(C)→
Z>0 ∪ {∞} be a function which is constant on isomorphism classes of objects. Let
A ∈ Obj(C) such that 0 < d(A) <∞. A d-reduction of A is a set

A −−−−→ Biy
y

Ci −−−−→ Di

(i ∈ I)

of structure squares where I is a directed quasi-ordered set and B : I → C, i 7→ Bi,
is an infrastructure functor such that the following holds.

(i) If i 6 j ∈ I then the triangle



10 ANTHONY BAK, ALEXEI STEPANOV

Bj
↗

A ↑
↘

Bi

commutes.
(ii) d(lim−→

I

B) = 0.

(iii) d(Ci) < d(A) for all i ∈ I.

The function d is called a dimension function on (C, S(C), I(C)) if each object
A of C such that 0 < d(A) < ∞ has a d-reduction. In this case, the quadruple
(C, S(C), I(C), d) is called a category with dimension.

In [Bk3], a more general concept of dimension function is developed, which allows
conditions other than those above to be placed on d(lim−→

I

Bi) and the d(Xi)’s (X =

B,C,D), e.g. d(lim−→
I

Bi) < d(A), d(Ci) < d(A), and d(Di) < d(A).

A dimension function d on (C, S(C), I(C)) is called tame or universal, if the
existence of a d-reduction

A −−−−→ Biy
y

Ci −−−−→ Di

(i ∈ I)

for A such that d(Ci) 6 n for all i ∈ I implies that d(A) 6 n+ 1.
The next result is fundamental for appreciating the concept of a dimension func-

tion, but will not be applied in the sequel.

2.3. Theorem. [Bk4] Let (C, S(C), I(C)) be a category with structure and C0 a
nonempty class of objects of C, closed under isomorphism. Then there is a universal
dimension function δ on (C, S(C), I(C)) such that C0 is the class of 0-dimensional
objects of δ and such that if d is any other dimension function on (C, S(C), I(C))
whose 0-dimensional objects are contained in C0 then δ 6 d, i.e. δ(A) 6 d(A) for
all A ∈ Obj(C).

The example below of a category with dimension will play a role in the current
paper.

2.4. Example. Let C denote the category of all algebras AR over Noetherian
commutative rings R such that AR is module finite over R. A morphism AR → A′

R′

is a pair of ring homomorphisms AR → A′
R′ and R→ R′ such that the diagram

R −−−−→ R′

y
y

AR −−−−→ A′
R′

commutes. If s ∈ R, let 〈s〉 denote the multiplicative set generated by s. For
any Noetherian R-module M , let 〈s〉−1M denote the module of 〈s〉-fractions of M

and let M̂(s) denote the completion lim←−
n∈N

M/snM of M . Let 〈s〉−1AR denote the
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〈s〉−1R algebra (〈s〉−1AR)〈s〉−1R and (ÂR)(s) the R̂(s)-algebra ((ÂR)(s))R̂(s)
. Let

S(C) denote the class of commutative squares in C isomorphic to a square of the
kind

AR −−−−→ 〈s〉−1ARy
y

(ÂR)(s) −−−−→ 〈s〉
−1(ÂR)(s) .

Such squares are called localization-completion squares. The Noetherian and
finiteness conditions guarantee that they are pullback diagrams in C. If S 6 R is a
multiplicative set, let S have the directed quasi-ordering defined by s 6 t⇔ there
is a u ∈ S such that su = t. Let FS,AR

: S → C denote the functor s 7→ 〈s〉−1AR.
Clearly lim−→

S

FS,AR
exists and is the S−1R algebra (S−1AR)S−1R. Let I(C) be the

class of all functors isomorphic to some functor FS,AR
. Then Bass-Serre dimension

BS and Jacobson-Krull dimension JK are dimension functions on (C, S(C), I(C)).
A definition of Bass-Serre dimension is found in [Bk1] where it is shown that BS
is a dimension function on (C, S(C), I(C)). Jacobson-Krull dimension is defined as
follows. An ideal of R is called Jacobson if it is the intersection of the maximal
ideals containing it. JK(AR) is by definition the largest nonnegative integer n such
that there is a chain P0 $ P1 $ · · · $ Pn of prime Jacobson ideals Pi in R. It
is not difficult to show that JK(AR) = dimension (maxspec (R)) where maxspec
(R) is the space of all maximal ideals of R under the Zariski topology. Using
this fact, one can show easily that JK(AR) > BS(AR) and can adapt to JK the
proof in [Bk1] that BS is a dimension function on (C, S(C), I(C)). It can also be
shown, but is beyond the scope of the current article, that neither JK nor BS is
the universal dimension function on (C, S(C), I(C)) for their class of 0-dimensional
algebras, namely all AR such that R is semilocal.

2.5. Definition-Lemma. Let (C, S(C), I(C), d) be a category with dimension. Let
τ : S → G be a natural transformation of functors S,G : C → ((groups)). Let
E = Im(τ). Define the dimension filtration or d-filtration G = G−1 > G0 >

G1 > · · · > Gi > · · · > E of τ on G by

Gi(A) =
⋂

f :A→B

d(B)6i

Ker(G(A)→ G(B)/E(B))

for any i > 0. In general G(B)/E(B) is just a coset space (not a group) and by
definition, Ker(G(A) → G(B)/E(B)) = {a ∈ G(A) | image of a in G(B) lies in
E(B)}. It is clearly a subgroup of G(A). If there are no morphisms f : A→ B such
that d(B) 6 i then by definition Gi(A) = G(A). A trivial, but important consequence
of the definition of Gi is that if i > dim(A) then Gi(A) = E(A). Furthermore, if A
and i are fixed and M is a nonempty set of morphisms A → B such that for each
B, dim(B) 6 i and Gi(A) =

⋂
(A→B)∈M

Ker
(
G(A) → G(B)/E(B)

)
then the induced

map G(A)/Gi(A)→
∏

(A→B)∈M

G(B)/E(B) is injective.

2.6. Definition. Let τ : S→ G be as in (2.5). An arbitrary commutative square
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A −−−−→ B
y

y

C −−−−→ D

is called τ-good, if the cube of groups

S(A) −−−→ S(B)
↙ ↙

S(C) −−−→ S(D)y y
G(A)− −→ G(B)y ↙

y ↙
G(C) −−−→ G(D)

extends not necessarily functorially to a commutative cube of precrossed modules

(SĀ → S(A)) −−−−−−−−−−−−−→(S(B)
1
−→ S(B))

↙ ↙

(SC̄ → S(C)) −−−−−−−−−−→(S(D)
1
−→ S(D))y y

(GĀ → G(A))−−−−−−−−−− −−−−−−−−−−→(G(B)
1
−→ G(B))y ↙

y ↙

(GC̄ → G(C)) −−−−−−−−−−→(G(D)
1
−→ G(D))

which satisfies all the conditions in (1.11) with JA = 1 and Im
(
SC̄ o S(C) →

GC̄ o G(C)
)

is a normal subgroup of GC̄ o G(C).
The natural transformation τ is called good, if S and G commute with arbitrary
direct limits in C and if each object A of C such that 0 < d(A) <∞ has a d-reduction

A −−−−→ Biy
y

Ci −−−−→ Di

(i ∈ I)

consisting of structure squares which are direct limits of τ -good squares.

2.7. Theorem. [Bk4] Let τ : S→ G be a good natural transformation of functors
S,G : C →((groups)) on a category with dimension (C, S(C), I(C), d) such that for
each finite dimensional object A, E(A) is normal in G(A). Then the dimension
filtration G > G0 > G1 > · · · > Gn > · · · > E of τ on G has the property that each
Gn is normal in G, Gn(A) = E(A) whenever n > d(A), and G0 > G1 > · · · is a
descending central series i.e. for all objects A of C, the mixed commutator group
[G0(A),Gn(A)] 6 Gn+1(A). Moreover, if G(A)/E(A) is Abelian for all 0-dimensional
objects A then G(A)/G0(A) is Abelian for all objects A.

Proof. The normality of each Gn(A) in G(A) follows from the definition of Gn(A) and
from the normality of E(B) in G(B) for each finite dimensional object B. Clearly
E(A) 6 Gn(A) and if d(A) 6 n then Gn(A) 6 Ker(G(A) → G(A)/E(A)) = E(A).
Thus d(A) 6 n implies Gn(A) = E(A). To show that [G0(A),Gn(A)] 6 Gn+1(A)
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(n > 0), it suffices, by the last assertion in (2.5), to consider the case d(A) 6 n+ 1.
If d(A) 6 n then Gn(A) = E(A) = Gn+1(A) and the inclusion [G0(A),Gn(A)] 6

Gn+1(A) follows from the normality of E(A). Suppose d(A) = n+1. Let x ∈ G0(A)
and y ∈ Gn(A). We must show that [x, y] ∈ Gn+1(A). Let

A −−−−→ Biy
y

Ci −−−−→ Di

(i ∈ I)

be a d-reduction of A consisting of structure squares which are direct limits of τ -
good squares. There is canonical morphism A → lim−→

I

B, thanks to (2.2) (i). Since

d(lim−→
I

B) = 0 by (2.2) (ii), both x and y vanish in G(lim−→
I

B)/E(lim−→
I

B). Since S and

G commute with limits of infrastructure functors, so do E and G/E. Thus there is a

j ∈ I such that x and y vanish in G(Bj)/E(Bj). Let Ẽ(A) = {z ∈ G(A) | z vanishes
in G(Bj)/E(Bj) and G(Cj)/E(Cj)}. Since d(Cj) 6 n by (2.2) (iii), y vanishes in

G(Cj)/E(Cj). Thus y ∈ Ẽ(A). Since

A −−−−→ Bjy
y

Cj −−−−→ Dj

is a direct limit of τ -good squares and since S and G commute with arbitrary direct
limits in C, we can assume that the square above is τ -good instead of a structure

square and that x and y vanish in G(Bj)/E(Bj), and y ∈ Ẽ(A). Let J(A) denote
the subgroup of G(A) generated by x. Since the square above is τ -good, there is a
cube of precrossed modules

(SĀ → S(A)) −−−−−−−−−−−−−−→(S(Bj)
1
−→ S(Bj))

↙ ↙

(SC̄j
→ S(Cj)) −−−−−−−−−−→(S(Dj)

1
−→ S(Dj))y y

(GĀ → G(A))−−−−−−−−−−− −−−−−−−−−−−−→(G(Bj)
1
−→ G(Bj))y ↙

y ↙

(GC̄j
→ G(Cj)) −−−−−−−−−−→(G(Dj)

1
−→ G(Dj))

such that J(A) and this cube satisfy the hypotheses of (1.11). By the conclusion

of (1.11), the action of J(A) on Ẽ(A)/E(A) by conjugation is trivial. Thus [x, y] ∈
E(A) = Gn+1(A).

The last assertion of the theorem follows immediately from the last assertion
of (2.5).

The theorem above says that the nilpotent class of G0(A)/E(A) is 6 d(A). Let
N ∈ Z>0. If G0(A) = E(A) whenever d(A) 6 N then it turns out that the nilpotent
class of G0(A)/E(A) is 6 |d(A) − N |. One proves this in a trivial way, using
dimension shifting which is defined as follows.
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2.8. Definition. Let (C, S(C), S(C), d) be a category with dimension. LetN ∈ Z>0.
For an object A of C, define

d[−N ](A) =

{
0 if d(A) 6 N

d(A)−N if d(A) > N.

Obviously (C, S(C), S(C), d[−N ]) is again a category with dimension.

2.9. Corollary. Let (C, S(C), I(C), d) be a category with dimension and τ : S→ G

a good natural transformation of functors S,G : C→ ((groups)). Let N ∈ Z>0. Let
G = G[−1] > G[0] > · · · > G[n] > · · · > E be the dimension filtration of τ on G with
respect to the dimension function d[−N ]. Then the conclusions of (2.7) are valid
for the filtration above. In particular G[n](A) = E(A) whenever n > d[−N ](A).

Proof. The corollary is an immediate consequence of (2.7).

3. Nets and net subgroups

3.1. Let J be a subset of the set N of natural numbers, of order |J | = n (where
n can be infinite) and let ν be an equivalence relation on J . Following [BV2], we
denote by h(ν) the minimal order (possibly infinite) of the equivalence classes of ν.
h(ν) is called the rank of ν. Recall that a square table σ = (σij)i,j∈J is called a
net over a ring R, with index set J if each σij is an additive subgroup of R and
σijσjk ⊆ σik for all i, j, k ∈ J . Let M(n,R) denote the ring, without unit element
if n = ∞, of all n× n matrices with coefficients in R such that each row and each
column contains only a finite number of nonzero elements. Enumerate the entries
of a matrix in M(n,R) by elements in J × J . We shall usually identify a net σ
with its net ring M(σ) which by definition is the subring of M(n,R) consisting of
all matrices a such that aij ∈ σij for all i, j ∈ J . Even if n is finite, M(σ) does
not necessarily have a unit. A net σ is called a ν-net,if all σij are ideals in R and

σij = σkl whenever i
ν
∼ k and j

ν
∼ l.

3.2. The principal net subgroup G(σ) is the largest subgroup of GL(n,R) such
that each matrix a ∈ G(σ) has the property that aij ≡ δij mod σij where δij = 1
if i = j and δij = 0 if i 6= j.

Let e denote the identity matrix and eij the matrix with 1 in position (i, j) and 0
elsewhere. Let E(σ) denote the group generated by all elementary transvections
tij(ξ) = e+ξeij where i 6= j and ξ ∈ σij . Denote by [ν,R] or simply [ν] the following
net:

[ν]ij =

{
R, if i

ν
∼ j,

0, otherwise.

The net subgroups G(ν) = G(ν,R) := G([ν,R]) and E(ν) = E(ν,R) := E([ν,R])
corresponding to this net are called the principal and elementary block-diagonal
groups, respectively. Thus the elementary block diagonal group E(ν) over a ring R
is the subgroup of GL(n,R) generated by all elementary transvections tij(ξ) such

that i 6= j, i
ν
∼ j, ξ ∈ R. The elementary net subgroup E(ν, σ) for a net σ

corresponding to an equivalence ν is the normal closure E(σ)E(ν) of the subgroup
E(σ) by E(ν).

3.3. Clearly E(ν, σ) 6 G(σ) if and only if σ is a ν-net. Clearly G(σ) is normalized
by E(ν) if and only if σ is a ν-net. For a ν-net σ, denote by σ + [ν] the net with
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ideals (σ+ [ν])ij = σij if i
ν

6∼ j and (σ+ [ν])ij = R otherwise. If σ = σ+ [ν] then σ
is called a major ν-net. Clearly if σ is a major ν-net then E(σ) = E(ν, σ).

For the rest of this article, all nets are ν-nets.

Define C(ν, σ) to be the largest subgroup C of GL(n,R) such that

[C,E([ν] + σ)] 6 G(σ).

If σ is major then C(ν, σ) obviously coincides with the normalizer N(σ) of the
principal net subgroup G(σ) in GL(n,R). On the other hand, if ν is the trivial

equivalence (i.e. i
ν
∼ j for all i, j ∈ J) then σ is a constant net (i.e. σij = I for

some ideal I and all i, j ∈ J) and E(ν, σ) = E(n,R, I), G(σ) = GL(n,R, I) and
C(ν, σ) = C(n,R, I) are the corresponding relative subgroups of level I. In the
above situation, σ is major means I = R.

The sandwich classification theorem shows that a subgroup of GL(n,R) is nor-
malized by E(ν) if and only if it fits into a sandwich E(ν, σ) 6 . . . 6 C(ν, σ) for
some ν-net σ. The subgroup G(σ) divides the sandwich E(ν, σ) 6 . . . 6 C(ν, σ)
into two parts. We shall consider only the group G(σ)/E(ν, σ) in situations when
E(ν, σ) is normal in G(σ). Denote this group by K1(ν, σ). The kind of behavior we
expect for net K1- and K2-groups is described in the next two propositions in the
special case h(ν) =∞.

3.4. Proposition. Let ν be an equivalence on N with a finite number of equivalence
classes each of infinite order.

(i) For a subgroup H 6 GL(R) normalized by E(ν), there exists a unique ν-net
σ such that E(ν, σ) 6 H 6 G(σ).

(ii) [G(σ),G(ν)] = [G(σ),G([ν] + σ)] = E(ν, σ).

Proof. The second assertion of the proposition follows in the usual way from the
block version of Whitehead lemma. We leave to the reader the formulation and
proof of the block version. The first assertion follows easily from lemma 2 of [BV1]
or lemma 3 of [S2].

The proposition shows that if h(ν) =∞ then:

– C(ν, σ) coincides with G(σ).
– In terms of [S1], E(ν) is strongly polynormal in GL(R) and the subgroups

E(ν, σ) as σ ranges over all ν-nets account for all E(ν)-perfect subgroups of
GL(R).

– K1(ν, σ) = G(σ)/E(ν, σ) lies in the center of G([ν] + σ)/E(ν, σ). In partic-
ular, the group K1(ν, σ) is Abelian.

3.5. Let σ > [ν] be a major ν-net over a ring R, with index set J . Define the
Steinberg group St(ν, σ) to be the group with generators xij(ξ), i 6= j ∈ J , ξ ∈ σij
and the ordinary Steinberg relations: For any i, j, k, l ∈ J , i 6= j, k 6= l, i 6= l, j 6= k,
one has:

(1) xij(ξ)xij(η) = xij(ξ + η).
(2) [xij(ξ), xkl(η)] = 1.
(3) [xij(ξ), xjk(η)] = xik(ξη).

Let St(ν) = St(ν,R) := St([ν,R]). For an arbitrary ν-net σ, define St(σ) to be the
subgroup of St(ν, σ+[ν]) generated by all generators xij(ξ) such that i 6= j ∈ J and
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ξ ∈ σij , and define St(ν, σ) to be the normal closure of St(σ) in St(ν, σ + [ν]), or

equivalently the normal closure St(σ)St(ν,R) of St(σ) by the subgroup Im(St(ν,R)→
St(ν, σ + [ν])) of St(ν, σ + [ν]).

Let π denote the homomorphism π : St(ν, σ) → E(ν, σ), xij(ξ) 7→ tij(ξ), and
define K2(ν, σ) to be the kernel of π.

3.6. Proposition. Let R be a ring, ν be an equivalence on J and σ a major ν-net
over R. If h(ν) > 5 then the group St(ν, σ) is centrally closed (i.e. any central
extension of this group splits). If h(ν) = ∞ then St(ν, σ) is the universal perfect
central extension of E(ν, σ).

Proof. The proof is absolutely the same as in [M, § 5]. (Note that to establish
perfectness, we use σ > [ν].) The rest of the paper is devoted to investigating K1

and K2 of nets with finite index sets.

4. In the stable range.

Throughout this section, R denotes a ring and srR its stable rank.
The standard description as in (3.4)(i) of E(ν)-normal subgroups of GL(n,R)

is not known under a stable rank condition on rings (it was proved in [VvS] only
under a weaker condition). Nevertheless the structure of the standard sandwiches
is similar to that described in the previous section.

The normality of E(ν, σ) in N(σ) was proved in [VvS] for any net σ > [ν] when-
ever h(ν) > sup(srR + 1, 3). Together with Corollary 5.2 this implies the com-
mutator formula [C(ν, σ),E([ν] + σ)] = E(ν, σ). In this section, we shall prove a
stronger commutator formula (4.3)(iii). The standard commutator formula will be
obtained in the next section under a weaker condition.

4.1. In the rest of this section, ν will be an equivalence on N and σ a ν-net over a
ring R. Denote by ν(kh) the equivalence on the set J = {k, . . . , h} got by restricting

ν to J and by σ(kh), the ν(kh)-net with index set J such that σ
(kh)
ij = σij for all

i, j ∈ J . If k = 1, we write ν(h) and σ(h) instead of ν(1h) and σ(1h), respectively.
For an equivalence χ, denote by |χ(m)| the order of the equivalence class of m.

4.2. Theorem. If |ν(n+1)(n+ 1)| > srR+ 1 then

G(σ(n+1)) = E(ν(n+1), σ(n+1)) G(σ(n)).

If h(ν(n)) > srR and E(ν(n), σ(n)) is normal in G(σ(n)) then the canonical homo-
morphisms

K1(ν, σ
(n)) −→ K1(ν, σ

(n+1)) −→ · · · −→ K1(ν, σ)

are surjective.

Proof. The proof is easy (see [Vv1]).

4.3. Theorem. (Injective stability for K1)

(i) If |ν(n+1)(n+ 1)| > srR+ 2 then

E(ν(n), σ(n)) = G(σ(n)) ∩ E(ν(n+1), σ(n+1)).

(ii) If h(ν(n)) > srR+ 1 and the set {1, . . . , n} has nonempty intersection with
each equivalence class of ν then K1(ν, σ

(n)) ∼= K1(ν, σ).
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(iii) If χ is an equivalence with h(χ) > srR+ 1 and τ is a χ-net over R then

[G(τ),G([χ] + τ)] = E(χ, τ).

Items (ii) and (iii) follow easily from (i). The proof of (i) will be given below
and is based on ideas in [SuTu]. In the special case of the general linear group,
it will appear in [Vv2]. The key step in [Vv2] and in our proof is the so-called
Dennis–Vaserstein decomposition.

4.4. We introduce the following notation. Let a be a matrix and τ a net. Then

– Rn(nR) is the set of all rows (columns) of length n over R.
– ai∗ (a∗i) is the i-th row (column) of a matrix a.
– a′i∗ (a′∗i) is the i-th row (column) of a matrix a−1.
– τi∗ = {v ∈ Rn| vj ∈ τij}.
– τ∗i = {u ∈ nR| uj ∈ τji}.
– ti∗(v) =

∏
j 6=i

tij(vj) where v ∈ Rn.

– t∗i(u) =
∏
j 6=i

tji(uj) where u ∈ nR.

4.5. Without lost of generality we may suppose that 1
ν
∼ n + 1. Consider the

subgroups P = P (ν(n+1), σ(n+1)) and Q = Q(ν(n+1), σ(n+1)) of the group H =
E(ν(n+1), σ(n+1)) defined as follows:

P =

{(
1 0
s a

)
∈ H

∣∣∣∣ s ∈
nR, a ∈ E(ν(2,n+1), σ(2,n+1))

}

Q =

{(
b 0
v 1

)
∈ H

∣∣∣∣ v ∈ R
n, b ∈ E(ν(n), σ(n))

}
.

4.6. Theorem. (Dennis–Vaserstein decomposition) Let |ν(n+1)(n + 1)| > srR +
2. Then every element g ∈ E(ν(n+1), σ(n+1)) can be written in the form g =
yt1,n+1(λ)z, where y ∈ P , λ ∈ σ11, z ∈ Q.

We start with some lemmas.

4.7. Lemma. Suppose that |ν(n+1)(n+1)| > srR+2. Let u ∈ σ
(n+1)
∗1 , w ∈ σ

(n+1)
1∗ ,

wn+1 = 0, wu = 1 and λ ∈ σ11. Then there exists x ∈ Q such that (xu)n+1 = 0
and t1,n+1(−λ)xt1,n+1(λ) ∈ P .

Proof. Since |ν(n)(1)| > srR+ 1 and the column

(w1u1, uk, wjuj)
t

k
ν
∼1, j

ν

6∼1, 26j,k6n

is unimodular, there exists an αk ∈ R such that the column (uk + αkw1u1, uj)
t is

also unimodular. Hence for some βi ∈ R (2 6 i 6 n)

∑

k
ν
∼1, k 6=1

un+1βk(αkw1u1 + uk) +
∑

j
ν

6∼1

un+1βjwjuj = un+1.
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Clearly the elements β′
k = −un+1βk are in σn+1,n+1 = σn+1,k for k

ν
∼ 1 and

β′
j = −un+1βjwj are in σn+1,1σ1j ⊆ σn+1,j for j

ν

6∼ 1. Thus the matrices

x1 =
∏

k
ν
∼1, k 6=1

tk1(αkw1) and x2 =
n∏

i=2

tn+1,i(β
′
i)t1i(λβ

′
i)

are in Q. It is easy to see that (x1x2u)n+1 = 0 and t1,n+1(−λ)xht1,n+1(λ) ∈ P for
h = 1, 2. Hence x = x1x2 fits the assertion of the lemma.

Let X denote the subset in E(ν(n+1), σ(n+1)) consisting of those elements g which
can be expressed in the form g = yt1,n+1(λ)z, where y ∈ P , λ ∈ σ11, z ∈ Q.

4.8. Lemma. Assume that |ν(n+1)(n + 1)| > srR + 2. Fix j
ν
∼ 1. Then every

element g = yt1,n+1(λ)z ∈ X can be expressed in the form g = ȳt1,n+1(λ̄)z̄ as above
where in addition z̄n+1,j = 0.

Proof. Let u = z∗j ∈ σ∗j and w = z′j∗ ∈ σj∗. By the previous lemma, there exists
a matrix x ∈ Q such that (xu)n+1 = 0 and t1,n+1(−λ)xt1,n+1(λ) ∈ P . Then

g =
(
yt1,n+1(λ)x−1t1,n+1(−λ)

)
t1,n+1(λ)

(
xz
)

is the desired factorization.

We are now ready to prove Dennis–Vaserstein decomposition.

Proof. We shall prove that X is normalized by E(ν(n+1)). Since

QE(ν(n+1)) = E(ν(n+1), σ(n+1)),

this will imply X = E(ν(n+1), σ(n+1)).

Fix j
ν
∼ 1, j 6= 1, j 6= n+ 1. Clearly E(ν(n+1)) is generated by all transvections

tik(ξ) with ξ ∈ R and either i
ν
∼ k

ν

6∼ 1 or i = j 6= k, k
ν
∼ 1 or k = j 6= i, i

ν
∼ 1.

Obviously if i 6= 1 and k 6= n+ 1 then tik(ξ) normalizes X. Thus we only have to
show that

c = (yt1,n+1(λ)z)tj,n+1(ξ) ∈ X

for all y ∈ Q, z ∈ P, λ ∈ σ11 and ξ ∈ R (the case (i, k) = (1, j) can be proved in the
same way).

By the last lemma, one may suppose that zn+1,j = 0. Straightforward calculation
shows that

c =

[
y

n∏

i=2

ti,n+1((zij − δij)ξ)

]
t1,n+1(λ+ z1jξ)

[( n∏

i=1

ti,n+1(−zijξ)

)
ztj,n+1(ξ)

]
.

Since P is normalized by tj,n+1(ξ) and zij − δij ∈ σij = σi,n+1, the factor in the
first square brackets belongs to P . It is easy to verify that the factor in the last

square brackets is of the form

(
a 0
v 1

)
, where z =

(
b 0
v 1

)
and a = b

n∏
i=1

tji(ξvi).

Therefore it belongs to Q. Hence c ∈ X.
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An analogue of this result holds also for the Steinberg group and allows one
to prove surjective stability for net K2 (surjective stability for K2 is practically
equivalent to injective stability for K1, see [SuTu] for the case of GL(n,R)).

Proof of injective stability of K1. It is obvious that E(ν(n), σ(n)) ⊆ GL(σ(n)) ∩
E(ν(n+1), σ(n+1)). We want to prove the opposite inclusion. Indeed, take a matrix
g⊕ 1 ∈ GL(σ(n))∩E(ν(n+1), σ(n+1)). Then by the decomposition theorem (4.6), it
can be expressed as a product

(
g 0
0 1

)
=




1 0 0
y21 y22 y23

y31 y32 y33






1 0 λ
0 e 0
0 0 1





z11 z12 0
z21 z22 0
z31 z32 1




where the matrices y, t1,n+1(λ) and z are written in block form with respect to the
partition (1, n− 1, 1). Multiplying the matrices on the right, we get λ = 0, y23 = 0
and y33 = 1. Hence, 1⊕ y22 ∈ E(ν(n), σ(n)). Thus by definition of P and Q,

(
y22 y23

0 1

)
∈ E(ν(2,n+1), σ(2,n+1)) and b =

(
z11 z12

z21 z22

)
∈ E(ν(n), σ(n)).

Consequently g =

(
1 0
y21 y22

)
b =

(
1 0
y21 1

)(
1 0
0 y22

)
b ∈ E(ν(n), σ(n)) Q.E.D.

5. Over a quasi-finite ring

Following [Bk1], we call a ring quasi-finite, if it is a direct limit of module finite
rings. In this section, we shall prove the standard classification of E(ν)-normal
subgroups GL(n,A) over quasi-finite rings A, where ν is an equivalence on the set
J = {1, · · · , n} and h(ν) > 3. It will also be shown that K2(ν, σ) is central in
St(ν, σ) for any ν-net σ over a quasi-finite ring.

The standard classification theorem breaks into two parts, the sandwich theorem
and the standard net commutator formula. The former follows by a direct limit
argument from the sandwich theorem of I. Z. Golubchik [G] over module finite
rings. So there is nothing to do here. The proof of the commutator formula over
quasi-finite rings is reduced also by a direct limit argument to the case of a module
finite ring. Module finite rings A over a commutative ring R have the property
that if M is a maximal ideal in R and S = R \M then S−1A is semilocal (by
definition, S−1A/

(
Jacobson radical(S−1A)

)
is semisimple) and thus its stable rank

sr(S−1A) = 1. We shall prove the commutator formula over R-algebras A such
that given any maximal ideal M of R, there is a multiplicative set S ⊆ R \M such
that sup(sr(S−1A) + 1, 3) 6 h(ν). The proof will use a localization method of Bak
[Bk1]. Before beginning the proof, we want to reduce to the case where 1 ∈ σii for
any i ∈ J = {1, · · · , n}.

5.1. Lemma. Suppose that subgroups D and H 6 C of a group G satisfy the
following conditions:

(i) D is perfect, i.e. [D,D] = D.
(ii) H is D-perfect, i.e. [H,D] = H.
(iii) C is normalized by D.
(iv) DC 6 HD.
(v) [C ∩D,D] = D ∩H.
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Then [C,D] = [C,DH] = H.

Proof. First, note that [CD,HD] 6 HD by (ii) and (iv) and that the converse
inclusion holds by (i) and (ii). In particular,HD is normal in CD. We are interested
in the subgroup L = [C,D]. It is contained in C by (iii) and in [CD,HD] = HD.
It follows that L 6 HD∩C = H(C ∩D), and hence [L,D] 6 [H,D][C∩D,D] 6 H
by (ii) and (v). On the the other hand, [L,D] > H by (ii). Lemma 1 from [S1] says
that if D is perfect and

[
[C,D], D

]
is normal in C then

[
[C,D], D

]
= [C,D]. But

[
[C,D], D

]
= [L,D] = [L,DDL] = [L,DDH ] = [L,DH]

and the last group is normal in CD because L and DH are. Thus [C,D] = H. It
follows that H is normalized by C and hence [C,DH] = H.

Recall that if σ is a net then by definition, N(σ) is the normalizer in GL(n,A)
of G(σ).

5.2. Corollary. Let σ be a ν-net such that h(ν) > 3. Suppose that E(ν)N([ν]+σ) 6

E([ν] + σ) and the standard commutator formula [C(|ν(i)|, R, σii),E(|ν(i)|, R)] =
E(|ν(i)|, R, σii) holds for any i ∈ J . Then

[C(ν, σ),E(ν)] = [C(ν, σ),E([ν] + σ)] = E(ν, σ)

and E(ν, σ) is normal in G([ν] + σ).

Proof. Let D = E(ν), C = C(ν, σ) and H = E(ν, σ). Clearly CD 6 N([ν] + σ) and
C∩D is contained in the block diagonal group with diagonal blocks C(|ν(i)|, R, σii).
The first assertion follows now from the previous lemma. To prove the second one,
note that G(σ) is normal in G = G([ν]+σ). Also E([ν]+σ) is normal in G, because
it equals [G,D]. It follows that

[C(ν, σ)G,E([ν] + σ)] 6
[
C(ν, σ),E([ν] + σ)G

]G
6 G(σ)G 6 G(σ) .

By definition of C(ν, σ), the above implies that C(ν, σ)G 6 C(ν, σ). Hence E(ν, σ)
is normal in G.

5.3. Let R be a commutative ring, A an R-algebra, and σ a net over A. For a
multiplicative subset S in R, we denote by S−1R the localization of R in S, by
S−1A the S−1R-algebra A ⊗R S−1R, and by S−1σ the net over S−1A of ideals
(S−1σ)ij = σij ⊗R S

−1R. In the sequel, quotation marks will denote the image of
an ideal or group under a homomorphism induced by the canonical homomorphism
A→ S−1A, where S will be specified by context.

5.4. Lemma. Let A be an R-algebra, σ > [ν] a major net over A such that
h(ν) > 3, and s ∈ R. Then for any u ∈ E(ν, 〈s〉−1σ) there exists a positive integer
m such that “E(smσ)”

u
6 “E(sσ)” .

Proof. The proof is the same as for Lemma 4.6 of [Bk1], because σ is major.

5.5. Lemma. Let A be an R-algebra such that the nilpotent radical of A is trivial
and let s ∈ R. Then the ideal sA injects into 〈s〉−1A and hence, GL(n,A, sA)
injects into GL(n, 〈s〉−1A).

Proof. Suppose that sξ ∈ sA goes to 0 in 〈s〉−1A. Then there is m ∈ N such that
smsξ = 0. It follows that (sξA)m+1 = 0. Hence by the condition of the lemma,
sξA = 0. Thus sξ = 0.
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5.6. Lemma. (Vavilov, Stepanov [VvS]). Let A be a ring such that h(ν) >

sup(srA + 1, 3), σ > [ν] a major net over A, K a set of representatives of the
equivalence classes of ν, and i ∈ J . Then each matrix a ∈ N(σ) can be decomposed
as a product a = bu such that u ∈ E(ν, σ), b ∈ N(σ), and bik = 0 for k ∈ K.

5.7. Theorem. Let A be an R-algebra and ν be an equivalence on J = {1, . . . , n}
(where n can be infinite). Suppose that for any maximal ideal M of R there is a
multiplicative set S ⊆ R \M such that h(ν) > sup(srS−1A + 1, 3). Then for any
ν-net σ

[C(ν, σ),E(ν)] = [C(ν, σ),E([ν] + σ)] = E(ν, σ)

and E(ν, σ) is normal in G([ν] + σ). In particular if A is quasi-finite then the
conclusions above hold for h(ν) > 3.

Proof. The last assertion of the theorem follows from the other assertions, because
a quasi-finite ring is a direct limit lim−→Ai of module finite rings Ai, C(ν,− ), E(ν,− ),
and G(−) commute with direct limits, and if Ai is module finite over Ri and S =
Ri\M then sr(S−1Ai) = 1. Thus sup(sr(S−1Ai) + 1, 3) = 3.

We prove now the rest of the theorem. If ν is the trivial equivalence (cf. 3.3),
the result has been proved by L.N.Vaserstein in [Vs1]. By Corollary 5.2, we have
to prove only that E(ν)N([ν]+σ) 6 E([ν] + σ). Thus we can assume that σ > [ν] is
major.

Suppose first that the Jacobson radical RadA is trivial. Let M be a maximal

ideal in R, h
ν
∼ i be distinct indexes from J , ξ ∈ A, and a ∈ N(σ). We want

to show that there exists an α ∈ R \M such that d = thi(ξαη)
a ∈ E(σ) for any

η ∈ R. Choose a set K ⊂ J of representatives of the equivalence classes of ν and a
multiplicative set S satisfying the conditions of the theorem. By Lemma 5.6, we can
decompose the image of a in GL(n, S−1A) into a product bu where u ∈ E(ν, S−1σ),
b ∈ N(S−1σ) and bik = 0 for all k ∈ K. Since S−1R = lim−→〈t〉

−1R over all t ∈ S,
there is an s ∈ S such that u ∈ E(s−1σ) and b′pq “σqr” brj ∈ s

−1 “σpj” . By Lemma

5.5, GL(n,A, sA) injects into GL(n, 〈s〉−1A). Thus by Lemma 5.4, there is an
m ∈ N such that “E(smσ)”

u
6 “E(sσ)” .

For an index l ∈ J consider the matrix

c(l) = thi(ξs
2m+2ηbhlb

′
lh)

b = e+ b′∗hξs
2m+2ηbhlb

′
lhbi∗ =

=
[
t∗k(b

′
∗hξs

m+1ηbhl) , tk∗(b
′
lhs

m+1bi∗)
]
tk∗(b

′
khξs

2m+2ηbhlb
′
lhbi∗) ∈ “E(smσ)”

where k ∈ K, k
ν
∼ l (the formula above is just a variation of the Whitehead lemma).

Set α = s2m+2. Then d ∈ GL(n,A, sA) and the image of d in GL(n, 〈s〉−1A) is
equal to

thi
(
ξs2m+2η

)a
=

(
∏

l∈J

c(l)

)u
∈ “E(smσ)”

u
6 “E(sm

′

σ)” .

Thus d ∈ E(sσ) 6 E(σ).
Let U be the set of all t ∈ R such that thi(ξtη)

a ∈ E(σ) for any η ∈ R. Obviously,
U is an ideal in R. If U 6= R then there exists a maximal ideal M 6 R containing
U . But this is impossible because we have just proved that there exists an element
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α ∈ U which does not belong to M . The contradiction shows that U = R and
hence thi(ξ)

a ∈ E(σ) for any h 6= j ∈ J , ξ ∈ A and a ∈ N(σ).

Let now A be an arbitrary R-algebra, satisfying the conditions of the theo-
rem. Clearly A/RadA fulfills the conditions of the theorem as well. Hence
H = [E(ν),N(σ)] is contained in H ′ = E(σ) GL(n,A,RadR) ∩ G(σ) and is nor-
mal in N(σ). It is easy to see that H ′ 6 E(σ) D(n,R) where D(n,R) denotes the
subgroup of diagonal matrices and therefore [H,H] 6 [H ′, H ′] 6 E(σ). On the
other hand [H,H] > E(σ), because [E(σ),E(ν)] = E(σ). Thus E(σ) is normal in
N(σ), since it is the commutator subgroup [H, H] of the normal subgroup H of
N(σ).

5.8. Standard Classification Theorem. Let A be a quasi-finite ring, ν an
equivalence on J = {1, · · · , n} (where n can be infinite) and h(ν) > 3. Then
the E(ν)-normal subgroups of GL(n,A) are in one to one correspondence with the
subgroups H of the sandwiches E(ν, σ) 6 H 6 C(ν, σ) where σ ranges over all
ν-nets. Moreover each E(ν)-normal subgroup of GL(n,A) belongs to precisely one
sandwich and the mixed commutator group [E(ν),C(ν, σ)] = [E([ν] + σ),C(ν, σ)] =
E(ν, σ).

Proof. Since the functors E(ν,− ),G(−), and GL(n,− ) commute with direct limits,
we can reduce routinely the proof of the theorem to the case A is module finite over
a commutative ring R. The commutator formula follows now from Theorem 5.7
and the fact that if M is a maximal ideal in R and S = R \M then sr(S−1A) = 1
because S−1A is semilocal. From the commutator formula, it follows that if a
subgroup H is contained in a sandwich E(ν, σ) 6 H 6 C(ν, σ) then [E(ν), H] 6 H.
Thus H is E(ν)-normal. Furthermore a sandwich containing H must be unique,
since E(ν, σ) = [E(ν),E(ν, σ)] 6 [E(ν), H] 6 [E(ν),C(ν, σ)] = E(ν, σ), i.e. E(ν, σ) =
[E(ν), H], and obviously E(ν, σ) = E(ν, ρ)⇔ σ = ρ. The fact that each E(ν)-normal
subgroup of GL(n,A) is contained in a sandwich is a special case of Golubchik’s
theorem [G].

Let K be an overgroup of E(ν) in G(ν). The K-normal subgroups of GL(n,A)
are among the E(ν)-normal subgroups and the E(ν)-normal subgroups are classified
in Theorem 5.8. If the conjugation action of K on C(ν, σ)/E(ν, σ) is trivial for each
ν-net σ over A then the set of K-normal subgroups of GL(n,A) is the same as
the set of E(ν)-normal subgroups. Thus the nilpotent class of the action of K
on C(ν, σ)/E(ν, σ) is an obstruction to the sets above being equal and provides a
rough measure of how much smaller the set of K-normal subgroups is. We shall
investigate this nilpotent class in the next section.

5.9. Theorem. Let A be a quasi-finite ring, ν be an equivalence on J = {1, . . . , n}
(where n can be infinite) and h(ν) > 4. Then for any major net σ > [ν], the group
K2(ν, σ) is contained in the center of St(ν, σ). Moreover there is a natural action
of G(σ) on St(ν, σ) extending the action of G(σ) on E(ν, σ) via conjugation.

Proof. For module finite rings one can take the set

V = {(α, β)| α = a∗i for some a ∈ E(ν, σ), i ∈ J, β ∈ σi∗, βα = 0}

and run it through the proof of the main theorem of [Tu], because σ is major. The
quasi-finite case can be obtained by the standard direct limit procedure.
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6. ν-nets as a category with dimension

In this section, we define the category of ν-nets over algebras and make it and its
full subcategory of major ν-nets into categories with dimension. Then we show that
the natural transformation π : St(ν,− ) → G(−) is good on the category of major
ν-nets. In the next section, we shall combine the goodness of π with Theorem 2.7
to conclude that for a major ν-net σ, the group G0(σ)/E(ν, σ) has nilpotent class
6 dim(ν, σ) whenever dim(ν, σ) < ∞ and h(ν) > 4, and that for any ν-net σ, the
group G0(σ)/E(ν, σ) has nilpotent class 6 dim(ν, σ)+1, under the same conditions.

6.1. It will be important in this section to know exactly what is meant by an algebra
and a morphism of algebras, because ground rings will frequently change. An
algebra will mean a pair (R,A) where A is an associative ring with identity and R
is a commutative ring with identity, together with a fixed ring homomorphism R→
center(A) which preserves the identity. We let ((alg)) denote the category whose
objects are all pairs (R,A) as above and whose morphisms f : (R,A) → (R′, A′)
are all pairs of identity preserving ring homomorphisms R→ R′ and A→ A′ such
that the diagram

A −−−−→ A′

x
x

R −−−−→ R′

commutes. An algebra (R,A) is called module finite (over R), if A is finitely
generated as an R-module. Following [Bk1], we shall call an algebra (R,A) quasi-
finite (over R), if (R,A) is a direct limit lim−→(Ri, Ai) in ((alg)) of module finite
algebras (Ri, Ai). It is easy to check that this definition is equivalent to the one
obtained by postulating that each Ri = R. The concept of quasi-finiteness for
algebras is stronger than that for rings in §3, because it is not required in §3
that the ring homomorphisms Ai → Aj , where i 6 j, take the center(Ai) to the
center(Aj). Let ν be a fixed equivalence on a subset J of N. Define the category
((ν-nets)) as follows. An object is a triple (R,A, σ) where (R,A) is an algebra and
σ is a ν-net in the sense of §3 over A. We shall frequently denote the triple (R,A, σ)
by σ, if this does not lead to confusion. A morphism (R,A, σ)→ (R′, A′, σ′) is an
algebra homomorphism f : (R,A)→ (R′, A′) such that f(σij) 6 σ′

ij for all i, j ∈ J .
We let ((major ν-nets)) denote the full subcategory of ((ν-nets)) consisting of all
ν-nets (R,A, σ) such that σ is major in the sense of §3.

We want our structure squares in ((ν-nets)) to be pullback squares, since the
functor G(−) on ((ν-nets)) preserves pullback squares, and we want localization-
completion squares to be included among our structure squares, since such squares
behave well under Bass-Serre dimension. However localization-completion squares
are not in general pullback squares, but only when R is Noetherian and A is module
finite over R. To get around this problem, Bak [Bk4] has introduced the notion
of finite completion and constructed localization-finite-completion squares which
are always pullback squares and are well behaved under Bass-Serre dimension. We
recall what is necessary for the current paper.

6.2. Let ((mod)) denote the category of modules M over commutative rings R. By
definition, an object of ((mod)) is a pair (R,M). A morphism (R,M)→ (R′,M ′) is
a pair (f, g) consisting of a ring homomorphism f : R → R′ and a homomorphism



24 ANTHONY BAK, ALEXEI STEPANOV

g : M → M ′ of Abelian groups such that g(rm) = f(r)g(m) for all r ∈ R and

m ∈ M . For an element s ∈ R, let M̂(s) = lim←−
i>0

M/siM denote the completion of

M at s and let 〈s〉−1M denote the module of 〈s〉-fractions of M at the multiplicative
set 〈s〉 = {si | i > 0}. Let I(s,R,M) denote {(Ri,Mi) |Ri ⊆ R a finitely generated
Z-subalgebra such that s ∈ Ri, Mi ⊆ M a finitely generated Ri-submodule}.
Obviously I(s,R,M) is a directed, partially ordered set under inclusion. Define

the finite completion M̃(s) of M at s by M̃(s) = lim−→
i∈I(s,R,M)

(M̂i)(s). Clearly M̃(s) is

a module over R̃(s). Furthermore if R is finitely generated over Z and M is finitely

generated over R then M̃(s) = M̂(s). The basic facts concerning finite completion
are contained in the next four lemmas.

For a fixed commutative ring R, let ((R-mod)) denote the subcategory of ((mod))
of all R-modules (R,M) and all morphisms (f, g) : (R,M) → (R,M ′) such that
f = identity.

6.3. Lemma. [Bk 4] Finite completion is an exact functor on ((R-mod)).

Proof. Any 3-term exact sequence in ((R-mod)) is a direct limit of 3-term exact
sequences of finitely generated modules over finitely generated Z- subalgebras of
R. Ordinary completion preserves such exact sequences and a direct limit of exact
sequences is exact. The conclusion of the lemma follows.

6.4. If (R,M) ∈ ((mod)) and s ∈ R then

LFC(s,R,M) :=

(R,M) −−−−→ (〈s〉−1R, 〈s〉−1M)
y

y

(R̃(s), M̃(s)) −−−−→ (〈s〉−1R̃(s), 〈s〉
−1M̃(s))

is called the localization-finite-completion square of (R,M) at s.

6.5. Lemma. [Bk 4] Localization-finite-completion squares are fibre squares.

Proof. LFC(s,R,M) = lim−→
i∈I(s,R,M)

LFC(s,Ri,Mi) and it is well known classically

that each LFC(s,Ri,Mi) is a fibre square.

6.6. Definition-Lemma. [Bk 4] Let (R,A) be an R-algebra and s ∈ R. Define

a multiplication on Ã(s) as follows. Let x, y ∈ Ã(s). Choose α, β ∈ I(s,R,A)

and elements x′ ∈ (Âα)(s) and y′ ∈ (Âβ)(s) such that x′ and y′ represent x and y,
respectively. Neither Aα nor Aβ is necessarily closed under multiplication in A. Let∏
i>0

xi ∈
∏
i>0

Aα represent x′ and
∏
i>0

yi ∈
∏
i>0

Aβ represent y′. Choose γ ∈ I(s,R,A)

such that α 6 γ, β 6 γ, and AαAβ ⊆ Aγ. Define x ◦ y to be the class in Ã(s)

of the element of (Âγ)(s) defined by
∏
i>0

xiyi ∈
∏
i>0

Aγ. Then the product x ◦ y is

independent of all choices made and makes Ã(s) into an R̃(s)-algebra.

Proof. Straightforward.
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6.7. Corollary. [Bk4] If (R,A) is an R-algebra, s ∈ R, and A ⊆ A is an ideal

then Ã(s) ⊆ Ã(s) is an ideal.

Proof. This follows routinely from (6.3), (6.6), and the proof of (6.6).

6.8. Definition-Lemma. If (R,A, σ) ∈ ((ν − nets)) and s ∈ R then the square

LFC(s,R,A, σ) :=

(R,A, σ) −−−−→ (〈s〉−1R, 〈s〉−1A, 〈s〉−1σ)
y

y

(R̃(s), Ã(s), σ̃(s)) −−−−→ (〈s〉−1R̃(s), 〈s〉
−1Ã(s), 〈s〉

−1σ̃(s))

is called the localization-finite-completion square of (R,A, σ) at s. Let LFC
((ν − nets)) (resp. LFC(( major ν − nets)) ) denote the class of all commu-
tative squares in ((ν-nets)) (resp. ((major ν-nets))) which are isomorphic to a
localization-finite-completion square. If S ⊆ R is a multiplicative set, give S the
directed quasi-ordering (cf. §2) defined by s 6 r ⇔ ∃u ∈ S such that su = t.
Let Frac((ν-nets)) (resp. Frac((major ν-nets))) denote the class of all functors
F(S,R,A,σ) : S → ((ν-nets)) (resp. ((major ν-nets))), s 7→ (〈s〉−1R, 〈s〉−1A, 〈s〉−1σ),
where (R,A, σ) ranges over all objects of ((ν-nets)) (resp. ((major ν-nets))) and
S over all multiplicative subsets of R. Then (((ν-nets)), LFC((ν-nets)), Frac((ν-
nets))) and ( ((major ν-nets)), LFC((major ν-nets)), Frac((major ν-nets))) are
categories with structure in the sense of (2.1) whose structure squares are pullback
squares. Let BS(R) denote the Bass-Serre dimension of R, cf. [Bk1]. Define

dim(R,A, σ) =

{
BS(R) if A is quasi-finite over R
∞ otherwise.

Then dim is a dimension function in the sense of (2.2) on the categories above.
Moreover if dim(R,A, σ) = 0 then the stable rank sr(A) = 1.

Remark An important part of the definition of dim is that dim(R,A, σ) < ∞
implies (R,A) in quasi-finite.

Proof. Obviously we have categories with structure. Lemma 6.5 shows that all
structure squares are pullback squares. It is clear that if (R,A) is quasi-finite then
for any element s ∈ R and any multiplicative set S ⊆ R, every algebra in the
localization-finite-completion square LFC(s,R,A) and the algebra (S−1R, S−1A)
are quasi-finite. It follows therefore from the Induction Lemma 4.17 of [Bk1]
that dim is a dimension function on both categories with structure. Suppose
dim(R,A, σ) = 0. Since A is quasi-finite over R, A is a direct limit of module
finite R-subalgebras Ai. Since BS(R) = 0, it follows that R is semilocal. Thus Ai
is semilocal. Thus sr(Ai) = 1. But a direct limit of stable rank 1 rings has stable
rank 1. Thus sr(A) = 1.

For the proof of the goodness lemma below we shall use smash products of rings
and ν-nets. By definition, the smash product AoA of a ring A with itself has as
elements those of the Cartesian product A×A. Addition is defined componentwise
and multiplication by the rule (b, a)(b′, a′) = (bb′ + ab′ + ba′, aa′). If σ and ρ are
ν-nets over A such that σρ ⊆ ρ and ρσ ⊆ ρ then one defines the smash product
ρ o σ similarly and ρ o σ becomes a ν-net over A o A. If σ and ρ are major
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ν-nets, then so is ρ o σ. Let f : A o A → A, (b, a) 7→ a, and g : A o A → A,
(b, a) 7→ b+ a. Both f and g are ring homomorphisms and are commonly split by
the homomorphism A→ AoA, a 7→ (0, a). They induce morphisms f : ρo σ → σ
and g : ρ o σ → ρ + σ of ν-nets, and f is split by the ν-net map σ → ρ o σ,
a 7→ (0, a). Moreover if ρ ⊆ σ then g is split by the same ν-net map.

Let ρ ⊆ σ be ν-nets over A such that σρ ⊆ ρ and ρσ ⊆ ρ. If L : ((ν-nets)) −→
((groups)) is a functor, set L(σ, ρ) = Ker

(
L(f) : L(ρoσ)→ L(σ)

)
. Give L(σ, ρ) the

L(σ)-action defined by the conjugation action of L(ρo σ) on L(σ, ρ) and the split

exact sequence L(σ, ρ) ↪→ L(ρ o σ)
L(f)
−−−→ L(σ). Let hσ,ρ denote the composition

of the homomorphisms L(σ, ρ) ↪→ L(ρ o σ)
L(g)
−−−→ L(ρ + σ) = L(σ). Obviously

hσ,ρ : L(σ, ρ) → L(σ) is a precrossed module whose associated smash product
group L(σ, ρ) o L(σ) (defined just prior to (1.11)) has a canonical identification
L(σ, ρ) o L(σ) ∼= L(ρo σ) with L(ρo σ).

Let G(−), E(ν,− ), and St(ν,− ) : ((ν-nets))→ ((groups)) be defined as in §3 and
let π : St(ν,− )→ G(−) denote the canonical natural transformation. Let ρ ⊆ σ be
ν-nets on A such that σρ ⊆ ρ and ρσ ⊇ ρ. The proof of the goodness lemma below
will use tacitly the following facts.

Since the square

ρo σ
f

−−−−→ σ

g

y
y

σ −−−−→ σ/ρ

is a fibre square of ν-nets and the functor G(−) preserves fibre squares, it follows
that the map hσ,σ : G(σ, σ)→ G(σ) above is an isomorphism. Although the functor
St(ν,− ) does not preserve fibre squares, using the relations (3.5) defining St(ν,− ),
one can show (see for example the proof of [M] (6.1)) that hσ,σ : St(ν, σ, σ) →
St(ν, σ) is an isomorphism providing h(ν) > 4 and σ is major. It follows that
hσ,σ : E(ν, σ, σ)→ E(ν, σ) is an isomorphism under the same conditions.

6.9. Goodness Lemma. The natural transformation π above is good in the sense
of (2.6) on the category with structure

(
((major ν-nets)), LFC((major ν-nets)),

Frac((major ν-nets))
)
, providing h(ν) > 4.

Proof. It is straightforward to check that St and G commute with arbitrary di-
rect limits. Any localization-finite-completion square LFC(s,R,A, σ) such that
dim(R,A, σ) < ∞ is a direct limit of subsquares LFC(s,Ri, Ai, σi) where Ri is
Noetherian and Ai is module finite over Ri. It suffices to show that each square
LFC(s,Ri, Ai, σi) is π-good. Given i, one can show as in the proof of Lemma 4.10
in [Bk1] that there is an n > 0 such that snAi is s-torsion free. It suffices therefore
to prove the following:

(6.9.1) If (R,A) is quasi-finite, n > 0, and σ is a major ν-net such that snσ is
s-torsion free then LFC(s,R,A, σ) is a π-good square.

By definition, it suffices to show that the commutative cube of precrossed modules
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(
St(ν, σ, snσ)

h
−→ St(ν, σ)

)
−−−−−−−−−→

(
St(ν, 〈s〉−1σ)

1
−→ St(ν, 〈s〉−1σ)

)

↙ ↙
(
St(ν, σ̃(s), s

nσ̃(s))
h̃

−→ St(ν, σ̃(s))
)
−−−−→

(
St(ν, 〈s〉−1σ̃(s))

1
−→ St(ν, 〈s〉−1σ̃(s))

)

y y
(
G(snσ)

h
−→ G(σ)

)
−−−−−−−−−−− −−−−−−−−−−−→

(
G(〈s〉−1σ)

1
−→ G(〈s〉−1σ)

)
y ↙

y ↙
(
G(snσ̃(s))

h̃
−→ G(σ̃(s))

)
−−−−→

(
G(〈s〉−1σ̃(s))

1
−→ G(〈s〉−1σ̃(s))

)

satisfies (1.11)(i), (ii) and (iii), and that the associated cube of smash product
groups

St(ν, snσ o σ) −−−−−−−−−−−−−−−−−−−−−−→St(ν, 〈s〉−1σ o 〈s〉−1σ)
↙ ↙

St(ν, snσ̃(s) o σ̃(s)) −−−−−−−−−−−→St(ν, 〈s〉−1σ̃(s) o 〈s〉−1σ̃(s))y y
G(snσ o σ) −−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−− → G(〈s〉−1σ o 〈s〉−1σ)y ↙

y ↙

G(snσ̃(s) o σ̃(s)) −−−−−−−−−−−→ G(〈s〉−1σ̃(s) o 〈s〉−1σ̃(s))

satisfies (1.10)(i) and (ii) and Im
(
St(ν, snσ̃(s) o σ̃(s))→ G(snσ̃(s) o σ̃(s))

)
is a nor-

mal subgroup of G(snσ̃(s) o σ̃(s)). Condition (1.10)(i) follows from Theorem 5.9.
Condition (1.10) (ii) follows from the standard equations for elementary transvec-
tions, which are spelled out under (3.5)(1)–(3), and the fact that h(ν) > 3 and σ
is major. A little extra care has to be taken in the case of E(ν, snσ̃(s) o σ̃(s)), be-
cause snσ̃(s) o σ̃(s) is not major, but only σ̃(s). The normality of E(ν, snσ̃(s) o σ̃(s))
in G(snσ̃(s) o σ̃(s)) follows from Theorem 5.7. Condition (1.11)(ii) follows from
the fact that localization-finite-completion squares are fibre squares by Lemma 6.5
and G preserves fibre squares. Condition (1.11)(i) has 2 parts. We demonstrate
first the injectivity of E(ν, σ̃(s), s

nσ̃(s)) → E(ν, 〈s〉−1σ̃(s)). Since snσ̃(s) is s-torsion

free and finite-completion is exact by Lemma 6.3, it follows that snσ̃(s) =
(
s̃nσ

)
(s)

is s-torsion free. Thus the canonical map snσ̃(s) → 〈s〉
−1σ̃(s) is injective. Thus

the induced map G(snσ̃(s)) → G(〈s〉−1σ̃(s)) is injective. Thus E(ν, σ̃(s), s
nσ̃(s)) →

E(ν, 〈s〉−1σ̃(s)) is injective. To demonstrate that the rest of condition (1.11)(i) and
all of condition (1.11)(iii) are satisfied, we can reduce to the case that A is module
finite over a Noetherian ring R, because any quasi-finite algebra is a direct limit
of such algebras and the functors involved commute with direct limits. Under the
assumption that A is module finite over a Noetherian ring R, conditions (1.11)(i)
and (iii) are verified respectively in (6.12) and (6.13) below. This completes the
proof Lemma 6.9.

6.10. Suppose that A is module finite over a Noetherian ring R. Let σ be a major
ν-net over A. Let s ∈ R and let

σ
ϕ

−−−−→ 〈s〉−1σ

Ψ

y
yΨ′

σ̂(s) −−−−→
ϕ′

〈s〉−1σ̂(s)
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denote the localization-completion square of (R,A, σ) at s. Our next goal is to
show that for any nonnegative integer n, the canonical map

θ : St(ν, 〈s〉−1σ)/ St(ν, σ, snσ)→ St(ν, 〈s〉−1σ̂(s))/ St(ν, σ̂(s), s
nσ̂(s))

of coset spaces is bijective.
For a major ν-net τ on A, let Y ±1(τ) denote the set of all formal products

l∏
k=1

yikjk(ξk)
ηk where ηk = ±1 and ξk ∈ τikjk . Consider the following formal prod-

ucts

(i) yij(ξ)yij(ξ)
−1, yij(ξ)

−1yij(ξ)
(ii) yij(ξ)yij(ζ)yij(ξ + ζ)−1

yij(ξ)ypq(ζ)yij(ξ)
−1ypq(ζ)

−1, i 6= q and j 6= p
yij(ξ)yjq(ζ)yij(ξ)

−1yjq(ζ)
−1yiq(ξζ)

−1, i 6= q.

Let Y±1(τ) denote the union of Y ±1(τ) and the empty product. Y±1(τ) has an

obvious rule of composition Y±1(τ)×Y±1(τ)→ Y±1(τ),

(
∏̀
k=1

yikjk(ξk)
ηk ,

`′∏
k=1

y′ikjk

(ξ′k)
η′k

)
7→

∏̀
k=1

yikjk(ξk)
ηk

`′∏
k=1

y′ikjk(ξ′k)
η′k , such that if ∅ ∈ Y±1(τ) denotes the

empty product and y ∈ Y±1(τ) then y∅ = ∅y = y. If we form equivalence classes on
Y±1(τ) by deleting formal products under (i) from elements of Y±(τ) or inserting
formal products under (i) into elements of Y±1(τ) then the rule of composition
above is well defined on equivalence classes and the result is the free group on the
symbols yij(ξ) such that ξ ∈ τij . If we form equivalence classes by deleting formal
products under (i) and (ii) from elements of Y±1(τ) or inserting formal products
under (i) and (ii) into elements of Y±1(τ) then the composition on Y±1(τ) is well
defined on these equivalence classes and the result is the group St(ν, τ). If X is any
set then it is evident that a map θ′ : Y±1(τ)→ X induces a map St(ν, τ)→ X ⇔
it is constant on the equivalence classes above. (Note that if θ′ is constant on
equivalence classes above then all of the formal products under (i) and (ii) and the
empty product ∅ go to the same element of X. It is often helpful to think of this
element as the base point of X.)

Let Y ±1 = Y ±1(〈s〉−1σ̂(s)) and Y±1 = Y±1(〈s〉−1σ̂(s)). Following Bak [Bk2]

(7.13), we call an element x =
∏̀
k=1

xikjk(ξk) ∈ St(ν, 〈s〉−1σ) a good approxi-

mation for y =
∏̀
k=1

yikjk(ξ̂k)
ηk ∈ Y ±1 if ηk ξ̂k − Ψ′(ξk) ∈ ϕ′((s2

k+nσ̂(s))ikjk). It

is routine to check that given k > 0 and ξ̂ ∈ (〈s〉−1σ̂(s))ij , there is an element

ξ ∈ (〈s〉−1σ)ij such that ξ̂ − Ψ′(ξ) ∈ ϕ′((s2
k+nσ̂(s))ij). Thus any element of Y ±1

has a good approximation. The good approximation of the empty formal prod-
uct ∅ ∈ Y±1 is by definition the element 1 ∈ St(ν, 〈s〉−1σ). The next lemma shows
that the map

θ′ : Y±1 −→ St(ν, 〈s〉−1σ)/ St(ν, σ, snσ)

y 7−→ ϕ(St(ν, snσ))
(
good approximation(y)

)

is well defined, providing h(ν) > 3, and that it induces a retract for θ.
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6.11. Lemma. Suppose in the setting of (6.10) that h(ν) > 3. If x, x′ ∈ St(ν, 〈s〉−1σ)
are good approximations for the same element of Y±1 then x′x−1 ∈ ϕ

(
St(ν, σ, snσ)

)
.

It follows that the map θ′ is well defined. Furthermore θ′ is constant on equivalence
classes of Y±1(τ) and sends formal products representing naturally elements of
ϕ′(St(ν, σ̂(s), s

nσ̂(s))) to the trivial coset ϕ(St(ν, σ, snσ)) of St(ν, 〈s〉−1σ)/ St(ν, σ, snσ).
It follows that θ′ induces a map

St(ν, 〈s〉−1σ̂(s))/ St(ν, σ̂(s), s
nσ̂(s))→ St(ν, 〈s〉−1σ)/ St(ν, σ, snσ)

which is a retract of the canonical map θ in the other direction.

Proof. Suppose x =
∏̀
k=1

xikjk(ξk) and x′ =
∏̀
k=1

xikjk(ξ′k). For 1 6 h 6 `, set

xh =

l∏

k=h

xikjk(ξk) and x′h =

l∏

k=h

xikjk(ξ′k),

so that x = x1 and x′ = x′1. Since x and x′ are good approximations of the

same element of Y ±1, we have the inclusion ψ′
(
(ξ′k − ξk)s

−2k−n
)
∈ ϕ′ ((σ̂s)ikjk) .

Since the localization-completion square of ν-nets in (6.10) is fibred, it follows that

(ξ′k − ξk)s
−2k−n ∈ ϕ(σikjk). Thus ξ′k − ξk ∈ ϕ(s2

k+nσikjn). We shall prove by

induction on h = l, l − 1, . . . , 1 that x′hx
−1
h ∈ ϕ(St(ν, σ, s2

h+nσ)). It has just been
shown that the assertion is true if h = l. Consider the element

x′hx
−1
h = xihjh(ξ′h − ξh)xihjh(ξh)x

′
h+1x

−1
h+1xihjh(−ξh).

Obviously the first factor belongs to ϕ(St(ν, σ, s2
h+nσ)). By the induction assump-

tion, x′h+1x
−1
h+1 ∈ ϕ(St(ν, σ, s2

h+1+nσ)). Now, the same arguments as in Lemma 4.6

of [Bk1] or in Lemma 7.9 of [Bk2] show that x′hx
−1
h ∈ ϕ(St(ν, σ, s2

h+nσ)). This is
where the assumption that h(ν) > 3 is required.

It follows now that θ′ induces a well defined map Y±1→ St(ν, 〈s〉−1σ)/ St(ν, σ, snσ).
If the formal product y′ is obtained from the formal product y by either deleting
from y a formal product under (i) or (ii) or inserting into y a formal product un-
der (i) or (ii) then it is clear that we can pick a good approximation x for y and
x′ for y′ such that x = x′ in St(ν, 〈s〉−1σ). For example, suppose y′ = ∅ and

y = yij(ξ̂)yij(ζ̂)yij(ξ̂ + ζ̂)−1. Then we could pick x = xij(ξ)xij(ζ)xij(−ξ − ζ)

where ξ̂ − Ψ′(ξ), ζ̂ − Ψ′(ζ) ∈ ϕ′(s8+nσ̂(s)) and x′ = 1. Clearly x = 1 = x′.

Thus θ′ induces a well defined map St(ν, 〈s〉−1σ̂(s)) → St(ν, 〈s〉−1σ)/ St(ν, σ, snσ).

Suppose that y =
∏̀
k=1

yikjk(ξ̂k) ∈ Y ±1 such that ξ̂k ∈ ϕ′(snσ̂(s)) (1 6 k 6 `).

Then any good approximation x =
∏̀
k=1

xikjk(ξk) of y has the property that each

ξk ∈ ϕ(snσ). The proof has been given already in the first paragraph above. Thus
x ∈ ϕ(St(ν, σ, snσ)). Finally suppose y ∈ Y ±1 represents naturally an element
of ϕ′

(
St(ν, σ̂(s), s

nσ̂(s))
)

and x is a good approximation for y. Then one checks

similarly that x ∈ ϕ
(
St(ν, σ, snσ)

)
. Thus θ′ induces a well defined map

St(ν, 〈s〉−1σ̂(s))/ St(ν, σ̂(s), s
nσ̂(s))→ St(ν, 〈s〉−1σ)/ St(ν, σ, snσ).
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Moreover if x =
∏̀
k=1

xikjn(ξk) ∈ St(ν, 〈s〉−1σ) then x is a good approximation of the

formal product
∏̀
k=1

yikjk(Ψ′(ξk)) which represents Ψ′(x). Thus θ′ induces a retract

of θ.

The next result is a generalization of the special case in [Bk2] (7.16) where ν has
only one equivalence class.

6.12. Theorem. Suppose in the setting of (6.10) that h(ν) > 3. Then θ is a
bijection, with inverse the map induced by θ′ in (6.11).

Proof. In view of (6.11), it suffices to show that θ is surjective. Let 1 6= ŷ ∈

St(ν, 〈s〉−1σ̂(s)) and let y =
∏̀
k=1

yikjk(ξ̂k) ∈ Y ±1 be a representative of ŷ. Let x

be a good approximation of y. The proof will be complete, if we can show that
ŷΨ′(x)−1 ∈ ϕ′(St(ν, σ̂(s), s

nσ̂(s))). But this is proved routinely using the method-
ology in the first paragraph of the proof of (6.11).

6.13. Lemma. Suppose in the setting of (6.10) that h(ν) > 3. Then the canonical

map Ẽ(ν, σ, snσ)/E(ν, σ, snσ)→ Ẽ(ν, σ)/E(ν, σ) is surjective.

Proof. Let z 6= 1 ∈ Ẽ(ν, σ). By definition, Ψ(z) ∈ E(ν, σ̃(s)). Reformulate the con-

cept good approximation above by replacing St(ν, 〈s〉−1σ̂(s)) by St(ν, σ̂(s)), St(ν, 〈s〉−1σ)

by St(ν, σ), and Y ±1(〈s〉−1σ̂(s)) by Y ±1(σ̂(s)). Let y ∈ Y ±1(σ̂s) represent Ψ(z).
Let x′ ∈ St(ν, σ) be a good approximation for y. Let x denote the image of x′ in
E(ν, σ). The methodology in the first paragraph of the proof of (6.11) shows that

Ψ(z)Ψ(x)−1 ∈ E(ν, σ̂(s), s
nσ̂(s)). Thus zx−1 ∈ Ẽ(ν, σ, snσ), by definition. Clearly

zx−1 is a representative of the class of z in Ẽ(ν, σ)/E(ν, σ).

Let σ and ρ be ν-nets over A such that σρ ⊆ ρ and ρσ ⊆ ρ. Define

K1(ν, σ, ρ) = Coker (St(ν, σ, ρ)→ G(σ, ρ))

K2(ν, σ, ρ) = Ker (St(ν, σ, ρ)→ G(σ, ρ)) .

Note that hσ,ρ : G(σ, ρ) → G(σ + ρ) maps G(σ, ρ) isomorphically onto G(ρ) 6

G(σ + ρ).

6.14. Theorem. Let A be a quasi-finite R-algebra and σ a major ν-net over A
such that h(ν) > 4. Let n > 0 and s ∈ R be such that snσ is s-torsion free. Then
corresponding to a localization-finite-completion square LFC(s,R,A, σ), there is a
Mayer-Vietoris sequence of nonstable net K-groups

K2(ν, 〈s〉−1σ) K1(ν, 〈s〉−1σ)

↘ ↗ ↘
K2(ν, 〈s〉−1σ̃(s)) −→ K1(ν,σ, snσ) K1(ν, 〈s〉−1σ̃(s)).

↗ ↘ ↗

K2(ν, σ̃(s), s
nσ̃(s)) K1(ν, σ̃(s), s

nσ̃(s))

Moreover the Mayer-Vietoris sequence is natural in LFC’s.

Proof. The conclusion of Theorem 1.8 provides the natural Mayer-Vietoris sequence
we want. The hypotheses of Theorem 1.8 demand precisely that the commutative
cube
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St(ν, σ, snσ) −−−−−−−−−−−−→St(ν, 〈s〉−1σ)
↙ ↙

St(ν, σ̃(s), s
nσ̃(s)) −−−−−−−−−→St(ν, 〈s〉−1σ̃(s))y y

G(snσ) −−−−−−−−− −−−−−−−−−−→ G(〈s〉−1σ)y ↙
y ↙

G(snσ̃(s)) −−−−−−−−−→ G(〈s〉−1σ̃(s))

satisfy conditions (1.4) (i) - (iv). By Lemma 1.5, it suffices to show that the canon-
ical map St(ν, 〈s〉−1σ)/ St(ν, σ, snσ) → St(ν, 〈s〉−1σ̃(s))/ St(ν, σ̃(s), s

nσ̃(s)) is bijec-

tive, the map E(ν, σ̃(s), s
nσ̃(s)) → E(ν, 〈s〉−1σ̃(s)) injective, and condition (1.4)(iv)

satisfied. But this has been shown already in the proof of (6.9.1).

7. Nilpotent structure of net K1 and sandwich classification

Let St(ν,− ) and G(−) : ((ν-nets)) →((groups)) denote the Steinberg net group
functor and net group functor, respectively, defined in §3. Let π : St(ν,− )→ G(−)

denote the canonical natural transformation. Let G = G−1
> G0

> · · · > Gi
>

· · · > E(ν,− ) denote the dim-filtration of π on G defined in (2.5) for the dimension
function dim defined in (6.8).

7.1. Lemma. If G = G〈−1〉
> G〈0〉

> G〈1〉
> · · · denotes the dim-filtration of π

restricted to ((major ν-nets)) on G restricted to ((major ν-nets)) then G〈i〉 and Gi

agree on ((major ν-nets)).

Proof. If σ → ρ is a morphism of ν-nets and σ is major then so is ρ.

Let J be a group which is operating automorphically on a group H. A chain H =
H0 > H1 > · · · of subgroups of H is called a descending J-central series, if each
Hi is invariant under the action of J and the subgroup DJ (Hi) := 〈( xh)h−1 |x ∈
J, h ∈ H〉 6 Hi+1.

The main result of the section is the following theorem which generalizes results
in [Bk1] §5, particularly Theorem 6.5, concerning the special case that ν has only
one equivalence class.

7.2. Theorem. Let σ denote any ν-net. If h(ν) > 2 then G0(σ) is a normal
subgroup of G([ν] + σ) and the action

G([ν] + σ) y G(σ)/G0(σ)

of G([ν]+σ) on G(σ)/G0(σ) by conjugation is trivial. If h(ν) > 4 then the filtration

G(σ) > G(σ) ∩G0([ν] + σ) > G(σ) ∩G1([ν] + σ) > · · ·

> G(σ) ∩Gi([ν] + σ) > · · · > E(ν, σ)

is a descending G0([ν] + σ)-central series of normal subgroups of G([ν] + σ) such
that if i > dim(σ) then

G(σ) ∩Gi([ν] + σ) = G(σ) ∩ E(ν, [ν] + σ), and

[G(σ) ∩Gi([ν] + σ),C(ν, σ)] = E(ν, σ).

Furthermore under the notation of §4, the stabilization maps
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G(σ(n))/Gi(σ(n))→ G(σ(n+1))/Gi(σ(n+1)), and

G(σ(n))/G(σ(n)) ∩Gi(([ν] + σ)(n))→ G(σ(n+1))/G(σ(n+1)) ∩Gi(([ν] + σ)(n+1))

are injective whenever |ν(n)| > sup(i+ 2, 2). (Notice that this an injective stability
result without any stability conditions on σ.) Finally if the underlying ring A of σ
is commutative, σ is major, and SLn(A) denotes the usual special linear group of
rank n then

G(σ(n)) ∩G0([ν] + σ) = G(σ(n)) ∩ SLn(A).

Proof. The proof of the last assertion is the same as that in [Bk1] (3.7) for the
special case that ν has just one equivalence class.

The stabilization assertions follow directly from Theorem 4.3 and the definition
of Gi.

To prove the first assertion, it suffices, by the last assertion in (2.5), to establish
the special case that dim(σ) = 0. Let A denote the underlying ring of σ. By (6.8),
sr(A) = 1. Thus the special case follows from (4.3)(iii).

It remains to prove the second assertion. To establish the descending G0([ν]+σ)-
central series, we can assume that σ = [ν]+σ is major. We would be finished, if we
could apply Theorem 2.7. The hypotheses of (2.7) are precisely that the natural
transformation π : St(ν,− ) → G(−) is good on ((major ν-nets)) and that E(ν, σ)
is normal in G(σ) whenever dim(σ) < ∞. But the former hypothesis is proved
in Lemma 6.9 and the latter in Theorem 5.7. It follows also from Theorem 2.7
that Gi(σ) = E(ν, σ) whenever i > dim(σ). Thus for an arbitrary ν-net σ, G(σ)∩
Gi([ν]+σ) = G(σ)∩E(ν, [ν]+σ) whenever i > dim(σ), because dim(σ) = dim([ν]+
σ). The inclusion [G(σ) ∩ E(ν, [ν] + σ),C(ν, σ)] 6 E([ν] + σ) follows immediately
from Theorem 5.7.

Let N > 0. Define dim[−N ]: ((ν-nets)) → Z>0 ∪ {∞} by

dim[−N ](σ) =

{
0, if dim(σ) 6 N

dim(σ)−N, if dim(σ) > N .

By (2.8) and (6.8), dim[−N ] is a dimension function on the category with structure(
((ν-nets)), LFC((ν-nets)), Frac((ν-nets))

)
. Let G = G[−1]

> G[0]
> G[1]

> · · ·
denote the dim[−N ]-filtration of the natural transformation π on G.

7.3. Corollary. Let N > 2. Let (R,A, σ) be a ν-net such that h(ν) > N > srA+1.

Then all of the conclusions of Theorem 7.2 hold after Gi is replaced by G[i].

Proof. The proof is identical to that of Theorem 7.2.

7.4 Theorem. Let σ denote any ν-net. If h(ν) > 3 then the action

G0([ν] + σ) y C(ν, σ)/G0(σ)

of G0([ν] + σ) on C(ν, σ)/G0(σ) by conjugation is trivial. If h(ν) > 4 then the
filtration C(ν, σ) > C(ν, σ) ∩G0([ν] + σ) > C(ν, σ) ∩G1([ν] + σ) > · · · > E(ν, σ) is
a descending G0([ν] + σ)-central series of normal subgroups of C(ν, σ) such that if
i > dim(σ) then
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C(ν, σ) ∩Gi([ν] + σ) = C(ν, σ) ∩ E(ν, [ν] + σ), and

[C(ν, σ) ∩Gi([ν] + σ),C(ν, σ)] = E(ν, σ).

Proof. To prove the first assertion, it suffices, by the last assertion of (2.5), to
establish the special case that dim(σ) = 0. Under this assumption, G0([ν] + σ) =
E(ν, [ν] + σ) and by Theorem 5.7, [E(ν, [ν] + σ),C(ν, σ)] = E(ν, σ), i.e. the action
of E(ν, [ν] + σ) on C(ν, σ)/G0(σ) by conjugation is trivial. The rest of the proof is
the same as that of Theorem 7.2.

7.5 Corollary. Let N > 0. Let σ denote any ν-net. Then all of the conclusions

of Theorem 7.4 hold after Gi is replaced by G[i].

Proof. The proof is identical to that of Theorem 7.4.

The next result generalizes [Bk1] Theorem 6.25 concerning the special case ν has
just one equivalence class.

7.6. Nilpotent Sandwich Classification Theorem. Let A be a quasi-finite ring
and ν an equivalence on J = {1, · · · , n} (where n can be infinite). Suppose h(ν) > 4.
Then the E(ν)-normal subgroups of GL(n,A) are in one to one correspondence with
the subgroups H of the disjoint sandwiches E(ν, σ) 6 H 6 C(ν, σ) where σ ranges
over all ν-nets. Furthermore if F 6 G0([ν] + σ) and F normalizes H then

H > H ∩G0([ν] + σ) > H ∩G1([ν] + σ) > · · · > E(ν, σ)

is a descending F -central series such that if i > dim(σ) then

H ∩Gi([ν] + σ) = H ∩ E(ν, [ν] + σ), and
[
H ∩Gi([ν] + σ), F ∩ C(ν, σ)

]
6 E(ν, σ).

In particular, if F 6 C(ν, σ) ∩G0([ν] + σ) normalizes H and dim(σ) <∞ then

H > H ∩G0([ν] + σ) > H ∩G1([ν] + σ) > · · · > H ∩Gdim(σ)([ν] + σ) > E(ν, σ)

is a descending F -central series.

Proof. The theorem is an immediate consequence of Theorems 5.8 and 7.4.

7.7. Corollary. Let N > 0. If h(ν) > 4 then the conclusions of Theorem 7.6

remain valid after replacing dim by dim[−N ] and Gi by G[i].

Proof. The proof is exactly the same as that of Theorem 7.6.
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