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Abstract

This article defines concepts of structure and dimension in arbi-
trary categories and illustrates them with well known examples. It
shows that arbitrary group and coset valued functors define in a natu-
ral way notions of structure and dimension on their source categories
and that this data predicts group theoretic properties of the functors
over finite dimensional objects, such as solvability, nilpotence, or nor-
mality of subfunctors. The results are illustrated with applications.

1 Introduction

The dimension theory of categories provides valuable information con-
cerning the properties of functors on categories. This article focuses on group
and coset valued functors and examines group theoretic properties of these
functors such as solvability, nilpotence, or normality of subfunctors. Further
articles will treat functors with values in other categories and investigate
other properties, such as splitting and cancellation for functors with values
in additive categories.

The current article begins by defining a concept of structure in an arbi-
trary category and for a category with structure, it defines many kinds of



dimension functions. It compares dimension functions and shows that for
a given kind of dimension function, there is a unique smallest one which is
called the universal one of its kind. Well known dimension functions are
discussed in this context.

It is then shown how arbitrary group and coset valued functors lead natu-
rally to specific structures and dimension functions on their source categories.
Further it is shown that this data predicts group theoretic properties of the
functors on finite dimensional objects, such as solvability, nilpotence, or nor-
mality of subfunctors. Applications to classical-like groups and K-theory are
given.

A generalization of a coset valued functor is a natural transformation
valued functor of group valued functors. It is shown that such functors lead
also to structures and dimension functions on their source categories and
that this information predicts group theoretic properties of the target of the
natural transformation on finite dimensional objects. Applications are also
given to classical-like groups and K-theory.

The current article has a sequel [ | titled Dimension Theory and Linked
Sequences of Group Valued Functors. A sequence ---G;, Gii1 -+ of group
valued functors is called linked if each consecutive pair G;, G;11 is a linked
pair. Such sequences occur very naturally in homotopical settings. The
current article defines the concept of a linked pair and shows how to associate
to a natural transformation of group valued functors a linked pair of functors.
We then use linked pairs to recover results above and as a bridge to the next

paper.

The rest of the article is organized as follows. In §2, concepts of structure
and dimension in arbitrary categories are defined. In §3, some well known
and not so well known examples are given. In §4, it is shown how coset
valued functors lead to specific structures and dimension functions on their
source categories and this data is used to determine group theoretic proper-
ties of the functors on finite dimensional objects. In §5 applications of the
above are made to classical-like groups and K-theory. In §6, it is shown how
natural transformation valued functors of group valued functors lead also to
structures and dimension functions on their source categories and how this
information determines group theoretic properties of the target of the natu-
ral transformation. In §8, the concepts of linking diagram and linked pair of
functors are introduced. It is shown that group theoretic properties of the



second functor in a linked pair influence those of the first. In §9, it is shown
how to construct a linked pair of functors from a natural transformation val-
ued functor of group valued functors. In §10, the results of §8 and §9 are
applied to classical-like groups and K-theory.

It is a pleasure for me to acknowledge my hosts the late O. Villamayor
and G. Cortinas at Buenos Aires and La Plata Universities and my host
A. Martsinkovsky at Northeastern University where I lectured on materials
presented here. Special thanks are given to L. D’Alfonso and G. Minian for
taking notes which resulted in a preliminary version [ | of materials presented
here and to A. Mundkur and A. Stepanov for making their Bielefeld notes
available to me for the current paper.

2 Categories with Structure and Dimension

This section defines the concept of a category with structure and of a dimen-
sion function on a category with structure. On a given category with struc-
ture, there are many kinds of dimension functions, corresponding to a notion
called type. A general category € becomes a category with structure when
we fix in it four ingredients of structure. A function d : Ob(€) — Z=° U {cc}
is a dimension function if it satisfies certain properties with respect to the
structure on €. Different structures determine usually different classes of
dimension functions. The four ingredients of structure are the following:

e A class V(€) of morphisms in €, called virtual isomorphisms.

e A class J(@) of functors on directed preordered sets with values in C,
called infrastructure functors.

e A class of commutative squares in €, called structure squares.

The dimension theory developed in this article is geared to show that a
class of functors on a general category € will have a given property, if C
has a structure which is tied to the functors themselves and the property as
follows:

e The property is invariant under V(C).

e The functors preserve direct limits of functors in J(C).
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e The behavior of the functors in the upper left hand object of a structure
square is suitably tied to its behavior on the rest of the square.

Under the relationship above of functors to structure, the results of the article
will show that the property holds over all finite dimensional objects.

We define now in detail the ingredients of a category with structure.

2.1

Throughout let € denote an arbitrary category.

Let Iso (€) denote the class of all isomorphisms in €. A class V(€) of
morphisms in € is called a class of virtual isomorphisms, if V(€) contains
Iso(€) and if V(€) is closed under composition.

Let ©x = s,t, or ¢. The letter s stands for source, the letter ¢ for target,
and the symbol ¢ stands for the empty letter. A class €y of objects of € is
called x-closed under virtual isomorphism, if one of the following holds:

(i) x = s and given B € Gy and A — B € V(@), it follows that A € Cy.
(ii) z =t and given A € €y and A — B € V(€), it follows that B € C,.

(iii) z = ¢ and Gy is both s-closed and ¢ closed under virtual isomorphisms.

A class € is called closed under virtual isomorphism, if it is ¢-closed.

Let A and A’ be objects of €. A virtual chain equivalence from A to A’
is by definition a chain of objects A = Ay, A1, -+, A, = A’ and morphisms
fos f1,-+, fao1 € V(€) such that for each i (0 < 4 < n — 1) either source
(f;) = A; and target (f;) = A;;1 or source (f;) = A;41 and target (f;) = A;.
Clearly virtual chain equivalence is an equivalence relation on Ob(C).

Obviously a class €y of objects of € is closed under virtual isomorphisms
& it is closed under virtual chain equivalence.



2.2

Recall that a preordered set [ is a set together with a reflexive, transitive
relation <. Equivalently I is a category whose objects form a set and for any
pair 4, j of objects of I, there is at most one morphism whose source is ¢ and
target is j. A partially ordered set [ is a preordered set whose relation is
also anitsymmetric, i.e. ¢ £ j and j < ¢ implies 4 = j. A preordered set I
is called directed, if given elements i, j € I, there is an element k& € I such
that s < k and j < k.

Let {*} denote the directed preordered set with precisely one element x.
If A€ Ob(C), let F4 denote the functor

Fy {*} — C
x = A
1, — 1y

where 1, and 14 denote the identity morphisms on * and A, respectively. F4
will be called a trivial infrastructure functor.

A class J(€) of functors with values in € is called a class of infras-
tructure functors, if it contains all trivial infrastructure functors and is
closed under natural isomorphisms and if each F' € J(€) has the property
that its source category is a directed, preordered set I and the direct limit

lim F" exists in C. By definition, lim F' is the colimit collimF .

— —
I I

2.3

If A € Ob(C) then the commutative square

<H—:§
<H—:§

I

will be called a trivial square.



A class 8(C) of commutative squares

A—B
C D
in € is called a class of structure squares, if it contains all trivial squares
and is closed under isomorphism of commutative squares.

—_—

A class of G8(€) € §(€) of commutative squares in € is called a class of
generating squares for 8(C), if it is closed under isomorphism of commu-
tative squares, and every square in §(C) is a direct limit in a prescribed way
of squares in G8(€). This means that we have a class FG8(€) of functors S
whose source categories are directed, preordered sets J, whose values are in

G8(C€), and whose direct limits 1i_I>HS exist and are in §(C) and every square
J
in 8(C) is some direct limit li_I)Il S. The purpose for introducing FG8(C) rather
J

than allowing all direct limits of squares in G8(C), is that the latter would
permit us to treat only functors on € which commute with all direct limits
of generating squares.

2.4

A category with structure is a quadruple (€, V(€C),J(C),8(C)) consist-
ing of a category C, a class V(€) of virtual isomorphisms, a class J(€) of
infrastructure functors, and a class 8§(€) of structure squares. A functor or
morphism ¥ : (€,V(€),3(€),8(€)) — (D,V(D),I(D),8(D)) of categories
with structure is a functor F : € — D which preserves virtual isomorphisms,
infrastructure functors, and structure squares. This means that

e if f is a virtual isomorphism then so is F(f),
e if F': I — € is an infrastructure functor then so is the composition

FF : I — D and the canonical morphism limFF — F (lim F) is an
— —

I I

isomorphism,



Q=—=n
O-—W

is a structure square in C then

F(4) —3(B)

F(C) —= ?(lD)

is one in D.

2.5

function on C is a function

Let € = (€, V(€),I(€), 8(€)) denote a category with structure. Let oo denote
the first infinite ordinal. Let x = s,¢, or ¢ be as in (2.1). An z—dimension

d: Ob(€) = Z=°U {oo}
such that one of the following holds:

(i) x = s and given A — B € V(€), it follows that d(A) < d(B).
(ii) z =t and given A — B € V(€), it follows that d(A) = d(B).

(iii) = ¢ and given A — B € V(€), it follows that d(A) = d(B), i.e. d is
both an s- and a t-dimension function.

A dimension function on € is by definition a ¢-dimension function on €.
If d and e are z-dimension functions on € then d < e means that d(A) <
e(A) for each A € Ob(€). A category with z-dimension is a pair (C, d)
7



consisting of a category with structure € and an xz-dimension function d on €.
A functor or morphism ¥ : (€, d) — (D, e) of categories with z-dimension
is a functor € — D of categories with structure such that d = e&.

The most important concepts for an z-dimension function are the notions
of type and reduction. The problems we can solve using dimension theory
depend on these notions. They are introduced next.

2.6

A type t is a triple tg,tc,tp : ZZ°U {00} — N U {00, 00 + 1} of functions.
It is usually written in the form

_ ip
()

If ¢ and ¢ are types then t < ¢’ means that t(z) < t/(x) for each element
r € Z2°U {oo}, ie. if X = A, B, or C then tx(z) < thy(z).
)-

Let € be a category with structure. Let A € Ob(C). A reduction of A
consists of

(i)

a morphism A — A" € V(C),if x = s.
a morphism A’ - A€ V(C), ifz =1t and
a virtual chain equivalence from A to A’ if x = ¢

(ii) an infrastructure functor B : I — C,i+— B;, and
(iii) a set

A'—B;

l l €T

C;—D;



of structure squares indexed by I (C and D are not necessarily functo-
rial in ) with the property that for each relationship (i < j) € I, the
triangle

AI

commutes.

Let d be an z-dimension function on €. Let ¢t be a type and n € N. A
reduction of A is said to be a d-reduction of type t at n, if in addition to
the above

(iv) d (113 B) < tg(n)

I
and for each ¢ € I,

(v) d(C;) < te(n), and
(vi) d(D;) < tp(n).

Suppose now that 0 < d(A) < oo. Then a d-reduction of type ¢ at
d(A) for A will be simply called a d-reduction of type t for A. An z-
dimension function d on € is said to have type ¢, if each A € Ob(C) such
that 0 < d(A) < oo has a d-reduction of type ¢. An z-dimension function
can have many types and obviously if it has type ¢ and ¢ < ¢’ then it also
has type t'. The applicability of a given z-dimension function d to a given
problem depends on the minimal types of d.



2.7

Let d be an x-dimension function of type ¢ on the category with structure
C. Let A € Ob(€) and n € N. Even if A has a d-reduction of type ¢ at n, it
does not follow that d(A) < n. However if the conclusion above is true for
any A and any n then we shall say that d is a tame xz-dimension function of

type t.

2.8

Let € be a category with structure. Define & — dim(C) to be the partially
ordered class of all z-dimension functions on €, with partial ordering given
by <. If ¢ is a type, let & — dim(C, t) denote the partially ordered subclass
of z — dim(€) consisting of all z-dimension functions of type t.

2.9

THEOREM The partially ordered class x —dim(C) has arbitrary greatest lower
bounds. If S € z — dim(C) is a nonempty subclass then its greatest lower
bound glbs is computed by the formula

glbs(A) = inf{d(A) | d € S}.

Moreover if S € x — dim(C,t) is a nonempty subclass then glbs € x —
dim(C, t).

PROOF The function Ob(C) — Z=°U{c0}, A + inf {d(A) | d € S}, obviously
satisfies the conditions of definition 2.5 of an z-dimension function. Clearly
this function is the greatest lower bound for S. Suppose S € z—dim(C, t). It
will be shown that glbg € x — dim(C, t). Let A € Ob(€) such that glbg(A) €
N. We must show that A has a glbg-reduction of type t at glbs(A). Let
d € S such that glbs(A) = d(A). By definition, A has a d-reduction of type
t at d(A). Since glbs(X) < d(X) for all X € Ob(C), it follows that any d-
reduction above of A is also a glbg-reduction of A of type ¢ at d(A) = glbg(A).
Thus by definition, glbs has type t.[]
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2.10

THEOREM Let d be an x-dimension function of type t on the category with

structure C. Then there is a tame x-dimension function d; of type t, called

the tame closure of d at t, which is the unique mazximum among all tame x-

dimension functions d' of type t such that d' < d. Moreover d; is computed ac-

cording to the following rule: Let T(d) = {d' | d' a tame z-dimension function
of type t,d" < d} and S(d) = {d" | d" an x-dimension function of type t,d" <
d,d <d"Vd eT(d)}. Then

dt - glbg(d) .

PRrROOF Clearly d' < glbgq) < d for all d' € T'(d) and by Theorem 2.9, glbg(y
is an z-dimension function of type . To complete the proof of the theorem,

it suffices to show that glbgy is tame of type ¢. Suppose glbs(q) is not tame.
Define f : Ob(C) — Z=° U {c0} by

f(A) = inf({glbsa)(A)}U{n € N| A has a glbg)-reduction of type ¢ at n}).

Since glbg(q) is not tame, f < glbg(q), i.e. f = glbg) and there is an B €
Ob(€) such that f(B) < glbgq(B). Thus f ¢ S(d). It will be shown
next that f < d. Since glbg) is an z-dimension function, it follows by
construction that f is one also. Let A € Ob(€) such that 0 < f(A) < oo.
By definition A has a glbg(g)-reduction of type ¢ at f(A). Since f(X) =
glbsqy(X) for all X € Ob(€), it follows that each glbg(g)-reduction of A
above is also an f-reduction of A of type ¢t at f(A). Thus f has type ¢,
by definition. Suppose d' € T(d). We must show that d' < f. From the
definition of glbg(qg), it follows that d’ < glbs(q). It suffices to show that if
f(A) < oo, then d'(A) £ f(A).If f(A) = 0 then from the definition of f,
it follows glbgq)(A) = 0 and so d'(A) = 0. Suppose f(A) > 0. From the
definition of f, it follows that A has a glbg)-reduction of type ¢ at f(A).
Since d'(X) = glbgg)(X) for all X € Ob(€), it follows that any glbg)-
reduction above of A is also a d'-reduction of A of type ¢ at f(A). Since d' is
tame, it follows that d'(A) < f(A4).0
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2.11

Let C be a category with structure. Let ¢ be a type. An z-dimension function
0 of type t is called universal of type t, if § < d for any z-dimension function
d of type t, whose 0-dimensional objects are also O-dimensional under §.

2.12

COROLLARY Let € be a category with structure. Let C° be a class of objects
of €, which s x-closed under virtual isomorphism. Then there is a unique
universal x-dimension function of type t, whose 0-dimensional objects are
precisely those of C°. Furthermore it is tame. This function is often denoted

by

dg,eo ,t-

PROOF Let S denote the class of all x-dimension functions of type ¢, whose
0-dimensional objects are in €°. This class is nonempty and contains an z-
dimension function d whose 0-dimensional objects are precisely €°, namely
the function d : Ob(€) — Z>° U {co} defined by

0 ifAec
d(A)_{ oo if A¢ e

By Theorem 2.10, glbs exists and is an x-dimension function of type t. Ob-
viously glbg has €0 as its class of O-dimensional objects, is universal of type
t and unique. Furthermore by Theorem 2.8, it must be tame. [J

2.13

THEOREM Let € be a category with structure. Let t be a type such that
given X € {A, B,C} either tx < idortx = oo+ 1. Let d be a tame

x-dimension function of type t on C. Then d is universal of type t and is

computed by the following rule: Define recursively disjoint, x-closed classes
C" as follows. Let € = {A € 0b(€) | d(A) = 0}. Let n € N and assume

12



that disjoint, x-closed classes C™ have been defined for all 0 < m < n.
Define 6" : Ob(€) — Z>° U {cc} by

» m i Aecm where 0 < m < n,
T A= o if A¢ "gzem.

Obviously 6™ is an x-dimension function. Define C" = {A € 0b(€) | A
n@;@’",A has a 6" '-reduction of type t at n}. Define C* = 0b(€)\ U
m= y/A

ne

¢

>0

C". Then for any A € Ob(C) and any n € Z>° U {c0},

d(A)=n& Aec .

Furthermore if n € Z2° and C* = ¢ then € = ¢ for all n' > n, i.e.
d= 6"

id
id id

PROOF We shall treat only the case ¢t < ( ) The other cases are

done similarly.

Let € (n € Z=° U {oo}) be defined as in the theorem. Clearly these
classes are disjoint and z-closed under virtual isomorphisms. Define ¢§ :
Ob(€C) — Z2° U {cc} by §(4) = n & A € C". By construction, ¢ is a
tame type t z-dimension function.

We shall show that ¢ is universal. Let ¢’ = dgeo; be the universal z-
dimension function of type ¢t whose 0-dimensional objects form the class C°.
We must show that 6 < ¢’. It suffices to show that if §'(A) < oo then
§(A) £ §'(A). We proceed by induction on ¢'(A). If §'(A) = 0 then §(A4) =0
by definition of §'. Let n € N such that ¢'(A) < n implies 6(A4) < 6'(A).
Suppose that §'(A) = n. By definition, A has a ¢§'-reduction of type ¢ at n.
id le and since for any X € Ob(C€),§(X) < ¢'(X) whenever
§'(X) < m, it follows that any ¢’-reduction above of A is also a J-reduction
of A of type t at n. Since ¢ is tame, it follows that 6(A) < n = ¢§'(A4). Thus
<4

We show next that d = §. Since ¢ is universal, it suffices to show that if
d(A) < oo then d(A) < 6(A). We proceed by induction on 6(A). If §(4) =0

Since t <
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then d(A) = 0, by definition of §. Let n € N such that 6(A) = n implies
d(A) £ §(A). Suppose 6(A) = n. By definition, A has a d-reduction of type

and since for any X € Ob(€),d(X) < §(X)

id
id ud
whenever 6(X) < n, it follows that the reduction of A above is also a d-
reduction of type ¢ at n. Since d is tame, this implies d(4) < n = §(A).

Finally suppose that €® = ¢. We shall show that €"*' = ¢. Suppose
A € G, Then A has a 6"-reduction of type ¢t at n + 1. Since " = ¢ and

t at n. Since t <

t < ( id zg ), this reduction must also be a §"~!-reduction of type t at n.

n—1
Since C" = ¢, it follows that A € L{O(fm, which contradicts the fact that the

Ck’s are disjoint. Thus €"*! = ¢. By induction, we conclude that € = ¢
for all n’ € Z=° such that n' > n.O]

2.14

Let (€, d) be a category with structure and d an z-dimension function on C.
For n € Z=° U {oo}, define the classes

n}

€® ={A € Ob(C) | d(A)
Cs"={A € Ob(e) | d(A)

A

The next lemma is left as an easy exercise to the reader.

2.15

LEMMA The classes above are z-closed under virtual isomorphisms and Ob(C)
CQOOGZ. Conversely any partition of Ob(C) as a disjoint union Ob(C) = UG"
- n=0

of x-closed classes C™ defines an x-dimension function d on € such that
Cr = C". Partially order the members of {x — closed classes in Ob(C)}
by inclusion. Then the function {z-dimension functions of type t on C}
— {z-closed classes in Ob(C)}, d — €Y, preserves partial orderings and
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induces a bijection between universal x-dimension functions of type t and
z-closed classes in Ob(C). If (D,e) is a category with x-dimension and
F : C — D is a functor of categories with structure then F defines a mor-
phism (C,d) — (D, e) of categories with x-dimension < F(C3") C p" for
all n € Z=°. Furthermore if d = deeoy and e = dpmoy for some x-closed
classes € C  Ob(C) and D° C Ob(D) then F induces a morphism of cate-
gories with z-dimension < F(€°%) € DO.

2.16

Let € be a category with structure. If S € z — dim(C€), define the partially
ordered set type(S) = {types t | each d € S has type t }, with partial
ordering that of types.

Since the results we prove for group valued functors are formulated using
the concept of type for z-dimension functions, it is useful to have some general
guidelines how large the set type(S) above is, in particular when S has just
one element. The following lemmas provide such information. They are given
without proof.

2.17

LEMMA The partially ordered set type(S) has the property that every element
is bounded below by a minimal element. Furthermore if t € type(S) and t'
is a type such that t' > t then t' € type(S). Thus the minimal elements of
type(S) define it uniquely.

2.18

LEMMA Let F : € — D be a functor of categories with structure. Let T C
z — dim(D). Define S ={dF | d € T}.

(i) Then S € x — dim(C) and type(S) & type(T).

(1) Let © € {s,t,¢} as in 2.1. If x = s, suppose that for any (F(A) —
D) € V(D) where A € Ob(€C) and D € Ob(D), there is a (A — B) €
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V(€) and an isomorphism F(B) — D. If © = t, suppose that for any
(D — F(A)) € V(D) where A € 0b(€) and D € Ob(D), there is a
(B — A) € V(€) and an isomorphism F(B) — D. If x = ¢, suppose
that for any virtual chain equivalence in D from F(A) to D where A €
Ob(C) and D € Ob(D), there is a virtual chain equivalence in € from A
to some B € Ob(C) and an isomorphism from F(B) to D. Suppose that
any data consisting of an infrastructure functor (B : I — D) € I(D)
and a set

|

o

<

(tel)

;

N

i

of structure squares in 8(D), which together satisfy (2.6) (ii) and (iii)
and have the property that all objects A, B;, C;, D; (i € I) lie in F(O0b(C)),
must be the image under F of analogous data in €. Then type(T) <
type(S).

3 Categories with Global Reduction and Di-
mension

The previous section introduced concepts of structure and dimension in cat-
egories for the purpose of studying properties of functors, in subsequent sec-
tions and papers. The current section develops further these concepts in
order to expand their range of application. Once the section is complete, all
of the constructions and results of the previous one will be special cases of
those of the current one. Proofs for the current results will be omitted, since
they are obvious extensions of their counterparts in the previous section. Ex-
amples of concepts introduced in the current section are provided in section
5.

The key construction for extending the scope of the previous section is
that of a global reduction. In the previous section, reductions were used only
one at a time. In the current section, we want to specify for each object
in a category, certain sets of reductions to be called global reductions. The
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concept of dimension will be formulated such that certain properties hold
across an entire set of reductions instead of just for one reduction. The
constructions and results of the previous section are recovered from those
of the current, by letting each global reduction consist of just one ordinary
reduction and by assigning to each object in the category all of its single
member global reductions.

Throughout this section, let € = (€, V(€),I(€), 8(€)) denote a category
with structure.

3.1

A category with global reduction consists of a category with structure
€ and for each A € Ob(C) a class glrd(A) of sets X such that each member
of X is a reduction of A in the sense of (2.6) (i) - (iii). Each member
X € glrd(A) is called a global reduction of A. It will be assumed that
if X € glrd(A) and Y is a set of reductions of A such that each reduction
in X is isomorphic (in the straightforward sense) to a reduction in ¥ and
conversely then Y € gird(A). In this case, we say that X is isomorphic to
Y. A category with global reduction will be denoted by a pair

(C, glrd)

where glrd assigns to each A € Ob(€) a class glrd(A) of global reductions
of A, which is closed under isomorphism. We explicitly allow the possibility
that for some A's, glrd(A) = ¢.

Let F : € — € be a functor of categories with structure. It follows
from the definition of such functors that F takes any reduction of an object
A of € to a reduction of F(A). If R is a reduction of A, let F(R) denote
the corresponding reduction of F(A). If X is a global reduction of A in
(€, glrd), let F(X) ={F(R) | R € X}. We say that F defines a functor or
morphism (C, glrd) — (€, glrd’) of categories with global reduction, if for
each A € Ob(C) and X € gird(A), F(X) € glrd' (F(A)).
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3.2

Let z = s (source), t (target), or ¢ (no condition), be as in (2.1). An x -
dimension function d on (C, glrd) is by definition an z-dimension function
on €, as in (2.5). A category with z-dimension is a pair ((C, gird),d)
consisting of a category with global reduction (€, glrd) and an z-dimension
function d on (€, gird). A functor or morphism F : ((C,gird),d) —
(€, glrd"),d") of categories with z-dimension is a functor &F : (€, glrd) —
(€', grid’) of categories with global reduction such that d = d'F.

As in section 2, the most important properties of z-dimension functions
are described using the notions of type and global reduction. This is done in
the following paragraphs.

3.3

Let d be an x-dimension function on the category with global reduction
(€, glrd). Let t denote a type, as in (2.6), and let n € N. A global reduction
X € glrd(A) is called a global d-reduction of type t at n, if X # ¢ and
each reduction in X is a d-reduction of type ¢ at n, as in (2.6) (iv) - (vi).
A global d-reduction of type t at A is by definition an X € gird(A),
which is a global d-reduction of type ¢t at d(A). Note that this definition
makes sense only when d(A4) > 0, because t is defined on NU {oco}. An
z-dimension function d is said to have type ¢, if each A € Ob(C) such that
0 < d(A) < oo has a global d-reduction of type ¢ at A.

An z-dimension function on (€, glrd) can have many types and obviously
if it has type t and ¢ < ¢’ then it also has type t'. The applicability of a given
z-dimension function d to a given problem depends on the minimal types of

d.

For the rest of this section, let

€ = (€, glrd)

denote a category with global reduction. We continue developing the prop-
erties of z-dimension functions.
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3.4

Let d be an z-dimension function of type ¢ on the category with global
reduction €. Let A € Ob (€) and n € N. Even if A has a global d-reduction
of type t at n, it does not follow that d(A) < n. However if the conclusion
above is true for any A and any n then we shall say that d is a tame z-
dimension function of type ¢.

3.5

Let € be a category with global reduction. Define  — dim(€) to be the
partially ordered class of all z-dimension functions on €, with partial ordering
given by <. If ¢ is a type, let & — dim(C, t) denote the partially ordered

subclass of z — dim(€) consisting of all z-dimension functions of type t.

3.6

The next result generalizes Theorem 2.9.

THEOREM The partially ordered class x—dim(C) has arbitrary greatest lower

bounds. If S € z — dim(C) is a nonempty subclass then its greatest lower
bound glbg is computed by the formula

glbs(A) = inf{d(A) | d € S}.

Moreover if S & x — dim(C,t) is a nonempty subclass then glbs € x —
dim(C, ).

3.7

Let next result generalizes Theorem 2.10.

THEOREM Let d be an x-dimension function of type t on the category with
global reduction . Then there is a tame z-dimension dg of type t, called the
tame closure of d at t, which is the unique maximum among all tame x-
dimension functions d' of type t such that d' < d. Moreover d; is computed ac-
cording to the following rule: Let T(d) = {d' | d' a tame z-dimension function
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of type t,d’ < d} and S(d) = {d" | d" an x-dimension function of type t,d" <
d,d <d"V d €T(d)}. Then

dy = gle(d)-

3.8

Let € be a category with global reduction. Let ¢ be a type. An z-dimension
function d of type t is called universal of type t, if 6 < d for any z-dimension
function d of type t, whose O-dimensional objects are also 0-dimensional under

J.

3.9

The next result generalizes Corollary 2.12.

COROLLARY Let € be a category with global reduction. Let C° be a class
of objects of C, which is x-closed under virtual isomorphism. Then there
15 a unique universal x-dimension function of type t, whose 0-dimensional
objects are precisely those of C°. Furthermore it is tame. This function is
often denoted by

d@,eﬂ St

3.10

The next result generalizes Theorem 2.13.

THEOREM Let € be a category with global reduction. Let t be a type such
that given X € {A, B,C} either tx < id ortx = oo+ 1. Let d be a tame
z-dimension function of type t on C. Then d is universal of type t and is
computed by the following rule: Define recursively disjoint, x-closed classes
C" as follows. Let C° = {A € O0b(C) | d(A) = 0}. Let n € N and assume
that disjoint, x-closed classes C™ have been defined for all 0 < m < n.

Define 6" : Ob(C) — Z=° U {cc} by
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m if Aecm where 0 < m < n,
5n71(A) —

o if Ag'Uen

Obviously 6" is an z-dimension function. Define €" = {A € Ob(C) | A
n@;@’",A has a 6" '-reduction of type t at n}. Define C* = 0b(€)\ U
m= y/A

ne

¢

>0

C". Then for any A € Ob(C) and any n € Z>° U {c0},

d(A)=n< Ael.
Furthermore if n € Z=° and C* = ¢ then €V = ¢ for all n' > n, i.e.
d= o1

3.11

Let _(é, d) be a category with global reduction and d an z-dimension function
on €. For n € Z2° U {oo}, define the classes

er ={A e Ob(e) | d(A)
Cs" ={A e Ob(e) | d(A)

n}

A

3.12

The next result generalizes Lemma 2.15.

LEMMA The classes above are z-closed under virtual isomorphisms and Ob(C) =
CQOOGZ. Conversely any partition of Ob(C) as a disjoint union Ob(C) = UG"
a n=0

of z-closed classes C" defines an xz-dimension function d on C such that
Ch = C". Partially order the members of {x — closed classes in Ob(C)} by
inclusion. Then the function {z-dimension functions of type t on C} — {x-
closed classes in Ob(C)}, d — €Y, preserves partial orderings and induces
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a bijection between universal x-dimension functions of type t and x-closed
classes in Ob(C). If (D,e) is a category with x-dimension and F : € — D
s a functor of categories with global reduction then F defines a morphism
(€,d) — (D,e) of categories with x-dimension < F(C3") C P" for all
n € Z>°. Furthermore if d = de,co, and € = dg po 4 for some z-closed classes
C* C 0b(€) and D° C Ob(D) then F induces a morphism of categories with
z-dimension < F(€%) C DO.

3.13

Let € be a category with global reduction. If S € 2 — dim(€), define the
partially ordered set type(S) = {types ¢t | each d € S has type t }, with
partial ordering that of types.

Since the results we prove for group valued functors are formulated using
the concept of type for z-dimension functions, it is useful to have some general
guidelines how large the set type(S) above is, in particular when S has just
one element. The following lemmas provide such information.

3.14

The next lemma generalizes Lemma 2.17.

LEMMA The partially ordered set type(S) has the property that every element
is bounded below by a minimal element. Furthermore if t € type(S) and t'
is a type such that t' > t then t' € type(S). Thus the minimal elements of
type(S) define it uniquely.

3.15

The next lemma generalizes Lemma 2.18.

LEMMA Let F: C — D be a functor of categories with global reduction. Let
T C x —dim(D). Define S = {dF | d € T}.

(i) Then S € x — dim(€) and type(S) & type(T).
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Suppose that for each A € Ob(C), the function glrds(A) — glrds(A)
induced by F s surjective up to isomorphism of global reductions in
glrds(A). Then type(T) € type(S).

4 Categories with Costructure, Global Core-
duction, and Dimension

This section dualizes the concepts and results of the previous two sections.
Proofs are the duals of their predecessors and will be omitted. Examples of
the concepts are provided in section 5.

The principle of dualization reverses arrows in categories and replaces
each functor by its dual. I.e., if one starts with a functor F' : € — D of
categories then dualizing replaces each arrow f : A — B in either € or D
by an arrow f°: B° — A° and the functor F' by the functor F° : €° — D°
where F° sends each arrow f° : B° — A° in €° to the arrow (F(f))° :
F(B)° — F(A)° in D°. Thus if F is covariant (resp. contravariant) then so
is F°. Note that whereas dualization reverses the orientation of arrows in
categories, it does not reverse the orientation of functors between categories
being dualized.

Applying dualization to a category with structure €, we get a category
with costructure €° such that each coreduction in €° is the dual of a reduc-
tion in C. Applying dualization to a category with global reduction €, we
get : a category € with global coreduction such that each global coreduction
in € is the dual of a global reduction in €. Dimension in a category with
costructure or category with global coreduction is defined by reversing ar-
rows and applying the existing definition of dimension in the corresponding
category with structure or global reduction.

In order to fix terminology and avoid confusion later one, we carry out
the details of the program above, but leave as mentioned already the proofs
of the results as an exercise in dualization.

4.1

Throughout let € denote an arbitrary category.

23



Let Iso (€) denote the class of all isomorphisms in €. A class V(€) of
morphisms in € is called a class of virtual isomorphism, if V(€) contains
Iso(€) and if V(C) is closed under composition.

Let x = s,t, or ¢, as in (2.1). Recall that the letter s stands for source,
the letter ¢ for target, and the symbol ¢ stands for the empty letter. In
dualizing, s and ¢ get interchanged. Define the concepts x-closed under
virtual isomorphism, closed under virtual isomorphism, and virtual
chain equivalence, as in (2.1).

4.2

A preordered set [ is called inverse directed, if given elements i,j € I,
there is an element & € I such that ¢ 2 k and 7 2 k. In dualizing, di-
rected preordered sets are replaced by inverse directed ones, and conversely.
This implies that direct limits li_r)n are replaced by inverse limits IEI, and

conversely.

Let {+} denote the inverse directed preordered set with precisely one
element *. If A € Ob(C), let F4 denote the functor

Fy - {*} — C
x = A
1, — 14

where 1, and 14 denote the identity morphisms on * and A, respectively. Fs
will be called a trivial coinfrastructure functor.

A class coJ(€) of functors with values in € is called a class of coin-
frastructure functors, if it contains all trivial coinfrastructure functors,
is closed under natural isomorphism, and each F' € coJ(€) has the prop-
erty that its source category is an inverse directed, preordered set I and the

inverse limit lim F exists in €. By definition, lim F' is the limit li}nF .

— —
I I

4.3

If A € Ob(C) then the commutative square
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_H>:,>
:3>—H>:3>

]

will be called a trivial square.

A class 8(€) of commutative squares

A<=—B
C D
in € is called a class of structure squares, if it contains all trivial squares
and is closed under isomorphism of commutative squares.

-~

A class of G8(€) € 8(€) of commutative squares in € is called a class of
generating squares for 8(C), if it is closed under isomorphism of commu-
tative squares, and every square in §(C) is an inverse limit in a prescribed
way of squares in G8(€). This means that we have a class FG8(€) of func-
tors S whose source categories are inverse directed, preordered sets J, whose

values are in §§(€), and whose inverse limits lim S exist and are in §(€) and

—
J

every square in 8§(€) is some inverse limit lim S.

—
J

4.4

A category with costructure is a quadruple (€, V(€), coI(€),8(€)) con-
sisting of a category €, a class V(€) of virtual isomorphisms, a class coJ(C)
of coinfrastructure functors, and a class 8(€) of structure squares. A func-
tor or morphism F : (C,V(€), c0I(C),8(C)) — (D, V(D), coI(D),S(D)) of
categories with costructure is a functor F: € — D which preserves virtual
isomorphisms, coinfrastructure functors, and structure squares. This means
that
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e if f is a virtual isomorphism then so is F(f),
e if F': I — € is a coinfrastructure functor then so is the composition

FF : I — D and the canonical morphism limFF — F (lim F) is an
— —

I I

isomorphism,

o if

A<—B
C<=—D
is a structure square in € then
F(A)=—F(B)
F(C)~—F(D)
is one in D.
4.5

Let € = (€,V(€), coI(€), 8(C)) denote a category with costructure. Let oo
denote the first infinite ordinal. Let x = s,¢, or ¢ be as in (4.1). The
concepts of an x—dimension function on € and of a dimension function
on € are defined exactly as in (2.5) for a category with structure. This
means that dualizing interchanges s-dimension and t¢-dimension functions,
whereas dimension functions remain dimension functions. A category with
costructure and z-dimension is a pair (€, d) consisting of a category with
costructure € and an z-dimension function d on €. A functor or morphism
F:(C,d) = (D, e) of categories with costructure and z-dimension is a functor
€ — D of categories with costructure such that d 2 e¥.
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The most important concepts for an z-dimension function are the notions
of type and coreduction. The problems we can solve using dimension theory
depend on these notions. They are discussed next.

4.6

As in (2.6), a type t is a triple tp, tc, tp : ZZ° U {00} — NU {o0, 00 + 1} of
functions and is usually written in the form

_ 22
t—(tc tD).

Let € be a category with costructure. Let A € Ob(C). A coreduction
of A consists of

(i)

a morphism A — A" € V(C),if x = s.
a morphism A’ — A € V(C), ifx =t and
a virtual chain equivalence from A to A’ if x = ¢

(ii) an infrastructure functor B : I — C,i+— B;, and
(iii) a set

A'=—B;

T T (el

Ci<=—D;

of costructure squares indexed by I (C and D are not necessarily func-
torial in I) with the property that for each relationship (i < j) € I,
the triangle

27



AI

commutes.

Let d be an z-dimension function on €. Let £ be a type and n € N. A
coreduction of A is said to be a d-coreduction of type t at n, if in addition
to the above

(iv) d (113 B) < tg(n)

and for each 7 € I,
(v) d(Ci) <tc(n), and

Suppose now that 0 < d(A) < oco. Then a d-coreduction of type t at
d(A) for A will be simply called a d-coreduction of type t for A. An
z-dimension function d on € is said to have type t, if each A € Ob(€) such
that 0 < d(A) < oo has a d-coreduction of type ¢t. An z-dimension function
can have many types and obviously if it has type ¢ and ¢ < ¢’ then it also
has type t'. The applicability of a given z-dimension function d to a given
problem depends on the minimal types of d.

4.7

Next we generalize the notion of a category with costructure to that of a
category with global coreduction and define the notion of a dimension func-
tion on such categories, generalizing the existing notion on categories with
costructure.
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A category with global coreduction consists of a category with costruc-
ture € and for each A € Ob(C) a class gerd(A) of sets X such that each
member of X is a coreduction of A. Each member X € gerd(A) is called
a global coreduction of A. It will be assumed that if X € gerd(A) and
Y is a set of coreductions of A such that each coreduction in X is isomor-
phic (in the straightforward sense) to a coreduction in Y and conversely then
Y € gerd(A). In this case, we say that X is isomorphic to Y. A category
with global coreduction will be denoted by a pair

(€, gerd)

where gerd assigns to each A € Ob(C€) a class gerd(A) of global coreductions
of A, which is closed under isomorphism. We explicitly allow the possibility
that for some A's, gerd(A) = ¢.

Let F : € — €' be a functor of categories with costructure. It follows from
the definition of such functors that F takes any coreduction of an object A
of € to a coreduction of F(A). If R is a coreduction of A, let F(R) denote
the corresponding coreduction of F(A). If X is a global coreduction of A in
(€, gerd), let F(X) ={F(R) | R € X}. We say that F defines a functor or
morphism (€, gerd) — (€, gerd') of categories with global coreduction, if
for each A € Ob(C) and X € gerd(A), F(X) € gerd' (F(A)).

4.8

Let x = s (source), t (target), or ¢ (no condition), be as in (2.1). An x
-dimension function d on (€, gcrd) is by definition an z-dimension func-
tion on €, as in (2.5). A category with global coreduction and -
dimension is a pair ((C, gerd), d) consisting of a category with global core-
duction (€, gerd) and an z-dimension function d on (€, gerd). A functor or
morphism F : ((€, gerd), d) — ((€, gerd'), d') of categories with global core-
duction and z-dimension is a functor F : (€, gerd) — (€, geld’) of categories
with global coreduction such that d = d'F.

As in sections 2 and 3, the most important properties of z-dimension
functions are described using the notions of type and global coreduction.
This is done in the following paragraphs.
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4.9

Let d be an z-dimension function on the category with global coreduction
(€, gerd). Let t denote a type, as in (4.6), and let n € N. A global coreduction
X € gerd(A) is called a global d-coreduction of type t at n, if X # ¢ and
each coreduction in X is a d-coreduction of type ¢ at n, as in (4.6) (iv) - (vi).
A global d-coreduction of type t at A is by definition an X € gerd(A),
which is a global d-coreduction of type ¢ at d(A). Note that this definition
makes sense only when d(A) > 0, because t is defined on NU {oco}. An
z-dimension function d is said to have type ¢, if each A € Ob(C) such that
0 < d(A) < oo has a global d-coreduction of type ¢ at A.

An z-dimension function on (€, gerd) can have many types and obviously
if it has type t and ¢ < ¢’ then it also has type #’. The applicability of a given
z-dimension function d to a given problem depends on the minimal types of

d.

For the rest of this section, let

€ = (C, gerd)

denote a category with global coreduction. We continue developing the prop-
erties of z-dimension functions.

4.10

Let d be an z-dimension function of type ¢ on the category with global
coreduction €. Let A € Ob (€) and n € N. Even if A has a global d-
coreduction of type ¢ at n, it does not follow that d(A) < n. However if the
conclusion above is true for any A and any n then we shall say that d is a
tame z-dimension function of type ¢.

4.11

Let € be a category with global coreduction. Define & — dim(€) to be the
partially ordered class of all z-dimension functions on €, with partial ordering
given by <. If ¢ is a type, let & — dim (G, ¢) denote the partially ordered
subclass of £ — dim(C) consisting of all z-dimension functions of type t.
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4.12

The next result is the dual of Theorem 3.6.

THEOREM The partially ordered class x—dim(C) has arbitrary greatest lower

bounds. If S € = — dim(C) is a nonempty subclass then its greatest lower
bound glbs is computed by the formula

glbs(A) = inf{d(A) | d € S}.

Moreover if S & z — dim(@,t) is a nonempty subclass then glbg € = —
dim(C, 1).

4.13

Let next result is the dual of Theorem 3.7.

THEOREM Let d be an x-dimension function of type t on the category with
global coreduction C. Then there is a tame x-dimension dy of type t, called the
tame closure of d at t, which is the unique maximum among all tame x-
dimension functions d' of type t such that d' < d. Moreover d; is computed ac-
cording to the following rule: Let T(d) = {d' | d' a tame z-dimension function
of type t,d' < d} and S(d) = {d" | d" an x-dimension function of type t,d" <
d,d < d"Vd e€T(d)}. Then

dt - glbs(d) .

4.14

Let C be a category with global coreduction. Let ¢ be a type. An z-dimension
function 0 of type t is called universal of type t, if 6 < d for any z-dimension

function d of type t, whose O-dimensional objects are also 0-dimensional under
0.
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4.15

The next result is the dual of Corollary 3.9.

COROLLARY Let € be a category with global coreduction. Let € be a class
of objects of C, which is x-closed under virtual isomorphism. Then there
15 a unique universal x-dimension function of type t, whose 0-dimensional
objects are precisely those of C°. Furthermore it is tame. This function is
often denoted by

d@,eﬂ St

4.16

The next result is the dual of Theorem 3.10.

THEOREM Let C be a category with global coreduction. Let t be a type such
that given X € {A, B,C} either tx < id ortx = oo+ 1. Let d be a tame
z-dimension function of type t on C. Then d is universal of type t and is
computed by the following rule: Define recursively disjoint, x-closed classes
C" as follows. Let € = {A € Ob(€) | d(A) = 0}. Let n € N and assume
that disjoint, x-closed classes C™ have been defined for all 0 < m < n.
Define 6™ 1 : Ob(C€) = Z=° U {x} by

B m i Aegm where 0 < m < n,
A= o i Ad "gZem.

Obviously 6™ is an x-dimension function. Define C" = {A € 0b(€) | A
”Ozem, A has a 6" -reduction of type t at n}. Define €° = Ob(€)\ U
m= y/A

ne

¢

>0

C". Then for any A € Ob(C) and any n € Z=° U {c0},

d(A)=n& Ae e,

Furthermore if n € Z=° and C* = ¢ then C¥ = ¢ for all n' > n, i.e.
d= 6"
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4.17

Let (G, d_) be a category with global coreduction and d an xz-dimension func-
tion on C. For n € Z=° U {oc}, define the classes

er ={A e Ob(e) | d(A)
Cs" = {A e Ob(e) | d(A)

n}

A

4.18

The next result is the dual of Lemma 3.12.

LEMMA The classes above are z-closed under virtual isomorphisms and Ob(C) =
fjoeg. Conversely any partition of Ob(C) as a disjoint union Ob(C) = UG”
a n=0

of z-closed classes C" defines an xz-dimension function d on C such that
Ch = C". Partially order the members of {x — closed classes in Ob(C)} by
inclusion. Then the function {x-dimension functions of type t on €} —
{z-closed classes in Ob(C)}, d — €Y, preserves partial orderings and in-
duces a bijection between universal x-dimension functions of type t and z-
closed classes in Ob(C). If (D,e) is a category with global coreduction and
z-dimension and F : € — D is a functor of categories with global coreduction
then F defines a morphism (C,d) — (D,e) of categories with global core-
duction and x-dimension < F(C5") C D" for all n € Z=°. Furthermore
if d = dgeo, and e = dg 0, for some x-closed classes C° C  Ob(€) and
DO C Ob(D) then F induces a morphism of categories with global coreduc-
tion and x-dimension < F(€%) C DO,

4.19

Let € be a category with global coreduction. If S € z — dim(C), define the
partially ordered set type(S) = {types ¢t | each d € S has type ¢ }, with
partial ordering that of types.

Since the results we prove for group valued functors are formulated using
the concept of type for z-dimension functions, it is useful to have some general
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guidelines how large the set type(S) above is, in particular when S has just
one element. The following lemmas provide such information.

4.20

The next lemma is the dual of Lemma 3.14.

LEMMA The partially ordered set type(S) has the property that every element
is bounded below by a minimal element. Furthermore if t € type(S) and t'
is a type such that t' >t then t' € type(S). Thus the minimal elements of
type(S) define it uniquely.

4.21

The next lemma is the dual of Lemma 3.15.

LEMMA Let F: € — D be a functor of categories with global coreduction.

Let T € x — dim(D). Define S ={dF | d € T}.

(i) Then S € x — dim(€) and type(S) & type(T).

Suppose that for each A € Ob(C), the function gcrdg(A) — gerds(A)
induced by F is surjective up to tsomorphism of global coreductions in
glrds(A). Then type(T) & type(S).
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