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Abstract
Global actions were introduced by A. Bak to give a combi-

natorial approach to higher K-theory, in which control is kept
of the elementary operations through paths and paths of paths.
This paper is intended as an introduction to this circle of ideas,
including the homotopy theory of global actions, which one ob-
tains naturally from the notion of path of elementary opera-
tions. Emphasis is placed on developing examples taken from
combinatorial group theory, as well as K-theory. The concept
of groupoid atlas plays a clarifying role.
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1. Introduction

The motivation for the introduction of global actions by A. Bak [2–4] was to provide
an algebraic setting in which to bring higher algebraic K-theory nearer to the intu-
itions of the original work of J.H.C. Whitehead on K1(R). In this work, elementary
matrices, and sequences of their actions on the general linear group, play a key rôle.

The geometric origin for K1 came from Whitehead’s plan to seek a generalisation
to all dimensions of the Tietze equivalence theorem in combinatorial group the-
ory: this theorem states that two finite presentations of isomorphic groups may be
transformed from one to the other by a finite sequence of elementary moves, called
Tietze transformations. These algebraic moves were translated by Whitehead, [20],
into the geometric moves of elementary collapses and expansions of finite simplicial
complexes: this gave the notion of simple homotopy equivalence. The astonishing
conclusion of his work was that there was an obstruction to a homotopy equiva-
lence f : X → Y of finite simplicial complexes being a simple homotopy equivalence,
and that this lay in a quotient group of a group that he had defined, the latter being
K1(R) where R is the integral group ring of π1(X).

Since then, there was a search for higher order groups Ki(R), which were finally
defined by Quillen as homotopy groups of a space F (R), the homotopy fibre of the
canonical map BGL(R) → BGL(R)+. This was a great result, but the excursion
into topology has meant that the original combinatorial intuitions get somewhat
lost.

Bak, in [2–4], for instance, found that to deal with stable and unstable higher K-
groups it was useful to consider a family of subgroups of the elementary matrix
group, and that the theory in general could be organised as a family of group
actions, indexed by a set with a relation 6, often a partial order, and with certain
‘patching conditions’. This became his ‘global action’, which he viewed as a kind
of ‘algebraic manifold’, analogous to the notion of topological manifold, but in an
algebraic setting. A global action was, by analogy with the notion of atlas in the
theory of manifolds, an atlas of actions. The individual group actions played a role
analogous to that of charts in the definition of a manifold. Thus ‘local’ meant at
one group action, and ‘global’ meant understanding the interaction of them all.
The elaboration of the definition in Bak’s work was intended to cope with paths, to
define an analogue of K1, and paths of paths, to deal with higher order questions.
In an up-coming paper, Bak will use this algebraic approach to give a presentation
of all stable and unstable higher K-theory groups.

In discussions at Bangor and Bielefeld, it was seen that: (a) there were interesting
applications of global actions to identities among relations for groups with a spec-
ified family of subgroups, and (b) there were advantages in using the well known
transition from group actions to groupoids defined by the action groupoid of an ac-
tion, and to rephrase the definition of global action so that it became part of a wider
concept, atlases of groupoids, or as we will nearly always say, groupoid atlases. This
extension will be formulated in the current paper. The individual groupoids play a
role analogous to charts in the definition of a manifold. (We could have used the
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rubric global groupoid for this concept, but chose instead to emphasise the atlas-like
structure explicitly in the name. Similarly, emphasising the atlas-like structure in
global actions would yield the name action atlas.) The generalisation to groupoid
atlases allows a wider scope for the theory, since groupoids can generalise not only
groups and group actions, but also equivalence relations.

The content and organization of the rest of the paper is as follows. Section 2 recalls
the definition of global action and elucidates it with several remarks and examples.
Section 3 recalls the principal notions of morphism, namely the strongest and the
weakest. The latter is necessary for constructing a good homotopy theory. Section 4
makes the transition from global actions to groupoid atlases. It gives the important
examples of the line action in the category global actions and the line atlas in the
category of groupoid atlases. These objects are necessary for defining the notions of
path, cylinder, and homotopy for global actions and groupoid atlases, respectively.
Section 5 discusses curves, paths, and the functor π0. The functor π0 is computed
for some interesting examples. It is shown that π0 of the global action associated to
the general linear group of a ring is the K-theory functor K1 of the general linear
group. Section 6 constructs products of objects and introduces the fundamental
groupoid of an object and the cylinder and loop space constructions of the funda-
mental group of an object. The remainder of the paper revolves around developing
the concept of fundamental group. Section 7 shows how to associate an abstract
simplicial complex to an object and uses this association to develop tools for inter-
preting and computing fundamental groups. Section 8 computes the fundamental
groups of some uncomplicated single domain global actions. A single domain global
action has all groups acting on the same set. These are the kinds of ations which
occur in constructing K-theory groups. Section 10 develops the notion of covering
for global actions and proves a Galois-Poincaré correspondence between the isomor-
phism classes of connected coverings of a given connected action and the conjugacy
classes of the fundamental group of the given action. Section 11 constructs up to
isomorphism, all connected coverings of a given connected single domain action.
Section 12 shows that the single domain action associated to the Steinberg group
is a connected, simply connected covering of the single domain action associated to
the elementary group defined by the Steinberg group. From this it follows that the
K-theory functor K2 of the general linear group is the fundamental group of the
global action defined by that group.

The notes on which this paper is based were produced by Tim Porter, on the basis of
lectures by Tony Bak, followed by discussions in Bangor and Bielefeld. The material
in sections 10-12 is taken unadorned from the lectures. A version has been available
since then as a Bangor Preprint [5]. 1

1Acknowledgements: The research discussions summarised here have been supported by the British
Council/ARC programme (‘Global actions and homotopy theory’ Project Number 859) and sup-
plemented by an INTAS grant (Algebraic K-theory, groups and categories, INTAS 93-436). Brown
was also supported by a Leverhulme Emeritus Fellowship, 2002-2004.
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2. Global actions

The motivating idea is of a family of interacting and overlapping local G-sets for
varying groups G. The prime example is the underlying set GLn(R) operated on by
the family of subgroups GLn(R)α which are generated by elementary matrices of a
certain form α. We will give the details of this example shortly, but first we will set
up some basic terminology and notation concerning group actions (G-sets), before
we give the definition of a global action.

A (left) group action consists of a group G and a set X on which G acts on the left;
we will write G y X . This means that there is a function from the set G ×X to
X written as (g, x) goes to g.x, such that g1.(g2.x) = (g1g2).x and 1G.x = x for all
g1, g2 ∈ G and x ∈ X .

It is often convenient to omit the dot so we may write gx instead of g.x.

A morphism of group actions, (ϕ, ψ) : G y X → H y Y , consists of a homo-
morphism of groups ϕ : G → H and a function ψ : X → Y such that ψ(g.x) =
ϕ(g).ψ(x).

The promised ‘global version’ of this is:

Definition 2.1. A global action A consists of a set XA together with:

(i) an indexing set ΦA, called the coordinate system of A;

(ii) a reflexive relation, written 6, on ΦA;

(iii) a family {(GA)α y (XA)α | α ∈ ΦA} of group actions on subsets (XA)α ⊆ XA;
the (GA)α are called the local groups of the global action;

(iv) for each pair α 6 β in ΦA, a group morphism

(GA)α6β : (GA)α → (GA)β .

This data is required to satisfy:

(v) if α 6 β in ΦA, then (GA)α6β leaves (XA)α ∩ (XA)β invariant;

(vi) if σ ∈ (GA)α and x ∈ (XA)α ∩ (XA)β, then

σx = ((GA)α6β(σ))x. 2

The diagram GA : ΦA → Groups is called the global group of A. The set XA is the
enveloping set or underlying set of A. The notation |XA| or |A| for XA is sometimes
used for emphasis or to avoid confusion since

XA : ΦA → P(XA)

is also a useful notation, where P(XA) is the powerset of XA.

Remarks 2.2.

a) For technical reasons it is not assumed that the collection (XA)α ⊆ XA neces-
sarily covers XA. This holds in all the basic examples we will examine but is not
a requirement.
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b) The relation 6 is not assumed to be transitive on ΦA, so really GA is not a
functor. However, the difference is minor as, if F (ΦA) denotes the free category
on the graph of (ΦA,6), then GA extends to a functor GA : F (ΦA) → Groups.
We will usually refer, as here, to GA as a diagram of groups. It will sometimes
be useful to consider groups as single object groupoids, in which case the above
yields a diagram of groupoids2.

The simplest global actions come with just a single domain: a global action A is
said to be single domain if for each α ∈ ΦA, (XA)α = |A|.

Example 2.3. Let G be a group, H = {Hi | i ∈ Φ} a family of subgroups of G.
For the moment Φ is just a set (that is : α 6 β in Φ if and only if α = β). Define
A = A(G,H) to be the global action with

X = |XA| = |G|, the underlying set of G

ΦA = Φ

(XA)α = XA for all α ∈ Φ

Hi y X by left multiplication

(so the local orbits of the Hi-action are the left cosets of Hi).

Later on in section 7.4, we will need to refine this construction, taking ΦA to be
the family of finite non-empty subsets of Φ ordered by opposite inclusion and with
(GA)α =

⋂

i∈α Hi if α ∈ ΦA. 2

We will later look in some detail at certain specific such single domain global ac-
tions. The following prime motivating example is similar to these, but the indexing
set/coordinate system is slightly more complex.

Example 2.4. The General Linear Global Action GLn(R). Let R be an asso-
ciative ring with identity and n a positive integer.

Let ∆ = {(i, j) | i 6= j, 1 6 i, j 6 n} be the set of non-diagonal positions in an n×n
array. Call a subset α ⊆ ∆ closed if

(i, j) ∈ α and (j, k) ∈ α implies (i, k) ∈ α

Note that if (i, j) ∈ α and α is closed then (j, i) /∈ α.

Let Φ = {α ⊆ ∆ | α is closed}. We put a reflexive relation 6 on Φ by α 6 β if
α ⊆ β.

Now suppose (i, j) ∈ ∆ and r ∈ R. The elementary matrix εij(r) is the matrix
obtained from the identity n× n matrix by putting the element r in position (i, j),

i.e. εij(r)k,l =











1 if k = l

r if (k, l) = (i, j)

0 otherwise .

2By a groupoid we mean a small category in which every arrow is an isomorphism.
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Let GLn(R)α, for α ∈ Φ, denote the subgroup of GLn(R) generated by

{εij(r) | (i, j) ∈ α, r ∈ R}.

It is easy to see that (akl) ∈ GLn(R)α if and only if

ak,l =











1 if k = l

arbitrary if (k, l) ∈ α

0 if (k, l) ∈ ∆\α.

For α 6 β, there is an inclusion of GLn(R)α into GLn(R)β. This will give the
homomorphism

GLn(R)α6β : GLn(R)α → GLn(R)β .

Let GLn(R)α act by left multiplication on GLn(R).

This completes the description of the single domain global action GLn(R). Later we
will see how to define the fundamental group and more generally the higher homotopy
groups of a global action. The (i−1)th-homotopy group of GLn(R) is the algebraic K-
theory group Ki(n,R) and the usual algebraic K-group, Ki(R) is the direct limit of
Ki(n,R)s by the obvious maps induced from the inclusions GLn(R) → GLn+1(R).
2

The way that a global action extends local information to become global information
can be observed from the simplest cases of the A(G,H).

If H has just a single group H in it, then the global action is just the collection of
orbits, i.e. right cosets. There is no interaction between them.

If H consists of distinct subgroups {H1, H2}, then anyH1-orbit intersects with some
H2-orbit, so now orbits do interact. How they interact can be very influential on
the homotopy properties of the situation.

Example 2.5. As a simple example consider the symmetric group S3 ≡ 〈a, b | a3 =
b2 = (ab)2 = 1〉, with a denoting the 3-cycle (1 2 3) and b the transposition (1 2).
Take H1 = 〈a〉 = {1, (1 2 3), (1 3 2)} yielding two orbits for its left action on
S3, H1 and H1b. Similarly take H2 = 〈b〉 giving local orbits H2, H2a,H2a

2. Any
H1-orbit intersects with any H2-orbit, but of course they do not overlap themselves.
This gives an intersection diagram:

H1

||
||

||
||

DD
DD

DD
DD

VVVVVVVVVVVVVVVVVVVVVVVVV H1b

hhhhhhhhhhhhhhhhhhhhhhhh

yy
yy

yy
yy

FFF
FFF

FF

H2 H2a H2a
2

The graph, defined by the intersection diagram, makes it clear that, even in such
a simple case, it is possible to find loops and circuits within the global action, by
moving an element at will through any local orbit and therfore into an intersection,
crossing to the next orbit, etc. and eventually getting back to the starting position.
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For example, the element 1 ∈ H2 multiplied on the left by b ∈ H2 ends up in
H2 ∩ H1b, multiplied on the left by a ∈ H1 yields ab ∈ H1b ∩ H2a

2 and so on as
below. The circuit

H2
// H1b // H2a

2 // H1
// H2

1
b× // b

a× // ab
b× // bab

a× // abab = 1

relates the structure of the single domain global action with the combinatorial in-
formation encoded in the presentation. This will be examined in more detail later.

3. Morphisms

Morphisms between global actions come in various strengths depending on what
part of the data is preserved. Preservation of just the local orbit information cor-
responds to a “morphism”, compatibility with the whole of the data then yields a
“regular morphism”.

First we introduce a subsidiary notion which will be important at several points in
the later development.

Definition 3.1. Let A be a global action. Let x ∈ (XA)α be some point in a local
set of A.

A local frame at x in α or α-frame at x is a sequence x = x0, · · · , xp of points
in the local orbit of the (GA)α-action on (XA)α determined by x. Thus for each i,
1 6 i 6 p, there is some gi ∈ (GA)α with gix = xi. 2

Note that in extreme cases, such as a trivial action, all the xi may be equal, but
if the action is faithful, each α-frame at x consists essentially of x and a sequence
g1, · · · , gp of elements of (GA)α. For some of the homotopy theoretic side of the
development this may be of use as g1, g2g

−1
1 , · · · yields a (p − 1)-simplex in the

nerve of the group (GA)α.

Definition 3.2. If A and B are global actions, a morphism f : A → B of global
actions is a function f : |A| → |B| on their underlying sets, which preserves local
frames. More precisely:
if x0, · · · , xp is an α-frame at x0 for some α ∈ ΦA then f(x0), · · · , f(xp) is a β-
frame at f(x0) for some β ∈ ΦB. 2

Note that not all α-frames may lead to the same β, so this notion is not saying that
the whole of the local orbit of the (GA)α-action corresponding to x0 must end up
within a single local orbit, merely that given x0, · · · , xp, there is some β such that
f(x0), · · · , f(xp) form a β-frame. This is of course only significant when there are
infinitely many co-ordinates, as larger frames may lead to different “larger” βs.
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Intuitively a path in a global action A is a sequence of points a0, · · · , an in |A| so
that each ai, ai+1, i = 0, · · · , n−1 is a α-frame for some (varying) α ∈ ΦA. This idea
can be captured using a morphism from a global action model of a line, and this is
done in the initial papers on global actions, [2–4]. Here we postpone this until the
third section as there is a certain technical advantage in considering the line with a
groupoid atlas structure and that will be introduced there.

Definition 3.3. A regular morphism η : A → B of global actions is a triple
(ηΦ, ηG, ηX) satisfying the following

− ηΦ : ΦA → ΦB is a relation preserving function :

if α 6 α′, then ηΦ(α) 6 ηΦ(α′).

− ηG : GA → (GA)ηΦ( ) is a natural transformation of group diagrams over ηΦ,

i.e. for each α ∈ ΦA,

ηG(α) : (GA)α → (GB)ηΦ(α)

is a group homomorphism such that if α 6 α′ in ΦA, the diagram

(GA)α

��

ηG(α)// (GB)ηΦ(α)

��
(GA)α′

ηG(α′)

// (GB)ηΦ(α′)

where the vertical maps are the structure maps of the respective diagrams;
- ηX : |A| → |B| is a function such that ηX((XA)α) ⊆ (XB)ηΦ(α) for all

α ∈ ΦA;
- for each α ∈ ΦA, the pair

(ηG, ηX) : (GA)α y (XA)α → (GB)ηΦ(α) y (XB)ηΦ(α)

is a morphism of group actions. 2

Remark 3.4. If η is a regular morphism, it is clear that ηX preserves local frames
and so is a morphism in the weaker sense.

Composition of both types of morphism is defined in the obvious way and so one
obtains categories of global actions and morphisms and of global actions and regular
morphisms.

It is perhaps necessary to underline the meaning of a morphism of group actions:
If G y X and H y Y are group actions of G on X and H on Y , respectively, a
morphism from G y X to H y Y is a pair (ϕ : G → H,ψ : X → Y ) with ϕ a
homomorphism and ψ a function such that for g ∈ G, x ∈ X,

ϕ(g).ψ(x) = ψ(g.x).

We need to note that, if x and x′ are in the same orbit of G y X then ψ(x) and
ψ(x′) are in the same orbit of H y Y . 2
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4. Actions as groupoids, and groupoid atlases.

4.1. Actions as groupoids

If G y X is a group action then we can construct an action groupoid from it.

Act(G,X) or G⋉X will denote the category with X as its set of objects and G×X
as its set of arrows. Given an arrow (g, x), its source is x and its target g.x. We
write s(g, x) = x, t(g, x) = g.x and represent this diagrammatically by

x
(g,x) // g.x .

The composite of (g, x) and (g′, x′) is defined only if the target of (g, x) is the source
of (g′, x′) so x′ = g.x, then

x
(g,x) // g.x

(g′,gx)// g′gx

gives a composite (g′g, x). The identity at x is (1, x). The inverse of (g, x) is (g−1, gx)
so G⋉X is in fact a groupoid.

Example 4.1. Let X = {0, 1}, G = C2 with the obvious action on X interchanging
0 and 1. If we write C2 = {1, c} we have Ob(G⋉X) = X = {0, 1},

Arr(G⋉X) = {(1, 0) : 0 → 0, (1, 1) : 1 → 1, (c, 0) : 0 → 1, (c, 1) : 1 → 0}

Thus diagrammatically the groupoid is just

G⋉X :=
.
0::

(c,0)

** ·
1

(c,1)

jj dd

i.e. it is the groupoid often written as I, the unit interval groupoid. 2

Back to the general situation:

Suppose (ϕ, ψ) : G y X → H y Y is a morphism of group actions, then we can
define a morphism of groupoids by

ϕ⋉ ψ : G⋉X → H ⋉ Y

(ϕ⋉ ψ)(x) = ψ(x) on objects

(ϕ⋉ ψ)(g, x) = (ϕ(g), ψ(x)) on arrows.

We check:

s(ϕ(g), ψ(x)) = ψ(x) = ψ(s(g, x)),

t(ϕ(g), ψ(x)) = ϕ(g).ψ(x) = ψ(g, x)

= ψt(g, x)

so ϕ ⋉ ψ preserves source and target. It also preserves identities and composition
as is easily checked.
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4.2. Groupoid atlases

The “language” of group actions thus translates well into the language of groupoids.
The notion of an orbit of a group action becomes a connected component of a
groupoid, so what is the analogue of a global action? The translation is not difficult,
but the obvious term “global groupoid” does not seem to give the right intuition
about the concept. We noted that a global action was similar to the notion of an
atlas in the theory of manifolds, so is an atlas of actions, so instead we will use the
term ‘groupoid atlas’ or, synonymously, ‘atlas of groupoids’.

First a bit of notation: if G is a groupoid with object set X and X ′ ⊂ X is a subset
of X then G ⇂X′ will denote the groupoid with object set X ′ having

G ⇂X′ (x, y) = G(x, y),

if x, y ∈ X ′ and with the same composition and identities as G, when this makes
sense. This groupoid G ⇂X′ is the full sub-groupoid of G determined by the objects
in X ′ or more simply, the restriction of G to X ′.

Definition 4.2. A groupoid atlas A consists of a set XA together with:

(i) an indexing set ΦA, called the coordinate system of A;

(ii) a reflexive relation, written 6, on ΦA;

(iii) a family GA = {(GA)α | α ∈ ΦA} of groupoids with object sets (XA)α; the
(GA)α are called the local groupoids of the groupoid atlas;

(iv) if α 6 β in ΦA, a groupoid morphism

(GA)α ⇂(XA)α∩(XA)β
−→ (GA)β ⇂(XA)α∩(XA)β

which is the identity map on objects. The notation we will use for this mor-
phism will usually be ϕα

β but the more detailed (GA)α6β may be used where
more precision is needed. As before we write |A| for XA, the underlying set of
A.

This data is required to satisfy:

(v) if α 6 β in ΦA, then (XA)α ∩ (XA)β is a union of components of (GA)α,
i.e. if x ∈ (XA)α ∩ (XA)β and g ∈ (GA)α is such that s(g) = x then t(g) ∈
(XA)α ∩ (XA)β. 2

A morphism of groupoid atlases comes in several strengths as with the special case
of global actions.

A local frame in a groupoid atlas, A, is a sequence (x0, · · · , xp) of objcts in a single
connected component of some (GA)α, i.e. there is some α ∈ ΦA, x0, · · · , xp ∈ (XA)α

and arrows gi : x0 → xi, i = 1, · · · , p.

A function f : |A| → |B| supports a weak morphism structure if it preserves local
frames. Similar comments apply to those made above about morphisms of global
actions.
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The stronger form of morphism of groupoid atlases will just be called a (strong)
morphism.

A strong morphism η : A → B of groupoid atlases is a triple (ηX , ηΦ, ηg) satisfying
the following

(i) ηX : XA → XB is a function between the underlying sets;

(ii) ηΦ : ΦA → ΦB is a relation preserving function;

(iii) ηG : GA → (GB)ηΦ
is a (generalised) natural transformation of diagrams of

groupoids over the function ηΦ on the objects.

To illustrate the difference between global actions and groupoid atlases, we consider
some simple examples.

Example 4.3. Let X = {0, 1, 2}, G = C3 = {1, a, a2} (and, of course, a3 = 1), the
cyclic group of order 3, acting by a.0 = 1, a.1 = 2, on X. This gives us C3 ⋉X with
9 arrows. We set B = C3 ⋉X as groupoid or C3 y X as C3-set. We also have the
example A = C2 ⋉ {0, 1} = I considered earlier.

Both A and B will be considered initially as global actions having ΦA and ΦB a single
element.

Any function f : {0, 1} → {0, 1, 2} supports the structure of a morphism of global
actions since the only non-trivial frame in A is based on the set {x0, x1}, where
x0 = 0, and x = 1 and this must get mapped to a frame in B, since any non-empty
subset of X is a frame in B. On the other hand, a regular morphism η : A → B

must contain the information on a group homomorphism

ηG : C2 → C3

which must, of course, be trivial. Hence the only regular morphism η must map all
of A to a single point in B. There are thus 9 morphisms from A to B, but only 3
regular morphisms. The regular morphisms are very rigid. 2

Remark 4.4. It is not always the case that there are fewer regular morphisms
than (general) morphisms. If A is a global action with one point and a group acting
on that point and B is similar with group H, there is only one general morphism
from A to B, but the set of regular morphisms is ‘the same as’ the set of group
homomorphisms from G to H. 2

Example 4.5. Now we continue the previous example by considering A and B as
groupoid atlases. The element (c, 0) : 0 → 1 in the single groupoid determining
A, must be sent to some arrow in B. The inverse of (c, 0) is (c, 1), so as soon as
a morphism, ηG is specified on (c, 0), it is determined on (c, 1) since ηG(c, 1) =
(ηG(c, 0))−1. Thus if we pick an arrow in B, say,

(a2, 0) : 0 → 2,

we can define a morphism

ηG : A → B
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by specifying ηG(c, 0) = (a2, 0), so ηG(0) = 0, ηG(1) = 2 etc. In other words the
fact that A uses an action by C2 and B by C3 does not inhibit the existence of
morphisms from A to B. Any morphism of global actions from A to B in this case
will support the structure of a morphism of the corresponding groupoid atlases, yet
the extra structure of a “regularity condition” is supported in this latter setting. Of
course the relationship between morphisms of global actions and morphisms of the
corresponding groupoid atlases can be expected to be more subtle in general. 2

Problem/Question 4.6. If A and B are global actions and f : A → B is a mor-
phism, does f support the structure of a morphism of the corresponding groupoid
atlases?

In general the answer is ‘no’ since if A is a global action with ΦA = {a, b | a 6 b}
with both Xa and Xb single points, and B is similar but with ΦA discrete, then the
general morphism which corresponds to the identity does not support the structure
of a (strong) morphism of the corresponding groupoid atlases because of the need for
a relation function η : ΦA → ΦB. Refining the question, suppose we have a general
morphism of global actions together with a relation preserving function between the
coordinate systems, which is compatible with the morphism. In that case the question
is related to the following question about groupoids:
if we have two groupoids A and B and a function f from the objects of A to the
objects of B which sends connected components of A to connected components of
B, what obstructions are there for there to exist a functor F from A to B such that
F restricted to the objects is the given f?

Clearly any global action determines a corresponding groupoid atlas as we have used
above. As there are morphisms of action groupoids that do not come from regular
morphisms of actions, the groupoid morphisms give a new notion of morphism of
global actions, whose usefulness for the motivating examples will need investigating.
Are there “useful” groupoid atlases other than those coming from global actions?
The answer is most definitely: yes.

4.3. Equiv(A)

Equivalence relations are examples of groupoids.

Example 4.7. Let X be a set. Any equivalence relation R on X determines a
groupoid with object set X. We will denote this groupoid by R as well. It is specified
by

R(x, y) =

{

{(x, y)} if xRy

∅ if x is not related to y.

Now suppose R1, · · · , Rn are a family of equivalence relations on X. Then define A

to have coordinate system

ΦA = {1, · · · , n} with discrete 6

and (GA)i = Ri. This gives a groupoid atlas that does not in general arise from a
global action. 2
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Example 4.8. Let G be a group, X a G-set and R an equivalence relation on
X. Let Φ = {1, 2}, with 6 still to be specified. Take G1 = G ⋉ X, G2 = R and
X1 = X2 = X. Assume we have a groupoid atlas structure with this as partial
data. If 6 is discrete, there is no interaction between the two structures and no
compatibility requirement. If 1 6 2, each G-orbit is contained in an equivalence
class with ϕ1

2(x, g) = (x, gx), i.e. the G-orbit structure is finer than the partition
into equivalence classes. If 2 6 1, the partition is finer than the orbit structure (the
connected components of the groupoid G1) and if xRy then there is some gx,y ∈ G
such that gx,yx = y. 2

This last case is closely related to a useful construction on global actions.

Example 4.9. Let A = (XA, GA,ΦA) be a global action. Let α ∈ ΦA and (GA)α y

(XA)α be the corresponding action. Set Rα to be the equivalence relation determined
by the (GA)α-action. Thus xRαx

′ if and only if there is some g ∈ (GA)α with gx =
x′. Of course the partition of (XA)α into Rα-equivalence classes is exactly that given
by the (GA)α-orbits (or the (GA)α-components where (GA)α is the corresponding
groupoid).

If α 6 β then the compatibility conditions are satisfied between Rα and Rβ making
(XA, RA,ΦA) with RA = {Rα | α ∈ ΦA} into a groupoid atlas which will be denoted
Equiv(A).

The functions (GA)α → Rα mapping the groupoid of the (GA)α-action to the corre-
sponding equivalence relation yield a natural transformation of groupoid diagrams
and hence a strong morphism

A → Equiv(A)

with obvious universal properties. Of course the same construction works if A is
an arbitrary groupoid atlas, that is, one not necessarily arising from a global ac-
tion. The result gives a left adjoint to the inclusion of the full subcategory of atlases
of equivalence relations into that of groupoid atlases. The usefulness of this con-
struction is another reason for extending our view beyond global actions to include
groupoid atlases. The notion of morphism of global actions, f : A → B, translates
to the notion of strong morphism, f : Equiv(A) → Equiv(B) of the corresponding
groupoid atlases, at least for examples with finite orbits. 2

4.4. The Line

We have seen that the simple action with G = C2, X = {0, 1} gives the groupoid I
(also sometimes written [1] as it is the groupoid version of the 1-simplex). We want
an analogue of a line so as to describe paths and loops. The line, L, is obtained
by placing infinitely many copies of I end to end. It is a global action, but, as
the morphisms that give paths in a global action A will need to be non-regular
morphisms in general, it is often expedient to think of it as a groupoid atlas.

The set, |L|, of points of L is Z, the set of integers; ΦL = Z ∪ {�}, where � is an
element satisfying � < n for all n ∈ Z, and otherwise the relation 6 is equality.
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(Thus � 6 �, for all n ∈ Z, � < n and n 6 n, but that gives all related pairs.) If
n ∈ ΦL, (XL)n = {n, n+ 1}, whilst (XL)� = |L| itself.

The groupoid (GL)n is a copy of I, whilst (GL)� is discrete with trivial vertex groups.

The underlying structure of L rests firmly on the locally finite simplicial complex
structure of the ordinary real line. There the (abstract) simplicial complex structure
is given by:

Vertices = Z, the set of integers;

Set of 1-simplices = {{n, n+ 1} | n ∈ Z}, the set of adjacent pairs in Z.

We will see shortly that there is a close link between simplicial complexes and this
context of global actions/ groupoid atlases.

5. Curves, paths and connected components

Suppose A is a global action or more generally a groupoid atlas. A curve in A is
simply a (weak) morphism

f : L → A

where L is the line groupoid atlas introduced above.

This implies that f : |L| → |A| is a function for which local frames are preserved.
In L the local frames are simply the adjacent pairs {n, n+1} and the singleton sets
{n}. Thus the condition that f : L → A be a path is that the sequence of points

· · · , f(n), f(n+ 1), · · ·

is such that for each n, there is a β ∈ ΦA and gβ : f(n) → f(n + 1) in (GA)β . (If
you prefer global action notation gβ ∈ (GA)β and gβf(n) = f(n+ 1).)

Note that f does not specify β and gβ, merely requiring their existence. This ob-
servation leads to a notion of a strong curve in A which is a morphism of groupoid
atlases

f : L → A

so for each n one gets a β = ηΦ(n) ∈ ΦA and ηG : GL → (GA)ηΦ
is a natural

transformation of groupoid diagrams. This condition only amounts to specifying
ηG(n, L) = g : f(n) → f(n + 1), but this time the data is part of the specification
of the curve. We can thus write a strong curve as (· · · , f(n), gn, f(n+ 1), · · · ), that
is a sequence of points of |A| together with locally defined arrows

gn : f(n) → f(n+ 1)

in the chosen local groupoid (GA)β . Changing the β or the gn changes the morphism.
We will later see the rôle of strong curves, strong paths, etc.

A (free) path in A will be a curve that stabilises to a constant value on both its left
and right ends. More precisely it is a curve f : L → A such that there are integers
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N− 6 N+ with the property that

for all n 6 N−, f(n) = f(N−);

for all n > N+, f(n) = f(N+).

We will call (N−, N+) a stabilisation pair for f .

A “based path” can be defined if A has a distinguished base point. This occurs
naturally in such cases as A = GLn(R) or A = A(G,H) for H a family of subgroups
of a group G, but is also defined abstractly by adding the specification of the chosen
base point explicitly to the data. This situation is well known from topology where
a notation such as (A, a0) would be used. We will adopt similar conventions.

If (A, a0) is based groupoid atlas, a based path in (A, a0) is a free path that stabilises
to a0 on the left, i.e., in the notation above, f(N−) = a0.

A loop in (A, a0) is a based path that stabilises to a0 on both the left and the right
so f(N−) = f(N+) = a0.

The analogue in this setting of concepts such as “connected component” should now
be clear. We say that points p and q of A, a global action or groupoid atlas, are free
path equivalent if there is a free path in A which stabilises to p on the left and to q
on the right.

Clearly free path equivalence is reflexive. It is also symmetric since if gn : f(n) →
f(n+ 1) in a local patch then g−1

n : f(n+ 1) → f(n). Once a free path from p to q
has reached q (i.e. has stabilised at q) then it can be concatenated with a path from
q to r, say, hence free path equivalence is also transitive. The equivalence classes
for free path equivalence will be called connected components, with π0(A) denoting
the set of connected components of A. If A has just one connected component then
it is said to be connected.

Examples 5.1.

1. The prime and motivating example is the set of connected components π0GLn(R)
of the general linear global action.
Suppose x, y ∈ GLn(R). Suppose f : L → GLn(R) is a free path from x to y, so
there are N− 6 N+ as above with

if n 6 N−, f(n) = f(N−) = x,

if n > N+, f(n) = f(N+) = y.

For each i ∈ [N−, N+], there is some local arrow

gi : f(n) → f(i+ 1)

and since GLn(R) is a global action, this means there is some αi ∈ Φ and
εi ∈ GLn(R)αi

such that εif(i) = f(i + 1). (The specification of f gives the
existence of such an εi but does not actually specify which of possibly many εis



Journal of Homotopy and Related Structures, vol. 1(1), 2006 117

to take, so we choose one. In fact of course, f(i), and f(i + 1) are invertible
matrices, so there is only one εi possible.) We thus have

εN+εN+−1 · · · εN−x = y.

If En(R) is the subgroup of elementary matrices of GLn(R), this is the subgroup
generated by all the GLn(R)α for α ∈ Φ and so if x and y are free path
equivalent

y ∈ En(R)x,

i.e., x and y are in the same right coset of En(R).
Conversely if y ∈ En(R)x, there is an element ε ∈ EN (R) such that y = εx, but
ε can be written (in possibly many ways) as a product of elementary matrices

ε = εN · · · ε1

with εi = GLn(R)αi
, say. Then defining

f : L → GLn(R)

by

f(n) =











x n 6 0

εn · · · ε1x 1 6 n 6 N

y n > N

gives a free path from x to y in GLn(R).
Thus π0(GLn(R)) = GLn(R)/En(R), the set of right cosets of GLn(R) modulo
elementary matrices. This is, of course, the algebraic K-group K1(n,R) if R
is a commutative ring.
We can naturally ask the question: ‘is K2(n,R) ∼= π1(GLn(R))?’ even if we
have not yet defined the righthand side of this.
We note the use of the strong rather than the weak version of paths would not
change the resulting π0.

2. Suppose A = A(G,H). Can one calculate π0(A)? A similar argument to that
in 1 above shows that if x, y ∈ |A| = |G|, then they are free path equivalent if
and only if there are indices αi ∈ Φ and elements hαi

∈ Hαi
, such that

hαn
· · ·hα0

x = y

for some n. Thus writing 〈H〉 = 〈Hi | i ∈ Φ〉 for the subgroup of G generated
by the family H = {Hi | i ∈ Φ}, we clearly have

π0(A(G,H)) = G/〈H〉.

Again the question arises as to π1(A(G,H)): what is it and what does it tell
us?
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6. Fundamental groups and fundamental

groupoids.

Ideas for the construction of π1(A, a0) for a pointed global action or groupoid atlas,
A, seem clear enough. There are three possible approaches:

(i) take some notion of homotopy of paths and define π1(A, a0) to be the set
of homotopy classes of loops at a0; hopefully this would be a group for the
natural notion of composition via concatenation of paths. Alternatively define
a fundamental groupoid Π1A using a similar plan and then take π1(A, a0) to
be the vertex group of Π1A at a0.

(ii) define a global action or groupoid atlas structure on the set Ω(A, a0) of loops
at a0, then take π1(A, a0) = π0(Ω(A, a0)).

(iii) define covering morphisms of global actions or groupoid atlases, then use a
universal or simply connected covering to find a classifying group for connected
coverings. This should be π1(A, a0).

We will look at the first two of these in this section, handling the third one later.

6.1. Products

We start by checking that products exist in the various categories we are looking
at. In this section we will only need them in very special cases, but they will be
needed later on in full strength.

Let A and B be groupoid atlases, A = (XA,GA,ΦA),B = (XB, GB,ΦB), and consider
the structure that we will denote by A × B and which is given by

|XA×B| = |XA| × |XB|;

ΦA×B = ΦA × ΦB

with (α, β) 6 (α′, β′) if and only if α 6 α′ and β 6 β′;

(GA×B)(α,β) = (GA)α × (GB)β ,

the product groupoid, for (α, β) ∈ ΦA×B with the obvious product homomorphisms
as coordinate changes. (We thus have GA×B is the product groupoid diagram

ΦA×B = ΦA × ΦB

GA×GB // Groupoids × Groupoids // Groupoids. )

Lemma 6.1. A × B with this structure is a groupoid atlas.

Proof. The proof is by routine checking so is omitted.

There are obvious ‘projections’ pA : A×B → A, pB : A×B → B, at least at the level
of underlying sets, so we need to check that they enrich nicely to give the various
strengths of morphism. We start with weak morphisms.
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Lemma 6.2. pA and pB support the structure of weak morphisms.

Proof. A local frame in A×B will be a sequence ((x0, y0), . . . , (xp, yp)) of objects in
a connected component of some (GA×B)(α,β), so there are arrows (gi, g

′
i) : (x0, y0) →

(xi, yi) in (GA)α × (GB)β . Clearly this means that (x0, . . . , xp) is an α-frame and
(y0, . . . , yp) is a β-frame, so pA and pB are weak morphisms.

This lemma is an immediate corollary of the next one, but has the advantage that
its very simple proof shows directly the structure of local frames in A× B and how
they relate to those in A and B. This will aid our intuition when looking at the links
with simplicial complexes later on.

Lemma 6.3. a) pA and pB are strong morphisms of groupoid atlases.
b) If A and B are global actions, considered as groupoid atlases, then so is A × B

Proof. ( b) will be left as an ‘exercise’, as it is easy to check.)

a) We have already specified pA at set level. On the coordinate system pA,Φ : ΦA×B →
ΦA is again just the projection and this is clearly order preserving. Finally pA,G :
(GA×B)(α,β) → (GA)pA,Φ(α,β) is the projection from (GA)α × (GB)β to its first factor.
This coincides with (pA) on objects and satisfies all the naturality conditions.

We next return to weak morphisms to see if (A×B, pA, pB) has the universal property
for products (in the relevant category of groupoid atlases and weak morphisms).

Suppose that f : C → A and g : C → B are weak morphisms, then we clearly
get a mapping (f, g) : C → A × B given by (f, g)(c) = (f(c), g(c)). This preserves
local frames as is easily seen and is unique with the property that pA(f, g) = f and
pB(f, g) = g. We thus nearly have:

Proposition 6.4. The categories of groupoid atlases and of global actions, both
with weak morphisms, have all finite products.

Proof. The only thing left to note is that these categories have a terminal object,
namely the singleton trivial global action.

As we would expect we have a similar result for strong morphisms.

Proposition 6.5. The categories of groupoid atlases and of global actions, with
strong morphisms, has all finite products.

Proof. The only thing left to prove is the universal property of the ‘product’ A×B

in ths strong case, so suppose f : C → A and g : C → B are now morphisms, then
we have f = (fX , fΦ, fG), etc. As the construction of A × B uses products of sets,
reflexive relations and groupoids, we get the corresponding existence and uniqueness
of (f, g) = ((fX , gX), (fΦ, gΦ), (fG , gG)) more or less for free. The terminal object is
as before the singleton trivial global action.
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Remarks 6.6.

(i) It is now easy to generalise from finite products to arbitrary products
∏

Ai =
(
∏

XAi
,
∏

ΦAi
,
∏

GAi
). We leave the detailed check to the reader as we will

not need this result for the moment.

(ii) If we are looking at products of global actions, the corresponding projection
morphisms are regular.

6.2. Homotopies of paths

We only need one example of a product for the moment, namely L × L, which is a
groupoid atlas model of R2. Just as a path has to start and end somewhere so does
a homotopy of paths.

Given a global action A, points a, b ∈ A and paths f0, f1 : L → A joining a and b
(and hence stabilising to these values to the left and right respectively), a (fixed
end point) homotopy between f0 and f1 is a morphism

h : L × L → A

such that:
there exist N−, N+ ∈ Z, N− 6 N+ such that

- for all n 6 N−, and all m ∈ |L|, h(m,n) = f0(m);

- for all n > N+, and all m ∈ |L|, h(m,n) = f1(m);

- for all m 6 N−, and all n ∈ Z, h(m,n) = a;

- for all m > N+, and all n ∈ Z, h(m,n) = b.

Remarks 6.7.

(i) The idea is that if we consider L × L as being based on the integer lattice
of the plane, the morphism h must stabilise along all horizontal and vertical
lines outside the square with corners (N+, N+), (N−, N+), (N−, N−) and
(N+, N−). Although the paths f0, f1 coming with given “lengths”, i.e. a given
number of steps from a to b, we allow a homotopy to increase, or decrease,
the number of those steps an arbitrary (finite) amount.

(ii) Given any f : L → A, a path from a to b, we can re-index f to get

f ′ : L → A

with f ′(n) = a if n 6 0, and a new N+, so that f ′(n) = b if n > N+,, simply
by taking the old stabilisation pair (N−, N+) for f and defining

f ′(n) = f(n−N−), n ∈ Z = |L|.

The resulting f ′ is homotopic to f . Although this is fairly clear intuitively,
it is useful as an exercise as it brings home the complexity of the processes
involved, but also their inherent simplicity.
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Example 6.8. Let f0 : L → A be a path from a to b with (N−
0 , N

+
0 ) being a

stabilisation pair for f . Define f1 : L → A by

f1(n) = f0(n− 1), n ∈ |L|,

i.e., f1 is f0 shifted one “notch” to the right on L. Then
(i) a suitable stabilisation pair for f1 is (N−

0 + 1, N+
0 + 1)

(ii) f1 is a path from a to b
and (iii) f1 is homotopic to f0.

The only claim that is not obvious is (iii). To construct a suitable homotopy h,
we construct many intermediate steps. For simplicity we will start defining h on
the upper half-plane (we can always extend it to a suitable square afterwards by a
vertically constant extension):

h(n, 0) = f0(n), n ∈ |L|

and we make a choice of a local arrow gn : f0(n) → f0(n+1), for each n (of course,
for n 6 N−

0 or n > N+
0 , gn will be an identity of the local groupoid patch),

h(n, 1) = f0(n) for n 6 N+
0 − 1

h(N+
0 , 1) =f0(N

+
0 − 1)

with the identity on f0(N
+
0 − 1) as corresponding local arrow from h(N+

0 − 1, 1) to
h(N+

0 , 1).

h(N+
0 + 1, 1) = f0(N

+
0 ) and stabilise horizontally.

Thus so far we have inserted an identity one place from the end and shifted the end
stage one to the right. We give next a local arrow from h(n, 0) to h(n, 1) for each
n. For most this will be the identity arrow but for the local arrow from h(N+

0 , 0)
to h(N+

0 , 1) we take g−1

N+

0

. The same idea is used for h(n, 2) but with the identity

inserted one step back to the left. At each successive stage of the homotopy, the
“ripple” that is the identity moves an extra step to the left. (In the diagram we
write N for N+

0 .)

h(−, 2) : · · · // f0(N − 2)
id // f0(N − 2)

gN−2 // f0(N − 1)
gN−1 // f0(N) // S

h(−, 1) : · · · // f0(N − 2)
gN−2 //

id

OO

f0(N − 1)
id //

−1
gN−2

OO

f0(N − 1)
gN−1 //

id

OO

f0(N) //

id

OO

S

h(−, 0) : · · · // f0(N − 2)
gN−2 //

id

OO

f0(N − 1)
gN−1 //

id

OO

f0(N)
id //

−1
gN−2

OO

f0(N) //

OO

S

(the symbol S indicates the sequence stabilises to the last specified value.)

Thus within a homotopy class we can “ripple homotopy” a path to have specified
N− (or for that matter N+).

Now suppose f : L → A is a path from a to b and g : L → A one from b to c.
We can assume that the stabilisation pair for g is to the right of that for f , i.e.,
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if (N−(f), N+(f)) and (N−(g), N+(g)) are suitable stabilisation pairs, N+(f) 6
N−(g). Then we can form a concatenated path: f ∗ g by first going along f until it
stabilises at b then along g. Of course f ∗g will depend on the choice of stabilisation
pairs, but using “ripple homotopies” we can change positions of f and g at will and
these homotopies will be reflected by homotopies of the corresponding f ∗ g. We
may, for instance, start g immediately after f stabilises to b. This means that the
composition is well defined on homotopy classes of paths.

Likewise using vertical composition, i.e., exchanging the roles of horizontal and
vertical on homotopies it is elementary to prove that (fixed end point) homotopy
is an equivalence relation on paths. Reflexivity of the homotopy relation is proved
by taking the inverses of all vertical local arrows in a homotopy. To reverse paths,
f ; f (r), and to prove the “reverse” is an inverse modulo homotopy is also simple
using the move:

·
gk // ·

g−1

k // ·

id

OO

id // ·

gk

OO

id //

id

OO

followed by a ripple homotopy to move the identities to the end. As concatenation
does not require reindexation (unlike paths in spaces where f : [0, 1] → X uses a
unit length interval) proof of associativity is easy: one concatenates immediately on
stabilisation to get a unique chosen composite and then associativity is assured.

This set of properties allows one to define the fundamental groupoid Π1A of a global
action or groupoid atlas A in the obvious way. The objects of Π1A are the points
of |A| whilst if a, b are points of |A|, Π1A(a, b) will be the set of (fixed end point)
homotopy classes of paths from a to b within A. Composition is by concatenation
as above and “inversion is by reversion”: if w = [f ], w−1 = [f (r)], where f (r) is the
“reverse” of f .

There is a strong variant of this construction. All the homotopies etc. used above
manipulate a strong path that represents the chosen path, i.e., we chose the local
arrows gn : f(n) → f(n+1) and worked with them. There is a clear notion of (fixed
end point) strong homotopy of paths and strong homotopy classes of strong paths
compose in the same way giving a strong fundamental groupoid ΠStr

1 A.

6.3. Objects of curves, paths and loops

We aim to define for at least a large class of groupoid atlases (including most if not
all global actions of significance for K-theory), a “loop space” analogous to that
defined for topological spaces. We expect to be able to concatenate loops within
that structure giving some embryonic analogue of the H-space structure on a loop
space. More precisely given a nice enough groupoid atlas A = (XA,GA,ΦA), we want
a new groupoid atlas ΩA and a concatenation operator

ΩA × ΩA → ΩA,
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which will induce at least a monoid structure on π0(ΩA) and hopefully for a large
class of examples will give a group isomorphic to π1(A).

Loops are best thought of via paths and thus via curves. We thus start by searching
for a suitable structure on the set of all curves Mor(L,A) in A. (Remember a curve
is merely a (weak) morphism from L to A.) If f : L → A is a curve of A, f will pass
through a sequence of local sets. The intuition is that a local set containing f in
Mor(L,A) will consist of curves passing through the same local sets (XA)α in the
same sequence.

To simplify notation we will write (L,A) for the set of morphisms from L to A.

Definition 6.9. Given a curve f : L → A in A, a function β : |L| → ΦA frames f
if β is a function such that
(i) for m ∈ |L| = Z, f(m) ∈ (XA)β(m);
(ii) for m ∈ |L|, there is a b in ΦA with b > β(m), b > β(m+ 1) and a g : f(m) →
f(m+ 1) in (GA)b.

Thus β picks out the local sets (XA)β(m) which are to receive f(m). The condition
(ii) ensures that these choices are compatible with the requirement that f be a curve.
Note that there may be curves that have no framing, especially if the pseudo-order
on ΦA has few related pairs, e.g. is discrete. For instance in a single domain global
action of the form A(G,H) we have used a discrete order on ΦA. Hence the condition
b > β(m), b > β(m + 1) must imply that β(m) = β(m + 1), yet in our examples
we have seen non-trivial paths going through several local orbits. Thus in such a
case the coordinate system we will define shortly does not cover the set of paths in
A and for this reason we will consider in detail, later on, the second global action
structure on such A that was mentioned at the start of example 2.3.

Lemma 6.10. Let f : L → A be a curve and β : |L| → ΦA a framing for f .

Suppose σ : |L| → |
∏

(GA)β(·)| is a function defining a sequence (σm) of arrows in
the local groupoids of A such that σm ∈ (GA)β(m) and, in fact, the source sequence
of σ is the underlying function of f , i.e.,

s(σm) = f(m).

Then the sequence (f ′(m)), where f ′(m) = t(σm), supports a weak morphism struc-
ture, f ′ : L → A, and β frames f ′ as well.

Proof. We have b > β(m) and b > β(m + 1) with g : f(m) → f(m + 1) in (GA)b.
We have σm : f(m) → f ′(m) and hence its inverse is in (GA)β(m), so using the
structural morphism

ϕ
β(m)
b : (GA)β(m) → (GA)b,

we get ϕ
β(m)
b (σm) : f(m) → f ′(m) in (GA)b. Similarly ϕ

β(m)
b (σm+1) : f(m + 1) →

f ′(m+ 1).

It is now clear that using the composite

f ′(m) → f(m) → f(m+ 1) → f ′(m+ 1)



Journal of Homotopy and Related Structures, vol. 1(1), 2006 124

of these three arrows in (GA)b shows that β frames f ′. As the only frames in L have
size two, i.e., are adjacent pairs {m,m + 1}, this also shows that f ′ is a curve in
A. 2

It should be clear what our next step will be.

Take Φ(L,A) = {β : |L| → ΦA | β frames some curve f}.

The set of objects (X(L,A))β of (G(L,A))β will be

(X(L,A))β = {f : L → A | f ∈ (L,A), β frames f}

then take (G(L,A))β to be the set of sequences (σm) with σm an arrow in (GA)β(m),
with the property that (s(σm)) supports the structure of a curve in (X(L,A))β , i.e.,
framed by β. The lemma above ensures that in this case (t(σm)) is also in (X(L,A))β ,
and that (G(L,A))β is a groupoid.

We have yet to specify the relation on Φ(L,A), but a component-wise definition is
the obvious one to try:

β 6 β′ if and only if β(m) 6 β′(m) for all m ∈ |L|.

As each β(m) 6 β′(m) results in an induced morphism of groupoids

(GA)β(x) ⇂→ (GA)β′(x) ⇂

over the intersection (XA)β(m)∩(XA)β′(x), there is an induced morphism of groupoids

(G(L,A))β ⇂→ (G(L,A))β′ ⇂

over (X(L,A))β ∩ (X(L,A))β′ .

If f ∈ (L,A) is framed by both β and β′, then for any σ : f → f ′ in (G(L,A))β , we
have seen in the above lemma that f ′ is framed by both β and β′. We thus have all
the elements of the verification of the following:

Proposition 6.11. With the above notation, AL = ((L,A),G(L,A),Φ(L,A)) is a

groupoid atlas. If A is a global action, then so is AL. 2

The only part not covered by the previous discussion is that relating to global
actions, however taking (G(L,A))β to be the product of the (GA)β(m), one gets an
action of this on (XA)β giving exactly the groupoid (G(L,A))β of the proposition.

We thus have a groupoid atlas AL of curves in A, and if A is a global action, AL is
one as well. Note however that AL will not usually be a single domain global action
even when A is one. This is the reason why Bak introduced the general notion of
global action, where each group is given its own, possibly distinct, domain of action.

Our earlier comments also show that to assume that the (XA)α cover XA in our
original definition would have been unduly retrictive here. Of course, our ability
to study properties of elements of XA which lie outside the coordinate patches is
restricted.
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To obtain a path space P (A), we merely restrict to those curves that are paths with
an adjustment made to the local groupoids to allow for the fact that a path can be
linked by an arrow to a general curve.

More explicitly we have

|P (A)| = the set of paths f : L → A

ΦP (A) = {β : |L| → ΦA | β stably frames some path f}
(XP (A))β = {f ∈ |P (A)| | β stably frames f}
(GP (A))β = the groupoid of stable sequences (σm) with σm an arrow in

(GP (A))β(m) and such that (s(σm)) supports the structure of
a path in (XP (A))β , i.e. is stably framed by β.

The references to “stable” in this are the needed restriction to ensure “paths” not
“curves” are involved. Recall f : L → A is a path if it is a curve and there are integers
N−

f 6 N+
f with f(n) = f(N−

f ) for n 6 N−
f and f(n) = f(N+

f ) for n > N+
f . (The

pair (N−
f , N

+
f ) was earlier called a stabilisation pair.) When β : |L| → ΦA frames a

path, f , it would clearly be possible to have β varying beyond the end of the “active
interval”, N−

f 6 n 6 N+
f , but is this necessary? We will use the term “stable frame”

of f if for some (N−
β , N

+
β ), β(n) is constant for smaller and for larger n. We do not

specify how the stabilisation pair for f is related to one for β if at all. Similar
comments apply to stable sequences, (σm). There is a stable version of the above
lemma. The proof should be clear.

Lemma 6.12. If f is a path, β : L → ΦA a stable framing of f and σ = (σm) a
stable sequence of arrows with s(σn) the underlying function of f then f ′ = t(σ)
supports the structure of a path and β stably frames f ′ as well. 2

Finally we will want a based path space Γ(A, a0) and a “loop space” ΩA. We note
first that if f : L → A is in P (A) then there are integers N−

f 6 N+
f with f(n) =

f(N−
f ) for n 6 N−

f and f(n) = f(N+
f ) for n > N+

f . Define two functions

e0, e1 : P (A) → A

by e0(f) = f(N−
f ), e1(f) = f(N+

f ). These are clearly independent of the choice of
stabilisation pair for f used in their definition. Clearly we expect these functions to
support (weak) morphisms on the corresponding groupoid atlases or global actions.

Suppose we have a local frame in the groupoid atlas PA. Then we have some
β ∈ ΦPA, and paths f0, f1, · · · , fp in some connected component of (GP (A))β . Thus

β is a stable framing of f0 and we have that there exist σ(i) : f0 → fi, σ
(i) =

(

σ
(i)
m

)

.

By the two lemmas, β is a stable framing of each fi as well - with the same “b” for
all of them.

Each fi, each σ(i) and β itself have stabilisation pairs so we can find N− smaller
than all the left hand ends of these and N+ larger than the right hand ends. Since

σ
(i)
m will be constant for n 6 N− and also for n > N+, we have

f0(n), f1(n), · · · , fp(n)
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is a frame in β(n), i.e., e0(f0), · · · , e0(fp) is a frame in A and we have shown e0 is
a morphism. Of course a completely similar argument shows e1 is a morphism.

We now assume that a base point a0 is given in A. We can take Γ(A, a0) to be the
global action or groupoid atlas defined by e−1

0 (a0). As we have not yet described
how to do such a construction, we consider a more general situation.

Suppose f : A → B is a weak morphism of global actions or, more generally, groupoid
atlases and let b ∈ B, then the set f−1(b) ⊂ A supports the following structure

|f−1(b)| = {α ∈ A : f(a) = b}
Φf−1(b) = {a ∈ ΦA | (XA)α ∩ f−1(b) 6= ∅}
(Xf−1(b))α = (XA)a ∩ f−1(b),

and the local action / local groupoid is the restriction of that in A. That this last
specification works needs a bit of care. We first look at the global action case.

If f(a) = b, and g ∈ (GA)α one usually would not expect g.a to be still “over b” so
one has to take

(Gf−1(b))α = {g ∈ (GA)α : g.f−1(b) = gf−1(b)},

then no problem arises. For the groupoid case the corresponding (Gf−1(b))α is just
the full sub-groupoid of (GA)α determined by the objects (Xf−1(b))α. The induced
morphisms when α 6 α′ in Φf−1(b) are now easy to handle.

We thus have a global action/groupoid atlas Γ(A, a0) of based paths in (A, a0) and
a restricted “end point morphism”

e1 : Γ(A, a0) → A.

Of course, Ω(A, a0), the object of loops at a0, will be e−1
1 (a0) considered as a sub-

object of Γ(A, a0) or e−1
0 (a0) ∩ e

−1
1 (a0) when thought of as being within P (A).

The discussion of concatenation of paths in the lead up to the fundamental groupoid
indicates that there is a concatenation of loops, but that such an operation depends
strongly on the choice of stabilisation pairs for the individual loops. There is thus
no single composition map

Ω(A, a0) × Ω(A, a0) → Ω(A, a0)

that is “best possible” or “most natural”. Composition can be defined if stabilisation
pairs are chosen:

Given f, g ∈ |Ω(A, a0)| with chosen stabilisation pairs (N−
f , N

+
f ), (N−

g , N
+
g ) then

define

f ∗ g : L → Ω(A, a0)

by (f ∗ g)(n) =

{

f(n) if n 6 N+
f

g(n−N+
f +N−

g ) if n > N+
f

The obvious stabilisation pair is (N−
f , N

+
f + N+

g ) and with this choice we get an
associative composition, but on loops with chosen stabilisation pairs. Of course the
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composition is not really well defined on the loops alone. As before it is well defined
up to “ripple homotopies”. This structure is analogous to the ‘Moore loop space’
construction in a topological setting.

Our next task is to calculate π0Ω(A, a0) comparing it with π1(A, a0) as defined as
the vertex group at a0 of Π1A, the fundamental groupoid of A.

Suppose f0 and f1 are loops at a0. When are they free path equivalent as points of
Ω(A, a0)? Suppose h : L → Ω(A, a0) is a free path in Ω(A, a0) that stabilises to f0
on the left and to f1 on the right. The “obvious” way to proceed is to try to use h
to construct a homotopy between f0 and f1 as paths in A. Picking a stabilisation
pair (N−

h , N
+
h ) for h, we, of course, have

h(n) = f0 for n 6 N−
h ,

h(n) = f1 for n > N+
h .

Define

H : |L| × |L| → A by

H(m,n) = h(n)(m),

and, noting that there are finitely many different h(n) involved, pick for each of
these h(n) a suitable stabilisation pair (N−

h(n)), (N
+
h(n)) and set

N− = min
(

{N−
h(n) : n ∈ [N−

h , N
+
h ]}, N−

h

)

N+ = max
(

{N+
h(n) : n ∈ [N−

h , N
+
h ]}, N+

h

)

We claim that outside the square [N−, N+] × [N−, N+], H(m,n) = a0, since, for
instance, if m < N− and n > N+, then n > N+

h so h(n) = f1 and as m < N−
h(n),

h(n)(m) = f1(m) = a0, as required. The other cases are similar.

Now assume that f0 and f1 are loops at a0 in A which yield the same element of
the fundamental group π1(A, a0). Then there is a fixed end point homotopy

H : f0 ≃ f1

between them and reversing the above process, we obtain a free path in Ω(A, a0). We
have only to note that the definitions of the concatenation operations in π1(A, a0)
and π0(Ω(A, a0)) correspond exactly, to conclude that

π1(A, a0) ∼= π0(Ω(A, a0)).

7. Simplicial complexes from global actions.

If A is a global action, a path f in A is a sequence of points · · · , f(n), · · · so
that pairs of successive points are in the orbit of some local action. A path can thus
wander from one local “patch” to the next by going via a point in their intersection.
It is only that each f(n) is in a local orbit with f(n− 1) and in a local orbit with
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f(n + 1), not the group elements used that matter. This suggests that f yields
a path in a combinatorially defined simplicial complex constructed by considering
finite families of points within local orbits. This is the case. We will describe this
for a general groupoid atlas, A.

The simplicial complex V (A) of A has |A| as its set of vertices. A subset

σ = {x0, · · · , xp}

is a p-simplex of V (A) if there is some α ∈ ΦA for which σ is an α-frame, i.e.,
σ ⊆ (XA)α and there are gi : x0 → xi ∈ (GA)α, so σ is contained in a single
connected component of (GA)α.

It is clear that Π1V (A) ∼= Π1A and if a0 ∈ A is a base point then

π1(V (A), {a0}) ∼= π1(A, a0).

The one disadvantage of V (A) is that it has as many vertices as A has elements
and this can obscure the essential combinatorial structure involved. This construc-
tion of V (A) is an analogue of the Vietoris construction used in Alexander-Čech
cohomology theory in algebraic topology. It is an instance of a general construction
that associates two simplicial complexes to a relation from one set to another. This
construction was studied by C. H. Dowker, [12]. We outline his results.

7.1. The two nerves of a relation: Dowker’s construction

Let X,Y be sets and R a relation between X and Y , so R j X × Y . We write xRy
for (x, y) ∈ R.

For our case of interestX is the set of points of A and Y is the set of local components
of the local groupoids if A is groupoid atlas and is thus the set of local orbits in the
global action case. The relation is ‘xRy if and only if x ∈ y’. Two other exemplary
cases should be mentioned.

Example 7.1. Let X be a set (usually a topological space) and Y be a collection of
subsets of X covering X, i.e.

⋃

Y = X. The classical case is when Y is an index
set for an open cover of X. The relation is the same as above i.e. xRy if and only
if x ∈ y or more exactly x is in the subset indexed by y. 2

Example 7.2. If K is a simplicial complex, its structure is specified by a collection
of non-empty finite subsets of its set of vertices namely those sets of vertices declared
to be simplices. This collection of simplices is supposed to be downward closed, i.e.,
if σ is a simplex and τ j σ with τ 6= ∅, then τ is a simplex. For our purposes here,
set X = VK to be the set of vertices of K and Y = SK , the set of simplices of K
with xRy if x is a vertex of the simplex y. 2
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Returning to the general situation we define two simplicial complexes associated to
R, as follows:

(i) K = KR :

- the set of vertices is the set X ;
- a p-simplex of K is a set {x0, · · · , xp} ⊆ X such that there is some y ∈ Y

with xiRy for i = 0, 1, · · · , p.

(ii) L = LR :

- the set of vertices is the set, Y ;
- p-simplex of K is a set {y0, · · · , yp} ⊆ Y such that there is some x ∈ X

with xRyj for j = 0, 1, · · · , p.

Clearly the two constructions are in some sense dual to each other. For our situation
of global actions/groupoid atlases, KR is V (A). The corresponding LR does not yet
seem to have been considered in exactly this context. We will denote it N(A) so if
σ ∈ N(A)p

σ =
{

Uα0
, · · · , Uαp

}

with Uαi
a local orbit for Gαi

y Xαi
or a connected component of Gαi

with the
requirement that

⋂

σ =
⋂

i=0

pUαi
6= ∅.

In the case of X a space with Y an open cover, KR is the Vietoris complex of X
relative to Y whilst LR is the nerve of the open cover (often called the C̆ech complex
of X relative to the cover). We will consider the other example in detail later on.

7.2. Barycentric subdivisions

Combinatorially, if K is a simplicial complex with vertex set VK , then one associates
to K the partially ordered set of its simplices. Explicitly we write SK for the set of
simplices of K and (SK ,⊆) for the partially ordered set with ⊆ being the obvious
inclusion. The barycentric subdivision, K ′, of K has SK as its set of vertices and a
finite set of vertices of K ′ (i.e. simplices of K) is a simplex of K ′ if it can be totally
ordered by inclusion. (Thus K ′ is the simplicial complex given by taking the nerve
of the poset, (SK ,⊆). We may sometimes write Sd(K) instead of K ′.)

Remark 7.3. It is important to note that there is in general no natural simplicial
map from K ′ to K. If however VK is ordered in such a way that the vertices of any
simplex in K are totally ordered (for instance by picking a total order on VK), then
one can easily specify a map

ϕ : K ′ → K

by:
if σ′ = {x0, · · · , xp} is a vertex of K ′ (so σ′ ∈ SK), let ϕσ′ be the least vertex of σ′

in the given fixed order.

This preserves simplices, but reverses order so if σ′
1 ⊂ σ′

2 then ϕ(σ′
1) > ϕ(σ′

2).
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If one changes the order, then the resulting map is contiguous :
Let ϕ, ψ : K → L be two simplicial maps between simplicial complexes. They are
contiguous if for any simplex σ of K, ϕ(σ) ∪ ψ(σ) forms a simplex in L.
Contiguity gives a constructive form of homotopy applicable to simplicial maps.

If ψ : K → L is a simplicial map, then it induces ψ′ : K ′ → L′ after subdivision. As
there is no way of knowing/picking compatible orders on VK and VL in advance, we
get that on constructing

ϕK : K ′ → K

and

ϕL : L′ → L

that ϕLψ
′ and ψϕ will be contiguous to each other but rarely equal.

Returning to KR and LR, we order the elements of X and Y . Then suppose y′ is a
vertex of L′

R, so y′ = {y0, · · · , yp}, a simplex of LR and there is an element x ∈ X
with xRyi, i = 0, 1, · · · , p. Set ψy′ = x for one such x.

If σ = {y′0, · · · , y
′
q} is a q-simplex of L′

R, assume y′0 is its least vertex (in the inclusion
ordering)

ϕL(y′0) ∈ y′0 ⊂ y′ for each yi ∈ σ

hence ψy′iRϕL(y′0) and the elements ψy′0, · · · , ψy
′
q form a simplex in KR, so ψ :

L′
R → KR is a simplicial map. It, of course, depends on the ordering used and on

the choice of x, but any other choice x̄ for ψy′ gives a contiguous map.

Reversing the rôles of X and Y in the above we get a simplicial map

ψ̄ : K ′
R → LR.

Applying barycentric subdivisions again gives

ψ̄′ : K ′′
R → L′

R

and composing with ψ : L′
R → KR gives a map

ψψ̄′ : K ′′
R → KR.

Of course, there is also a map

ϕKϕ
′
K : K ′′

R → KR.

Proposition 7.4. (Dowker, [12] p.88). The two maps ϕKϕ
′
K and ψψ̄′ are contiguous.

2

Before proving this, note that contiguity implies homotopy and that ϕϕ′ is homo-
topic to the identity map on KR after realisation, i.e., this shows that

Corollary 7.5.

|KR| ≃ |LR|.

2
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The homotopy depends on the ordering of the vertices and so is not natural.

Proof. of Proposition.

Let σ′′′ = {x′′0 , x
′′
1 , · · · , x

′′
q} be a simplex of K ′′

R and as usual assume x′′0 is its least
vertex, then for all i > 0

x′′0 ⊂ x′′i .

We have that ϕ′
K is clearly order reversing so ϕ′

Kx
′′
i ⊆ ϕ′

Kx
′′
0 . Let y = ϕ̄ϕ′

Kx
′′
0 , then

for each x ∈ ϕ′
Kx

′′
0 , xRy. Since ϕKϕ

′
Kx

′′
i ∈ ϕ′

Kx
′′
i ⊆ ϕ′

Kx
′′
0 , we have ϕKϕ

′
Kx

′′
i Ry.

For each vertex x′ of x′′i , ψ̄x
′ ∈ ψ̄′x′′i , hence as ϕ′

Kx
′′
0 ∈ x′′0 ⊂ x′′i , y = ψ̄ϕ′

Kxx
′′
0 ∈ ψ̄′x′′i

for each x′′i , so for each x′′i , ψψ̄
′x′′i Ry, however we therefore have

ϕkϕ
′
K(σ′′) ∪ ψψ̄(σ′′′) =

⋃

ϕkϕ
′
K(x′′i ) ∪ ψψ̄;x′′i

forms a simplex in KR, i.e. ϕKϕ
′
K and ψψ̄′ are contiguous.

Example 7.6. To illustrate both the Proposition and the remaining example of KR

and LR, consider the simplicial complex, K:

2

>>
>>

>>
>

��
��

��
�

1

>>
>>

>>
> 4

��
��

��
�

3

consisting of two 2-simplices joined along a common edge. More precisely, take
X = VK = {1, 2, 3, 4} with this as given order and Y to be the set SK of simplices
of K, so SK consists of all non-empty subsets of VK that do not contain {1, 4}.

There are 11 elements in Y .

The relation R from X to Y in xRy if and only if x is a vertex of simplex y.

In KR, {x0, · · · , xp} is a simplex if there is a y ∈ Y such that each xi ∈ y, so with
KR we retrieve exactly K itself.

Before looking at LR consider a simpler example.

If we consider ∆[n], the n-simplex, with vertices X = {0, 1, · · · , n} and the non-
empty subsets of X as simplices then KR will be ∆[n], but the vertices of LR will be
the set of simplices of ∆[n], the 1-simplices of LR will be pairs of simplices with non-
empty intersection. In particular for each vertex, i, of ∆[n], there will be a (2n−1)-
simplex in LR namely that obtained by considering the power set of X\{i} (yielding
2n elements) and adding in the singleton {i} to each of these sets. For instance for
n = 2, X = {0, 1, 2} and there is a 3-simplex {{0}, {0, 1}, {0, 2}, {0, 1, 2}} in LR.
Thus LR has much higher dimension than the original K.

Among the simplices of LR, however, we have all of those that are totally ordered
in the inclusion ordering and these give a sub-complex of LR that is isomorphic to
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K ′, the barycentric subdivision of K. This is true in general and in our example
of the two 2-simplices with a shared edge, the complex LR contains the barycentric
subdivision of KR, but also has some higher dimensional simplices such as

σmax
2 = {{2}, {1, 2}, {2, 3}, {2, 4}, {1, 2, 3}, {2, 3, 4}} .

Of course the inclusion map K ′
R → LR is part of that structure used in the lemma.

The map from L′
R to KR is now relatively easy to describe. The above 5-simplex

σmax
2 is a simplex because the element 2 is in all of the parts so ψσmax

2 = 2. In
general of course there will be a choice of element, for instance,

σmax
{2,3} = {{2, 3}, {1, 2, 3}, {2, 3, 4}} ,

and is a simplex of LR because its intersection is non-empty as it contains both 2
and 3, thus there are two different maps one using ψσmax

{2,3} = 2, the other using 3
as image point. Of course they are contiguous. The complex LR seems to include
aspects of both the barycentric subdivision and the dual complex. The explosion in
dimension is, of course, typical here as, for instance, in the case of an open cover of a
topological space the nerve of the cover yields a simplicial complex whose dimension
indicates the multiple overlaps in the cover and as the cover is varied reflects the
covering dimension of the space but typically the Vietoris complex is of unbounded
dimension.

Returning to global actions and groupoid atlases, combining earlier results, we have
that:

Proposition 7.7. If A is a global action or groupoid atlas, pointed at a0, then

π1(A, a0) ∼= π1(N(A), [a0])

where [a0] is a connected component of some local groupoid (GA)α with a0 ∈ (XA)α.
2

7.3. V and N on morphisms

We would clearly expect these constructions, V and N to extend to give us functors
from global actions /groupoid atlases to simplicial complexes. Life is not quite that
simple, but almost. We have to check what they do to the various strengths of
morphism.

Weak morphisms

As weak morphisms are defined in terms of local frames, and simplices in V (A) are
essentially just local frames, it is clear that

Lemma 7.8. If f : A → B is a weak morphism, then f induces a simplicial map
V (f) : V (A) → V (B), by V (f)〈x0, . . . , xn〉 = 〈f(x0), . . . , f(xn)〉, followed by elimi-
nation of repeats.

The only point for comment is the last phrase: 〈f(x0), . . . , f(xn)〉 may not actually
be a simplex as it may involve repeated elements, but on eliminating these repeats
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we will get a simplex. This minor technicality can be avoided using simplicial sets
where degenerate simplices are part of the structure, but their use would entail other
complications so we merely note that ‘technicality’ here. It causes no real problem.

The corresponding result for N is much more complicated. For {Uα} in N(A), we
know there is some x ∈ Uα and hence {f(x)} is a local frame in some (XB)β ,
so there is some β ∈ ΦB with {f(x)} a β-frame and so an orbit or connected
component {U ′

β} containing it. We could map {Uα} to {U ′
β}, but there is no reason

to suppose that {U ′
β} will be the only such possibility, there may be many. Of course,

{U ′
β | f(x) ∈ U ′

β}, if finite, will define a simplex of N(B) and so we might, in that
case, attempt to define the corresponding mapping from N(A) to N ′(B) = SdN(B),
that is the barycentric subdivision of N(B). This could work with care, but then the
functoriality gets complicated since if we have also g : B → C as well, the composite
of our possible N(f) with N(g) is not possible as the former ends at N ′(B) whilst
the latter starts at N(B). We could apply subdivision to the second map and then
compose but then the composite ends up at N ′′(C) not at N ′(C), which we would
need for functoriality. This sort of situation is well understood in homotopy theory
as it corresponds to the presence of homotopy coherence caused by the necessity of
chosing an image amongst the possible vertices of a simplex. The different choices
are homotopic in a ‘coherent’ way. It however makes the nerve construction much
more complicated to use than the Vietoris one if weak morphisms are being used.

One way around the difficulty is to take geometric realisations as |N(B)| ∼= |N ′(B)|,
but this defeats the purpose of working with global actions in the first place, which
was to avoid topological arguments as they tended to obscure the algebraic and
combinatorial processes involved. Probably the safest way is to use V (A) when
developing theoretic arguments involving weak morphisms, but using N(A) for cal-
culations ‘up to homotopy’ as N(A) is often much smaller than V (A).

Strong morphisms

If we now turn to strong morphisms, as any strong morphism preserves local frames,
it is also a weak morphism and so we have no difficulty in inducing a V (f) from
a given strong morphism f : A → B. We are thus left to see if the ‘strength’ of f
allows us to avoid the difficulties we had above in defining a N(f).

Suppose {Uα} is a vertex in N(A) as before, then Uα is a (non-empty) local orbit in
Gα. We have f = (ηX , ηΦ, ηG), (ηG)α : GA,α → GB,ηΦ(α), and (ηG)α(Uα) is contained
in a uniquely defined connected component of GB,ηΦ(α), which we will denote by
f∗(Uα).

Suppose now we have σ = {Uα0
, . . . , Uαn

} in N(A), so there is some x ∈
⋂

σ.
Consider the family f∗(σ) := {f∗(Uα0

), . . . , f∗(Uαn
)}, does it have non empty in-

tersection? On objects (η|G)αi
is just ηX , so ηXx is an object of f∗(Uαi

) for each i
and so f∗(σ) is a simplex of N(B), with the usual proviso that repeats are removed.
The construction of f∗(σ) from σ has been made without choices and is well de-
fined, moreover if we define N(f)(σ) to be this f∗(σ), N(f) is a simplicial mapping
and there is no problem with functoriality: N(gf) = N(g)n(f). We thus have that
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whilst V behaves well with both types of morphsims, N behaves well only with
strong morphisms.

7.4. ‘Subdivision’ of A(G,H)

Earlier we saw that in the setting of a group G and a family H = {Hi | i ∈ Φ}
of subgroups, we could construct at least two global actions. In one of these con-
structions we took ΦA = Φ with the discrete order. Although for this A = A(G,H),
the description of N(A) was very simple (it is a generalisation of the intersection
diagram we used in section 2). We noted in the discussion of the construction of ΩA

that this type of global action suffers from the discreteness of its coordinate system
as there were few framings for curves. In fact the only curves with framings were
those within a single local orbit.

This deficiency serves to highlight the importance of the order in (ΦA,6) and its
influence on the homotopy properties of A. If A does not have enough framings of
curves, paths or loops, then there will be a divergence between the properties of ΩA

and those of the loops on V (A) or N(A).

Given this difficulty, how can we change the construction of A(G,H) to gain more
framings of curves? In fact, if Φ is not a singleton, this can be done in a variety of
ways, of graded strength. We will look in detail at the strongest one.

The problem of framings was that, if f : L → A was a curve, a framing for f was
a mapping β : |L| → ΦA, so that f(m) ∈ (XA)β(m) for each m and there was a b in
ΦA bigger than both β(m) and β(m + 1), so that f(m) and f(m + 1) were linked
by some g in (GA)b.

If ΦA is discrete, then b > β(m) and b > β(m + 1) implies equality of β(m) and
β(m + 1). This is not the intuition intended, but it is not the fault of ‘framings’,
rather of the discreteness of ΦA. Intuitively we expect f(m) to be in two of the local
orbits, so as to link previous vertices to the new ones later in the sequence. We thus
need these intersections there. We could do this by replacing H by {Hi ∩Hj | i, j ∈
Φ}, but then higher dimensional homotopy might perhaps suffer. It is easier to close
H up under finite intersections as follows:

Take G, H as before with H = {Hi | i ∈ Φ}. Define a (new) global action A′(G,H)
by

X = |XA′ | = |G|, the underlying set of G

ΦA′ = the set of non-empty subsets of Φ

ordered by ⊇, i.e. α 6 β if α ⊇ β;

(XA′)α = XA′ for all α ∈ ΦA′

(GA′)α =
⋂

i∈α

Hi operating by left multiplication

with :
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if α 6 β, (so α ⊇ β), then

(GA′)α6β :
⋂

i∈α

Hi →
⋂

j∈β

Hj

being inclusion.

We can think of A′ = A′(G,H) as a ‘subdivision’ of A(G,H), rather like the barycen-
tric subdivision above. The effect of this ‘subdivision’ on the simplicial complexes
V (A) and N(A) is interesting:
a) Vietoris: V (A′) = V (A), since any {x0, . . . , xn} ∈ V (A′)n is there because there is
some orbit (

⋂

i∈αHi)x0 containing it, but then {x0, . . . , xn} ⊆ Hix0 for any i ∈ α,
so there are no simplices in either of the two complexes, not in the other.
b) Nerve: the relationship is more complex. We know from Dowker’s theorem (above)
that |N(A)| ≃ |N(A′)| and, denoting by N(A)′, the barycentric subdivision of N(A),
we can relate N(A) and N(A)′ to N(A′). The old local orbits of A are still there in
A′, so we have an inclusion

N(A) → N(A′)

corresponding to a (strong) morphism from A to A′.

Now assume we have σ ∈ N(A′). The vertices of σ can be totally ordered by
inclusion:

σ = {{Hixi | i ∈ α0}, . . . , {Hixi | i ∈ αn}}.

with α0 ⊆ . . . ⊆ αn and
⋂

{Hi | i ∈ αn} 6= ∅. We therefore have an element, a in
this intersection and so σ can also be written

σ = {{Hia | i ∈ α0}, . . . , {Hia | i ∈ αn}}.

We can assign a vertex ofN(A′) to each of the vertices of σ, by sending {Hia | i ∈ α}
to its intersection (

⋂

Hi)a. This will give a simplicial map from N(A)′ to N(A′),
but will often collapse simplices. (It is well behaved as a map of simplicial sets3 ,
but not that nice at the simplicial complex level.) For instance, if H = {H1, H2, H3}
with Hi ∩Hj = {1} if i 6= j, then the 2-simplex,

{{H1}, {H1, H2}, {H1, H2, H3}}

gets mapped to {H1, {1}}, a 1-simplex, and there are a lot of other collapses as well.

The global action / groupoid atlas A′ has the necessary property with regard to
framings:

Suppose f : L → A′ is a curve, then for m ∈ Z, we have a β− ∈ Φ with a
g− : f(m) → f(m+ 1) in (GA)β− and a β+ ∈ Φ with a g+ : f(m) → f(m+ 1); we
take β(m) to be {β−, β+}, or any family containing this. Of course, when we look

3If we put a total order on the vertices of a simplicial complex, K it naturally gives us a simplicial
set, Ksimp as we can control the notion of degenerate simplices, i.e. ones with repeated entries.
We will not be using this much in this paper but we note that it can be useful when handling
maps that collapse simplices as we have seen earlier. The corresponding simplicial set V sing(A) is
related to the bar resolution in the case that A = A(G,H).
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at f(m + 1), we can take its β− to be the β+ of f(m), so β+ > b(m), β(m + 1)
and the framing can be constructed. (Of course, the element of choice here can be
avoided by replacing β+ by the family of all α ∈ Φ such that a suitable g+ exists
in (GA)α.)

If instead of L, we were mapping in higher dimensional objects, we would need, not
just pairwise families, but all, as we have done. Effectively, in replacing A by A′, we
have introduced an object that is more ‘complete’ with respect to local frames than
the original A. This ‘completeness’ allows much better exponentiation properties:
we would be able to form AB for any B and the result will have the ‘right’ sort of
behaviour. The ‘completeness’ property required is called the ‘infimum condition’,
(cf. Bak, [2–4]).

A groupoid atlas A satisfies the infimum condition if given any non-empty finite
subset U ⊆ |A|, the set

{α ∈ ΦA : U is a local frame in α}

is empty or has an initial element in the order induced from ΦA.

Example 7.9. A′(G,H) is infimum (i.e. satisfies the infimum condition).

If U = {x0, . . . , xn} is any finite set of elements of G, let

α = {H ∈ Φ : x1, . . . , xn ∈ Hx0}.

If α is non-empty, then α ∈ ΦA′ and x0, . . . , xn is in (
⋃

αH)x0. This α is thus the
initial element required, or is empty. 2

Problem/Question 7.10. Given any groupoid atlas, A, find a groupoid atlas A′,
which satisfies the infimum condition, comes together with a strong morphism,

A → A′

and, if possible, is universal with these properties.

Remarks on the problem.

It seems that A′(G,H) will be the solution for A(G,H). Presumably other single
domain global actions will be ‘completed’ in a similar way.

We plan to return to the infimum condition later in this sequence of papers.

The passage from A(G,H) to A′(G,H) really corresponds to an operation on H,
giving Φ itself more structure and closing H up under intersections. If we extend the
notation A(G,H) to include families H with additional structure, then a convenient
notation is A(G, H̄) for what we have denoted A′(G,H), thus emphasising that it is
the ‘closure’ of H, that is used. This construction of A(G, H̄), with two additional
conditions, is closely related to Volodin’s definition of K-groups of rings with extra
structure, [19]. We will assume H is already ‘closed’ in this way:
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Suppose as before that G is a group. Let H be a family of subgroups of G indexed
by (ΦA,6), where

(i) Hα = Hβ if and only if α = β;

(ii) α 6 β if and only if Hα ⊆ Hβ ;

(iii) there is some ∗ ∈ ΦA with H∗ = {1}.

We assume H is closed under arbitrary intersections, and that if Hα and Hβ are
contained in some Hγ′ , γ′ ∈ ΦA, then the subgroup generated by Hα and Hβ ,
denoted 〈Hα, Hβ〉, is itself some Hγ for γ ∈ ΦA. (Thus the order structure of (ΦA,6)
is almost a lattice, but a top element need not exist.) In this case A(G,H) is called
a Volodin model.

8. Calculations of fundamental groups - some easy examples.

Our examples will all be single domain global actions, i.e. the local actions are all
based on a single set, (XA)α = XA for all α ∈ ΦA. They will all be of the form
A = A(G,H), where G is a group and H = {Hi | i ∈ Φ} is a family of subgroups
(see section 1).

Example 8.1. (already considered in example 2.5)

G = S3 = 〈a, b | a3 = b2 = (ab)2 = 1〉, so a = (1, 2, 3), b = (1, 2);

H1 = 〈a〉 = {1, (1, 2, 3), (1, 3, 2)},

H2 = 〈b〉 = {1, (1, 2)};

H = {H1, H2}

The intersection diagram given in our earlier look at this example is in fact the
nerve N(A) having 5 vertices and 6 edges. The other complex V (A) is almost as
simple. It has 6 vertices corresponding to the 6 elements of S3, and each orbit yields
a simplex
H1 = {1, a, a2} gives a 2-simplex (and 3 1 -simplices),
H1b = {b, ab, a2b} also gives a 2-simplex;
H2 = {1, b} yields a 1-simplex, as do its cosets H2a and H2a

2.

We thus have V (A) has two 2-simplices joined by 1-simplices at the vertices, (see
below).

As N(A) is a connected graph with 5 vertices and 6 edges, we know π1N(A) is
free on 2 generators. (The number of generators is the number of edges outside a
maximal tree.) This same rank can be read of equally easily from V (A) as that
complex is homotopically equivalent to a bouquet of 2 circles, (i.e. a figure eight).
The generators can be identified with words in the free product H1 ∗H2 (one choice
being shown in example 2.5) and relate to the kernel of the natural homomorphism
from H1 ∗H2 to S3.
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2

1 a

a

b

ab

a b2

Figure 1: V (A(S3, {〈a〉, 〈b〉}))

The heavy line in the figure corresponds to a loop at 1 given by

1
b // b

a // ab
b // a2 a // 1

and the word is abab ∈ C2 ∗ C3.

The reason that this happens in clear. Starting at 1, each part of the loop corre-
sponds to a left multiplication either by an element of H1

∼= C3 or of H2
∼= C2. We

thus get a word in H1 ∗H2
∼= C2 ∗ C3. As the loop also finishes at 1, we must have

that the corresponding word must evaluate to 1 when projected down into S3.

In more complex examples, the interpretation of π1(V (A), 1) will be the same, but
sometimes when G has more elements, N(A) may be easier to analyse than V (A).
The important idea to retain is that the two complexes give the same information,
so either can be used or both together.

Some of the limitations of the information encoded by π1(A) are illustrated by the
next two examples.

Example 8.2. G = K4, the Klein 4 group, {1, a, b, c} ∼= C2 × C2, so a2 = b2 =
c2 = 1 and ab = c;
H = {Ha, Hb, Hc} where Ha = {1, a}, etc. Set AK4 = A(K4,H).

The cosets are Ha, Hab,Hb, Hba,Hc, Hca each with two elements so
V (AK4) ∼= the 1-skeleton of ∆[3]
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N(AK4) is “prettier”:

Labelling the cosets from 1 to 6 in the order given above, we have 6 vertices, 12
1-simplices and 4 2-simplices. For instance {1, 3, 5} has the identity in the inter-
section, {1, 4, 6} gives Ha ∩Hba ∩Hca, so contains a and so on. The picture is of
the shell of an octahedron with 4 of the faces removed.

2

1

6

43

5

Figure 2: N(AK4)

From either diagram it is clear that π1AK4 is free of rank 3.

Again explicit representations for elements are easy to give.

Using V (A) and the maximal tree given by the edges 1a, 1b and 1c, a typical gen-
erating loop would be

1 → a→ b→ 1,

i.e., (1, a, b, 1) as the sequence of points. There is a strong representative for this,
namely

1
a // a c // b

b // 1

and up to shifts, this is the only strong representative. 2

In general any based path at 1 in an A(G,H) will yield a word in ⊔H, the free
product of the family H. Whether or not that representative is unique depends
on whether or not there are complicated intersections and “nestings” between the
subgroups in H, since for instance, if Hi is a subgroup of Hj , then if f(n) → f(n+1)
using g ∈ Hi, it could equally well be taken to be g ∈ Hj . The characteristic of the
single domain global actions of form A(G,H) is that since XA = G, there is only
one possible element linking each f(n) to the next f(n+1) namely f(n+1)f(n)−1.
We thus have a strong link between

Γ(A(G,H)) and ⊔
∩
H,
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the ‘amalgamated product’ of H over its intersections, and an analysis of homotopy
classes will prove (later) that

π1(A(G,H), 1) ∼= Ker(⊔
∩
H → G),

since a based path (g1, g2, · · · , gn) ends at 1 if and only if the product g1 · · · gn = 1.
These identifications will be investigated more fully (and justified) shortly.

Remark 8.3. Many aspects of these A(G,H) are considered in the paper by Abels
and Holz [1]. In particular the above identification of π1(N(A(G,H))) in terms of
the kernel of the evaluation morphism is Corollary 2.5 part (b) (page 318). Their
proof uses covering space techniques. We will explore other aspects of their paper
later.

Example 8.4. The number of subgroups in H clearly determines the dimension of
N(A), when A = A(G,H). Here is another 3 subgroup example.

Take q8 = {1, i, j, k,−1,−i,−j,−k} to be the quaternion group, so i4 = j4 = k4 = 1,
and ij = k. Set Hi = {1,−1, i,−i} etc., so Hi∩Hj = Hi∩Hk = Hj ∩Hk = {1,−1}
and let H = {Hi, Hj , Hk},
and Aq8 = A(q8,H).

Then N(Aq8) is, as above in Example 8.2, a shell of an octahedron with 4 faces
missing. Note however that V (Aq8) has 8 vertices and, comparing with V (AK4),
each edge of that diagram has become enlarged to a 3-simplex. It is still feasible to
work with V (Aq8) directly, but N(Aq8) gives a clearer indication that

π1(Aq8, 1) is free of rank 3.

Example 8.5. Consider next the symmetric group, S3, given by the presentation

S3 := 〈x1, x2 | x2
1 = x2

2 = 1, (x1x2)
3 = 1〉

Take H1 = 〈x1〉, H2 = 〈x2〉 so both are of index 3. Each coset intersects two cosets
in the other list giving a nerve of form (see below): so π1(A(S3,H)) is infinite cyclic.

Figure 3: N(A(S3,H))

Example 8.6. The next symmetric group, S4, has presentation

S4 := 〈x1, x2, x3 | x2
1 = x2

2 = x2
3 = 1, (x1x2)

3 = (x2x3)
3 = 1, (x1x3)

2 = 1〉.

Take H1 = 〈x1, x2〉, H2 = 〈x2, x3〉, H3 = 〈x1, x3〉. H1 and H2 are copies of S3, but
H3 is isomorphic to the Klein 4 group, K4. Thus there are 4 + 4 + 6 cosets in all.
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There are 36 pairwise intersections and each edge is in two 2-simplices. Each vertex
is either at the centre of a hexagon or a square, depending on whether it corresponds
to a coset of H1, H2 or of H3. There are 24 triangles, and N(A(S4,H)) is a surface.
Calculation of the Euler characteristic gives 2, so this is a triangulation of S2, the
two sphere. It is almost certainly the dual of the ‘permutahedron’.(Thanks to Chris
Wensley for help with the calculation using GAP.)

The fundamental group of A(S4,H) is thus trivial and using the result mentioned
above

S4
∼= ⊔

∩
Hi,

the coproduct of the subgroups amalgamated over the intersection..

Problems/Questions 8.7.

1) Taking Sn := 〈x1, · · · , xn−1 | x2
i = 1, i = 1, · · · , n − 1, all (xixi+1)

3 = 1, and
(xixj)

2 = 1 if |i − j| > 2〉,H = {Hi | i = 1, · · · , n − 1} where Hi is generated
by all the xj except xi, investigate if N(A(Sn,H)) is an (n − 2)- sphere. (It is
known to be of the homotopy type of a bouquet of Sn−2s cf. proof in Abels and
Holz’s paper [1] for Tits systems, Sn being a Coxeter group.)

2) There may be a link between N(A(G,H)) and various lattices of subgroups, clas-
sifying spaces for families of subgroups (Lück et al, Dwyer, ...). This needs in-
vestigation.

3) Examine other classes of groups e.g. generalised Coxeter groups relative to parabol-
ics (cf. Abels and Holz, [1]), the triangle and von Dyck groups, ∆(ℓ,m, n) and
D(ℓ,m, n) and graph products of groups including graph groups.

9. Single domain global actions I

In this section we will continue the study of single domain global actions including a
discussion of their path spaces and fundamental groups. Certain facets of this study
must wait until we have a theory of covering spaces for global actions/groupoid
atlases.

We have so far examined in detail only those single domain global actions of the
form A = A(G,H) where G is a group and H is a family of subgroups of G. There
are two obvious variants:

(i) Usually so far we have let H = {Hi | i ∈ Φ} be a family of subgroups without
any order structure on Φ. More generally one can take Φ to have a reflexive
relation on it mirroring the intersection and subgroup relations between sub-
groups in H. This seems to make little difference to invariants such as N(A).
Of course, this is related to the discussion of ‘subdivision’ above.
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(ii) If K is a subgroup of G then we can form a variant of A(G,H) mod K. We
will write this as A = A((G,K),H). It is specified by

|XA| = G/K, the set of right cosets of K in G,

(XA)α = XA for all α ∈ Φ

(where Φ may be as in (i) above)

Hi y XA by left multiplication

so the local orbits are of the form HixK.
We will see later that all connected single domain global actions have this
general form, up to isomorphism.

We now turn to the investigation of the fundamental groups of single domain global
actions (of this simple form). First we look at some results on paths under fixed
end point homotopies.

9.1. The based paths on A(G,H)

Suppose A is a general global action with ΦA as coordinate system, (XA)α as local
sets, α ∈ ΦA and (GA)α as local groups. We assume A is connected and that a base
point a0 ∈ A has been chosen. In our earlier discussion we saw that a path in A

based at a0 is given by a curve

f : L→ A

and thus by a sequence of points f(n) ∈ XA such that

(i) there is a stabilisation pair (N−
f , N

+
f ), i.e., for n 6 N−

f , f(n) = a0, and for

n > N+
f , f(n) = f(N+

f );

(ii) there is a sequence of βn ∈ ΦA with arrows gβn
: f(n) → f(n + 1) in the

groupoid (GA)βn
(and as A is a global action, we assume gβn

∈ (GA)βn
), and

gβn
f(n) = f(n+ 1).

(Furthermore the gβn
are assumed to stabilise to the identity arrows for n > n+

f , or

n ≦ n−
f .)

As we are considering weak curves, the particular gβ used are not really in question.
If A = A(G,H), then this does not matter as there will be a unique gβ satisfying
gβn

f(n) = f(n + 1), namely gβn
= f(n + 1)f(n)−1. In a relative case, the gβ will

be determined up to multiplication by elements of K, and in the case of interre-
lationships between the Hi, the same element may be considered as an element of
different Hi. In complete generality, we can thus say little about the elements gβ.
Because of this, we will initially assume A = A(G,H), and may therefore base it at
1. We also assume A is connected.

We can thus consider f to be represented by a word in ⊔Hi. As f starts at 1, f
looks like

1 g1

// f(1) g2

// f(2) g3

// · · · // f(N+
f )
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(We have reindexed to set N−
f to 0.) The partial word (gm, · · · , g1) determines

f(m) since gm · · · g1 = f(m). We can thus think of f as being this list of elements
(gm, · · · , g1) and hence as an element of ⊔Hi. We will need to examine the loops
(in which f(N+

f ) = 1), but can examine homotopy of based paths independently of

what value is taken by f(N+
f ).

A fixed end point homotopy from

f ↔ (gN , · · · , g1)

to

f ′ ↔ (g′N ′ , · · · , g′1)

is given by a map of L × L that stabilises in both directions. It can therefore be
thought of as a sequence of “moves” on fs each corresponding to an elementary
homotopy,

h : L× L→ A

h(m, 0) = f0(m) = f(m)

with

h(m, 1) = f1(m)

h(m,n) = h(m, 0) n 6 0

and

h(m,n) = h(m, 1) n > 1.

We then can visualise h as being given by a “ladder”

1
g1 // f(1)

h1

��

g2 // f(2) //

h2

��
1

g′

1

// f ′(1)
g′

2

// f ′(2) //

etc.

where hif(i) = f ′(i) and the square

f(i− 1)

hi−1

��

gi // f(i)

hi

��
f ′(i− 1)

gi

// f ′(i)

“commutes”, so for some Hαi
, αi ∈ Φ,

a) g′i, gi, hi−1, hi ∈ Hαi
;

b) g′ihi−1 = higi.
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This of course means that hi ∈ Hαi
∩Hαi+1

Remark 9.1. For convenience we assumed f(0) = 1, i.e., N−
f can be taken to be 0,

but the discussion of ripple homotopies earlier shows that shifting f to left or right
keeps within the fixed end point homotopy class and, of course, does not change the
representing word in ⊔Hi.

Returning to elementary homotopies, we can read off a new based path from the
diagram above namely

1
g1 // f(1)

h1 // f ′(1)
g′

2 // f ′(2)
g′

3 // · · ·

and so a representing word (g′N ′ , · · · , g′2, h1, g1). This process can be repeated to get

1
g1 // f(1)

g2 // f(2)
h2 // f ′(2)

g′

3 // · · ·

so we can track the homotopy from f to f ′ within the representing words by moves
that transfer

(· · · , g′ihi−1, gi−1, · · · )

to

(· · · , g′i, hi−1, gi−1, · · · )

and thus to

(· · · , g′i, hi−1gi−1, · · · )

which of course equals

(· · · , g′i, g
′
i−1hi−2, · · · ).

In other words homotopy between based paths corresponds exactly to passing be-
tween representing words in ⊔Hi by the usual moves that give the amalgamation
over the (pairwise) intersections. We thus have proved

Proposition 9.2. If A = A(G,H), then

|Γ(A, 1)|/∼ ∼= ⊔
∩
H,

the amalgamated coproduct of the groups in H. 2

Remarks 9.3.

(i) As the usual construction of universal covering spaces in topology is the ana-
logue, there, of the left hand side of this isomorphism, it is natural to expect
the right hand side, the amalgamated coproduct, to play that role here. We will
look at coverings separately, and in some detail, shortly so here it suffices to
note that the end point map

Γ(A, 1) → A

induces a map

|Γ(A, 1)|/∼ → G
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which interprets as the natural evaluation of a word (gm, · · · , g1) to the prod-
uct, gm · · · g1, i.e., to the natural homomorphism

⊔
∩
H → G,

induced by the universal colimit-property of the amalgamated coproduct and
the inclusions of the subgroups Hi into G.

(ii) We note for future examination that Γ(A, 1) has a global action/groupoid
atlas structure and it is natural to expect that the quotient by fixed end point
homotopies will inherit a similar structure, but that we have not yet described
the construction of colimits, and in particular, quotients, in this setting. In
the particular case above A = A(G,H), it is easily seen that the amalgamated
coproduct carries a global action structure:
There are inclusions

iα : Hα → ⊔
∩
H

and writing

G̃ = ⊔
∩
H, H̃ = {iα(Hα) : α ∈ Φ},

we can construct, Ã = A(G̃, H̃).
The map

Ã → A

is a regular morphism of global actions. (Left as an exercise!)

Given the analogy between the above and the topological case, it is no surprise that
restricting attention to the loops at 1 in A, the defining equation

π1(A, 1) = π0(ΩA) = |Ω(A, 1)|/∼

gives:

Corollary 9.4. If A = A(G,H),

π1(A, 1) ∼= Ker(⊔
∩
H → G).

2

This result in this context was found by A. Bak. Given the identification of π1(A, 1)
with π1(V (A), 1) and the Dowker theorem identifying this with π1(N(A), 1), it can
be seen to be a version of a result of Abels and Holz, [1]. They, in turn, relate it
to earlier results of Behr, [6], and Soulé, [17], and mention applications of a related
result given by Tits, [18]. The proof given above has the advantage of being very
elementary and “constructive”!

Problem/Question 9.5. Compare the use of N(A) as a simplicial complex with
N simp(A), as simplicial set. The action of G (which we will look at next) gives
N(A)/G is a simplex, but Abels and Holz identify π1(N

simp(A)/G) as being ⊔
∩
H.
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The comparison of V (A) with the bar resolutions of Hi and G studied in Abels and
Holz, [1], also needs examining in detail (and greater generality).

9.2. Group actions on N(A)

Further information on N(A) and V (A) may be obtained by exploiting the natural
action of G on these simplicial complexes. This leads to a connection of these single
domain global actions not only with the work of Abels and Holz, but with related
work on complexes of groups by Corson, Haefliger and others, [7, 9–11, 13, 14].

Again G will be a group, H = {Hi | i ∈ Φ} a family of subgroups and A = A(G,H)
the corresponding single domain global action. We will assume that A is connected
so G is generated by the union of the His. Recall that N(A) is the simplicial complex
given by the nerve of the covering, H, of G by left cosets of the Hi, Hi ∈ H.

The group G acts on N(A) by right translation. A typical n-simplex of N(A) is of
the form

σ = {Hα0
x0, · · · , Hαn

xn}

where
⋂

σ = ∩n
i=0 Hαi

xi 6= ∅.

If g ∈ G, we can consider σ.g = {Hα0
x0g, · · · , Hαn

xng}.

If y ∈ ∩n
i=0Hαi

xi =
⋂

σ, then y.g ∈
⋂

σ.g so

σ.g ∈ N(A).

This is clearly a group action. It is “without inversion” (Haefliger) or “regular”
(Abels and Holz,[1]) in as much as if σ.g = σ, then Hαi

xig = Hαi
xi, since the xi

used in a given σ are all distinct. This implies that the orbit space of N(A) is also
a complex.

Proposition 9.6. If σ = {Hα0
x0, · · · , Hαn

xn} is an n-simplex of N(A) then for
any a ∈

⋂

σ

σa−1 = {Hα0
, · · · , Hαn

}

Moreover any finite subset J of Φ corresponds to a unique G-orbit of N(A) and vice
versa.

Proof. As a ∈
⋂

σ, there are elements hαi
∈ Hαi

with a = hαi
xi for i = 0, 1, · · · , n.

Thus

Hαi
xia

−1 = Hαi

and σa−1 = {Hα0
, · · · , Hαn

}. The orbit of σ is thus determined by the indices of
the subgroups, Hi ∈ H, used in it. The orbit of σ then corresponds to the finite
subset Jσ = {α0, · · · , αn} of Φ and conversely.
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Corollary 9.7. For σ = {Hαj
xj : j = 0, · · · , n} as above, and a ∈

⋂

σ,

StabG(σ) = a−1
(

⋂

{Hj : j ∈ Jσ}
)

a.

Proof. Write σ0 = {Hj : j ∈ Jσ} ∈ N(A), then σ0a = σ so g ∈ StabGσ if and
only if σ0ag = σ0a i.e. if σ0aga

−1 = σ0 which just says aga−1 ∈ StabGσ0. However
StabGσ0 is clearly equal to

⋂

σ0, which completes the proof.

Corollary 9.8. The space of orbits N(A)/G is a simplex of dimension card(Φ)−1.
2

Examples 9.9.

1) G = S3, H1 = {1, (1 2 3), (1 3 2)}, H2 = {1, (1 2)}. The nerve N(A) in this case
is the graph given in example 2.5 with vertices

H1 H1b

H2 H2a H2a
2

(where, as there, a = (1 2 3), b = (1 2)). The action is given by: a fixes H1 and
H1b and permutes the cosets of H2 in the obvious way; b permutes H1 and H1b
and H2a and H2a

2, but fixes H2 (of course). On 1-simplices

a ∈ H1 ∩H2a so H1a
−1 ∩H2aa

−1 = H1 ∩H2 6= ∅

and so on. It is thus easy to see that N(A)/S3
∼= ∆[1].

Of more interest are the examples:

2) G = K4 = {1, a, b, c}, N(AK4) is the octahedral shell with 4 faces removed. Using
the same notation as before: a fixes 1 and 2, permutes 3 and 4, and also 5 and
6, so in the diagram in example 8.2, a corresponds to a rotation through 180◦

about the vertical axis. Similarly for b and c, but about the two horizontal axes.
The orbit space is ∆[2] as this example has 3 subgroups.

3) G = q8, N(Aq8) has the action of q8 via the quotient homomorphism to K4 and
the action outlined before in 2. Of course, N(Aq8)/q8 is again a 2-simplex.
Our final two examples are

4) S3 with H1 = 〈(1 2)〉, H2 = 〈(2 3)〉, so N(A) is a hexagon (empty) and, of
course, the S3-action collapses this down to a 1-simplex.

and

5) S4 with three subgroups,
H1 = 〈(1, 2), (2, 3)〉,
H2 = 〈(2, 3), (3, 4)〉
and
H3 = 〈(1, 2), (3, 4)〉.
The nerve was found earlier to be a triangulation of S2. The action can be
specified, but will not be given here and, of course, the quotient is ∆[2].
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This situation is a simple form of a general one considered by Haefliger (cf. [7, 13,
14]) and Corson (cf. [9–11]). They consider a simplicial complex (or more generally
a simplicial cell complex, cf. Haefliger, [13] or a scwol (small category without loops)
cf. Bridson and Haefliger, [7] ) on which a group G acts without inversion. Then
X̃/G is also a simplicial (cell) complex. Their work uses complexes of groups, a
notion generalising that of graphs of groups as in Bass-Serre theory. We will give
definitions shortly, but first need to introduce some more detailed notation and
terminology relating to barycentric subdivisions.

If K is a simplicial complex, we can encode the information in K in a simply
way by considering K as a partially ordered set. The elements of this partially
ordered set are the elements of SK , the set of simplices of K ordered by inclusion.
The barycentric subdivision of K is then just the (categorical) nerve of the poset
(SK ,⊆) as noted earlier. We will follow Haefliger [13] in orienting the edges of K ′

in the following way:

The vertices of K ′(= Sd(K)) are the simplices of K. An (unoriented) edge of K ′

consists of a pair (σ, τ) with either σ ⊂ τ or τ ⊂ σ. If a is an edge of K ′ contained
in a simplex σ of K, then the initial point i(a) of a is the barycentre of σ (i.e. σ as a
vertex of K ′) and its terminal point, t(a), is the barycentre of some smaller simplex,
τ . We write i(a) = σ, t(a) = τ and so have a = (τ, σ), with τ ⊂ σ. (This is perhaps
the opposite order from that which seems natural, but it avoids considering dual
posets later.)

Example 9.10. For the 2-simplex, considered as the simplicial complex of non-
empty subsets of {1, 2, 3}, this gives

2

12

EE�������������

����
��
��
��
��
��
��

23

YY3333333333333

��0
00

00
00

00
00

00
0

123

aaDDDDDDDD

==zzzzzzzz

vvnnnnnnnnnnnnnnn

((QQQQQQQQQQQQQQ

OO

��
1 13oo // 3

Although it is usual to consider partially ordered sets as categories, because his
complexes are more general than mere simplicial complexes, Haefliger introduces a
specific construction of a small category associated to K (cf. [13]).

Define a category C(K) with set of objects SK , the set of vertices of the barycentric
subdivision K ′ of K and with arrows Arr(C(K)) = Ek ⊔ Sk, the set of edges of
K ′ together with SK . (Of course, the vertices are considered as identity arrows at
themselves.) Two edges a and b are considered composable if i(a) = t(b) and the



Journal of Homotopy and Related Structures, vol. 1(1), 2006 149

composite is c = ba such that a, b, c form the boundary of a 2-simplex in K ′.

c

>>~~~~~~~~
b

// ·

a

OO

This category C(K) is an example of a small category without loops as introduced
by Haefliger [7, 13]. We shall consider a small category, χ, to consist of a set, V (χ),
of vertices or objects (denoted here by Greek letters, τ , σ, etc.) and a set E(χ) of
edges (denoted by Latin letters, a, b, . . . ), together with maps

i : E(χ) → V (χ), the initial vertex or source map,
t : E(χ) → V (χ), the terminal vertex or target map

and a composition
E(2)(χ) → E(χ),

where E(2)(χ) = {(a, b) ∈ E(χ)×E(χ) : i(a) = t(b)}, together with associativity of
composition and the rules i(ba) = i(b), t(ba) = t(a) for ba, the composite of a and
b.

The small category χ is a small category without loops, or scwol, if for all a in E(χ),
i(a) 6= t(b).

Remark 9.11. Haefliger’s definition of a small category without loops in [7] (p.521)
is optimised for the statement of the no loops condition, but omits to define compo-
sition of an arbitrary arrow with a vertex. This is handled correctly (p.573) in an
appendix. This does not influence the later development.

For the moment we will move attention back to K and the definition of a complex
of groups.

9.3. Complexes of groups

A complex of groups G(K) on K is (K,G0, ψa, ga,b) given by

1) a group Gσ for each simplex σ of K;

2) an injective homomorphism

ψa : Gi(a) → Gt(a)

for each edge a ∈ EK of the barycentric subdivision of K;

3) for two composable edges a and b in EK , an element ga,b ∈ Gt(a) is given such
that

g−1
a,bψba(−)ga,b = ψaψb

and such that the “cocycle condition”

ga,cbψa(gb,c) = gab,cga,b

holds.
(If the dimension of K is less than 3, this condition is void.)
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Almost generic example: developable complexes of groups.

Suppose we have a simplicial complex X̃ with a right G action which is “without
inversion”, i.e., if σ.g = σ then xg = x for all vertices x of σ. Write X = X̃/G for
the quotient complex. We will specify a complex of groups G(X) on X :
Set p : X̃ → X to be the quotient mapping.

For a simplex σ of X , pick a σ̃ ∈ X with p(σ̃) = σ, we say σ̃ is the chosen lift of σ,
and set

Gσ = Gσ̃, the stability subgroup of σ̃,

= {g : σ̃g = σ̃}.

For each a ∈ EX with i(a) = σ, let ã be the edge in σ̃ whose projection is a, i.e.
p(ã) = a and i(ã) = σ̃. Then there is some ha ∈ G with t(ã.ha) = τ̃ where τ̃ is the
chosen lift of τ = t(a). (If t(ã) = τ̃ already, we agree to take Ha to be the identity
of G.)

Define

ψa : Gi(a) → Gt(a)

by

ψa(g) = h−1
a gha for g ∈ Gi(a).

Given two composable edges a and b define

ga,b = h−1
ba hbha.

Verification of conditions

(Although easy to do, this helps the intuition:)

(i) Suppose g ∈ Gi(a), then ã = (τ̃h−1
a , σ̃) or ã.ha = (τ̃ , σ̃.ha). As σ̃g = σ̃, and

τ̃h−1
a ⊂ σ̃, we have

τ̃h−1
a g = τ̃h−1

a

and h−1
a gha ∈ Gt(a), i.e. ψa(g) ∈ Gt(a).

(ii) Suppose a, b are composable: i(ba) = i(b), t(ba) = t(a), then

ψb : Gi(b) → Gt(b) = Gi(a)

ψb(g) = h−1
b ghb.

Similarly ψaψb(g) = h−1
a h−1

b ghbha,
whilst

ψba(g) = h−1
ba ghba.

It is clear that ga,b as defined above does the job.

(iii) cocycle condition:

ga,cbψa(gb,c) = h−1
cbahcbha.h

−1
a h−1

cb hchbha
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ga,cb.ga,b = h−1
cbahchba.h

−1
ba hbha,

so it does check out correctly.

In the case of a single domain global action A = A(G,H) where H = {H1, · · · , Hn}
with Hi < G, then N(A)/G ∼= ∆n−1. Suppose σ ∈ S∆n−2 then if σ = {α1, · · · , αr},
we can always choose σ̃ = {Hα1

, · · · , Hαr
}. If a is an edge of Sd(∆n−1) then for

i(a) = σ and t(a) = τ, τ̃ ⊂ σ̃ and hence

Gτ = Gτ̃ =
⋂

{Hi | i ∈ τ̃},

Gσ = Gσ̃ =
⋂

{Hi | i ∈ σ̃},

so there is no need to have ha 6= 1. Because of this, ψa is simply an inclusion of a
subgroup and ga,b can be chosen to be 1. Thus single domain global actions yield
simplices of groups of a particularly simple kind. This does not imply that the more
general case is irrelevant to global actions, merely that single domain global action
are “untwisted”.

Problem/Question 9.12. Are there ‘twisted’ variants that also arise from global
actions?

Given a complex of groups, both Corson and Haefliger show how to construct a
universal covering complex and a fundamental group which yields the given complex
of groups, provided certain fairly mild restrictions are satisfied.

9.4. Fundamental group(oid) of a complex of groups.

Let G(K) = (K,Gσ, ψa, ga,b) as before.
Let E±

K be the set of edges of K ′ with an orientation

a+ = a, a− = a with the opposite orientation

so i(a−) =t(a+) etc.

First define FG(K) to be the group generated by
⊔

{Gσ : σ ∈ VK} ∪ E±
K

subject to the relations

- the relations of each Gσ,

- (a+)−1 = a− and (a−)−1 = a+,

- ψa(g) = a−ga+ for g ∈ Gi(a),

- (ba)+gab = b+a+ for composable a, b.

The image of Gσ in FG(K) will be denoted Ḡσ.

Haefliger defines π1(G(K), σ0) in two equivalent ways:
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Definition 9.13. Version 1. If σ0, σ1 ∈ VK , the vertices of K, a G(K)-path c
from σ0 to σ1 is a sequence (g0, e1, g1, · · · , en, gn), where (e1, · · · , en) is an edge
path in K ′ from i(e1) = σ0 to t(en) = e1 and ei ∈ E±

K , i = 1, · · · , n and where
gK ∈ Gt(ek) = Gi(ek+1).

Such a G(K)-path, c, represents g0e1 · · · engn ∈ FG(K). Two such paths from σ0

to σ1 are said to be homotopic if they represent the same element of FG(K). We
set π1(G(K), σ0, σ1) equal to the subset of FG(K) represented by G(K)-paths from
σ0 to σ1. When σ0 = σ1, we write

π1(G(K), σ0) = π1(G(K), σ0, σ0).

This is a subgroup of F (G) and is called the fundamental group of G(K).

Version 2. Assume K is connected and pick a maximal tree T in the 1-skeleton of
Sd(K) = K ′. Let N(T ) be the normal subgroup of FG(K) generated by {a+ : a ∈
T }, then

π1(G(K), T ) ∼= FG(K)/N(T ),

and hence has a presentation:

- generators ⊔Gσ ⊔ EK

- relations : - g1 · g2 = g1g2 within any particular Gσ

- ψα(g) = α−1gα g ∈ Gi(α),
- (βα)gα,β = β.α if α, β ∈ EK are composable
- α = 1 if α ∈ T .

Example 9.14. Suppose A = A(G,H), K̃ = N(A), H = {H1, · · · , Hn} so K =
∆n−1. Pick the maximal tree with edges radiating out from the vertex {H1}, e.g. if
n = 3, we get figure 4

Figure 4: Barycentric Subdivision of ∆2 with the chosen maximal tree shown.

There is an obvious collapse of ∆n−1 to T . We have already noted that all the ga,b

are trivial in these examples so we can prove (inductively via the collapsing order)
that if a is any edge in Sd(∆n−1), the fact that α = 1 for α ∈ T implies that a = 1
in π1(G(K), 1). Thus π1(G(K), 1) has a presentation with

- generators ⊔Gσ

- relations : - g1 · g2 = g1g2 within any particular Gσ

- ψα(g) = g for g ∈ Gi(α)
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As Gσ =
⋂

{Hi | i ∈ σ}, we have

π1(G(K), 1) ∼= ⊔
∩
Hi,

the coproduct of the Hi amalgamated over the intersection.

It is noticeable that there is, as before, a homomorphism

π1(G(K), 1) → G

with kernel π1N(A). 2

Thus for single domain global actions, the fundamental group is the same as the
fundamental group of the corresponding complex of groups.

10. Coverings of global actions.

To complete the study of the various interpretations of π1(A, a0) we need to consider
covering maps of global actions and the analogues of the universal covering.

10.1. Covering maps

Definition 10.1. Let p : B → A be a morphism of global actions. We say that p
is a covering map if it satisfies the unique local frame lifting property. Explicitly,
for any given local frame x0, . . . , xn in A and any y0 ∈ p−1(x0) in B, there exists a
unique local frame y0, . . . , yn in B such that p(yi) = xi for all i.

In the context of groupoids, the definition of covering is based on the Stars of the
objects (cf. Brown [8]). In the global action case, we have notions of local and global
Stars:

Let C be an arbitrary global action. Let α ∈ ΦC and x ∈ Xα, then Starα(x) =
{σx | σ ∈ Gα}. If x ∈ X , then set StarC(x) = ∪{Starα(x) | α ∈ ΦC and x ∈ Xα}.

Proposition 10.2. Let p : B → A be a covering of global actions. Then the following
two conditions are satisfied.

1) if x1, x2 ∈ XB are such that p(x1) = p(x2), x1 6= x2, and there is some β ∈ ΦB

with x1, x2 ∈ Xβ then Starβ(x1) ∩ Starβ(x2) = ∅;

2) if x ∈ XB then p ⇂StarB(x): StarB(x) → StarA(p(x)) is a bijection.

(In fact 2) implies 1))

The proof is omitted.

Note that the converse of this result is false. Consider for example the global action
B with 3 points, say {a, b, c} and 3 local sets {a, b}, {a, c}, {b, c}. The cyclic group
C2 acts on each local set in the obvious way. Let A be a global action with the
same underlying set but with only one local set on which C3 acts. Then the identity
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map between the underlying sets induces a morphism B → A which satisfies the
conditions of the last proposition but this map is not a covering map of global
actions.

We say p is regular if ΦB = ΦA and p is a regular morphism with p = (pΦ, pG, pX)
such that pΦ : ΦB → ΦA is the identity map.

Proposition 10.3. Any covering is weakly isomorphic to a regular covering.

The proof is omitted, as we will nor be using the result here.

The construction and theory of coverings is very similar to that in the classical
topological theory. We will assume A is connected and when necessary that a base
point a0 ∈ XA has been chosen.

10.2. Path lifting and homotopy lifting

Suppose p : B → A is a covering map of global actions, suppose f : L → A is a path
and (N−

f , N
+
f ) is a stabilisation pair for f . Set x0 = f(N−

f ).

Lemma 10.4. Given any x̃0 ∈ p−1(x0), there is a unique path f̃ : L → B with the
same stabilisation pair (N−

f , N
+
f ) such that pf̃ = f and f̃(N−

f ) = x̃0.

Proof. (For simplicity of notation we assume N−
f = 0, and write N+

f = N .) Suppose
f = (f(0), f(1), · · · , f(N)). There is an α1 ∈ ΦA with f(0), f(1) ∈ (XA)α1

, and a
g1 ∈ (GA)α1

such that g1f(0) = f(1). Thus x1 = f(1) ∈ StarA(x0). As ⇂StarB(x̃0) is
a bijection between StarB(x̃0) and StarA(x0), there is a unique x̃1 with p(x̃1) = x1

and a g̃α1
with x̃1 = g̃α1

x̃0. A simple use of induction completes the proof.

Again suppose f0, f1 : L → A are paths, but in addition suppose h : L × L → A

is a (fixed end point) homotopy from f0 to f1. (This, of course, implies that f0, f1
stabilise to points x0 and xN say.) Again let x̃0 ∈ p−1(x0) and then we have

Lemma 10.5. The two lifts f̃0, f̃1 of f0, f1 are homotopic by a homotopy h̃ lifting
h. In particular f̃0(N) = f1(N).

Proof. We can assume h stabilises outside a square. We may assume this square is
actually a 1 by 1 square as the general case follows by induction. Initially we will
need

x0
g′

1 // x′1

x0 g1

// x1

h1

OO



Journal of Homotopy and Related Structures, vol. 1(1), 2006 155

but in general,

x′i
// x′i+1

xi //

OO

xi+1

OO

Since h is a morphism of global actions, any such square must end up within a
single local patch of A and so can be lifted. “Uniqueness” ensures that it glues to
any lifts constructed earlier in the process in the obvious way. The only statement
left unproved is the last.

We end up with x̃′N and x̃N lying over xN and the right hand side of the homotopy
giving us a path from x̃N to x̃′N which maps down (via p) to the identity path from
xN to itself. “Uniqueness” of path lifting then shows this must be the identity path
at x̃N and so x̃N = x̃′N as required.

Corollary 10.6. If p : B → A is a covering and A is connected then all the fibres
p−1(x), x ∈ A have the same cardinality.

Proof. If x0, x1 ∈ A, let f : L → A be a path from x0 to x1. Now pick x̃0 ∈
p−1(x0), and lift f to f̃ joining x̃0 to some uniquely determined x̃1 ∈ p−1(x1). This
assignment is a bijection since the reverse path is also uniquely determined.

10.3. The π1(A, a0)-action

This gives a way of associating to each covering p : B → A, a set Fa0
(= p−1(a0))

together with an action of π1(A, a0). Alternatively the covering may be thought of
as a collection of fibres indexed by the elements of XA and then we get an action
of Π1A on B by “deck transformations” over A.

Theorem 10.7. Suppose p : B → A is a covering map, and b0 ∈ p−1(a0) then the
induced maps

p∗; Π1B → Π1A

and

p∗ : π1(B, b0) → π1(A, a0)

are monomorphisms.

Proof. The induced maps take ω ∈ Π1B with w = [f ] to p∗(ω) = [pf ] ∈ Π1A. The
result is just an immediate consequence of unique path lifting together with the
lifting of homotopies. (The proof is easy and follows that given in many elementary
homotopy texts.)

Now suppose a0 ∈ A is the chosen base point, that B is connected and we have
b0, b1 ∈ p−1(a0). Choose a path class γ from b0 to b1 in Π1B which thus gives an
isomorphism

u : π1(B, b0) → π1(B, b1)
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by conjugation u(ω) = γ−1ωγ within Π1B. As in the topological case we get an
inner automorphism ν of π1(A, a0), ν(ω) = p∗(γ)

−1ωp∗(γ), and of course p∗(γ) is a
loop since p(b0) = p(b1). We thus have

Proposition 10.8. The images of π1(B, b0) and π1(B, b1) are conjugate subgroups
of π1(A, a0). 2

Path lifting then shows that any conjugate subgroup of π1(B, b0) in π1(A, a0) can
arise in this way. Just lift any conjugating element to a path in B.

The theory of coverings of global actions follows the same general development as
the classical topological one (cf. Massey [15]) or the groupoid one (cf. Brown, [8]).
For instance one can easily prove the following results.

Proposition 10.9. Let p : C → B and q : B → A be morphisms of global actions.

1. If p and q are covering maps, so is qp.

2. If p and qp are covering maps and p is epi, then q is a covering.

Proposition 10.10. If p : B → A and q : C → A are coverings and f : B → C is a
morphism over A, then f is also a covering.

The proof of the following result is in fact easier than in the classical case. It uses
the unique path lifting property of coverings.

Proposition 10.11. Let p : B → A be a covering and a0 ∈ XA, b0 ∈ XB such that
p(b0) = a0, let f : C → A be a morphism with f(c0) = a0 and suppose that C is
connected. Then f lifts to a morphism f̃ : C → B, with f̃(c0) = b0, if and only if
f∗(π1(C, c0)) ⊆ p∗(π1(B, b0)). 2

Remark 10.12. Given the similarity of the development to the classical and groupoid
cases, it should be clear that all of the above goes across to the context of groupoid
atlases. There are also strong lifting properties for strong coverings.

We fix a base point a0 in A and denote for simplicity π1A = π1(A, a0).

The action of π1A on p−1(a0) extends to a functor from the category of coverings
over A to that of π1A-sets, i.e., sets with π1A-actions. Explicitly if b0 ∈ p−1(a0) and
γ ∈ π1(A, a0), γ = [f ] say; lift γ to a path in B starting at b0. Its other end will be
bγ0 ∈ p−1(a0).

If g : (B, p) → (C, q) is a morphism in the category of coverings over A, then g
restricts to a map p−1(a0) → q−1(a0). Uniqueness of path lifting then shows that

g(bγ0) = g(b0)
γ

as hoped for.

Writing Cov/A for the category of coverings of A, we will get

Cov/A → π1A-Sets.
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If (B, p) is a covering global action of A, we will write AutA(B, p) for its automor-
phism group (group of covering or deck transformations) within Cov/A.

The functor above gives a homomorphism

AutA(B, p) → Autπ1A-Sets(p
−1(a0))

as is easily checked.

If ϕ : p−1(a0) → p−1(a0) is an automorphism of π1A-sets then the isotropy subgroup
of any point b0 ∈ p−1(a0) is the same as that of ϕ(b0), i.e., from our earlier discus-
sion, it is easily seen to be p∗(π1(B, b0)). Thus as a π1A-set, p−1(a0) is isomorphic
to the “coset space” π1A/p∗π1B. By 10.11 one has that the automorphism ϕ can be
realised by a deck transformation and so AutA(B, p) and Autπ1A-Sets(p

−1(a0)) are
isomorphic.

Corollary 10.13. If π1B is trivial (i.e. the covering global action is simply con-
nected) then AutA(B, p) ∼= π1(A, a0), i.e. (B, p) is a universal covering. 2

10.4. The Galois-Poincaré theorem for global actions

To complete the triple description of π1A, we need to show that a simply connected
covering exists. In fact we will show more, namely that given any conjugacy class
of subgroups of π1A, we can find a covering (B, p) corresponding to that conjugacy
class (i.e. {p∗π1(B, p) : b ∈ p−1(a0)} gives exactly the given conjugacy class). This
and generalities on π1A-sets will then establish that

Cov/A → π1A-Sets

is an equivalence of categories, which is the Galois-Poincaré correspondence theorem
in this context.

As before let A be connected and pick a base point a0 ∈ XA. Let H be a subgroup
of π1(A, a0).

We have a set ΓA of based paths and a projection

p : ΓA → A

given by p(ω) = e1(ω). Define an equivalence relation ∼H on ΓA by f ∼ f ′ if
p(f) = p(f ′) and [f ][f ′]−1 ∈ H , where the composition is viewed as taking place
within the fundamental groupoid Π1A and H as a subgroup of the vertex group at
a0.

Let XAH
denote the set of equivalence classes, 〈f〉, of based paths under ∼H .

The function p : XΓA → XA clearly induces one, pH : XAH
→ XA given by pH〈f〉 =

e1(f). We will give AH a global action structure. Take

ΦAH
= ΦA

For α ∈ ΦAH
, (XAH

)α = {ω ∈ XAH
| pH(ω) ∈ (XA)α} and (GAH

)α = (GA)α. The
action of (GAH

)α on (XAH
)α is as follows:
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Let f ∈ ΓA ( and we as usual assume N−
f = 0 and N+

f = n, say), then p(f) = f(n).

Suppose f ∈ (XAH
)α, so f(n) ∈ (XA)α and let σ ∈ (GA)α. Define a path σf

n by

σf
n(m) =

{

f(n) if m 6 n,

σ.f(n) if m > n+ 1

and set

σ.f = f ∗ σf
n.

Thus

σ.f(m) =

{

f(m) if m 6 n

σ.f(n) if m > n+ 1

It is easily checked that this gives an action on equivalence classes by

σ.〈f〉 = 〈σ.f〉

since it just adds one extra “link” to the path. Clearly pHσ.〈f〉 = σ.pH〈f〉 = σ.f(n),
AH is a global action and pH a regular morphism of global actions.

We can now prove that (AH , pH) is a covering of A.

Suppose that x0, . . . , xn is a local frame in A and that ω0 = 〈f0〉 is an element in AH

such that pH(ω0) = x0. Since x0, . . . , xn is a local frame, there exists α ∈ ΦA = ΦAH

and gi ∈ Gα such that xi = gix0. For each i take ωi = giω0. It is clear by definition,
that ω0, . . . , ωn is a local frame in AH and that pH(ωi) = xi. Moreover, it is the
unique local frame with this property. This proves that (AH , pH) is a covering.

We note that p−1
H (a0) is the set of ∼H equivalence classes of loops at a0. If we look

at the equivalence relation ∼H , it is clearly made up of two parts:

(i) if f ∼ f ′ (i.e. fixed end point homotopic) then clearly [f ][f ′]−1 = 1a0
∈ Π1A,

and so f ∼H f ′ whatever H is chosen;

(ii) if f is a loop at a0 then f ∼H 1a0
if [f ] ∈ H .

Together these imply that p−1(a0) ∼= G/H where we have written G for π1(A, a0).

Since (AH , pH) is a covering of A, there is a G-action on p−1(a0) making this a
G-set isomorphism.

Any path ϕ at a0 in A will lift to a path given a choice of initial point. Fix ã0 to
be the class of the constant path at a0, so ã0 ∈ AH and pH(ã0) = a0. If ϕ̃ is the
lift of ϕ starting at ã0 then ϕ̃(n) is the element of AH represented by the partial
path from ϕ(0) to ϕ(n). If n > N+

ϕ and ϕ is a loop at a0 representing an element
of H 6 π1(A, a0) then the end point of ϕ̃ is the point of AH represented by the
path from ϕ(0) to ϕ(n), i.e., 〈ϕ〉, but [ϕ] ∈ H so 〈ϕ〉 = 〈ã0〉 and ϕ lifts to a loop in
AH . Conversely any loop in AH at a0 is the lift of a loop at a0 which represents an
element of H .

A similar argument implies that if ϕ̄ and ϕ̄′ are homotopic loops at ã0 in AH then
they are lifts of homotopic loops at a0 in A which then of course represent the same
element of H . We thus have
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Proposition 10.14. The induced homomorphism

pH∗ : π1(AH , ã0) → π1(A, a0)

is a monomorphism with image, H.

Proof. The proof is by direct calculation using the explicitly defined lifts of paths
and homotopies.

Remark 10.15. Much of the above would work for strong paths, but the proof
that the strong version of (AH , pH) is a covering would seem to depend on a local
condition which is in some way analogous to “semi locally simply connected”. This
would say that small strong loops were strongly null-homotopic. Here by small we
mean

a
g // b

g′

// a.

This is clearly satisfied for many examples.

Problem/Question 10.16. Adapt the above discussion to handle strong coverings
and /or groupoid atlases.

To summarise:

Theorem 10.17. Given (A, a0),A connected, and H 6 π1(A, a0) then there is a
connected covering space (AH , pH) with

pH∗
(π1(AH , ã0)) = H.

In particular corresponding to H = 1, the trivial subgroup of π1(A, a0), one has a
simply connected covering space (Ã, p). 2

Of course by an earlier result AutA(Ã, p) ∼= π1(A, a0).

Now set G = π1(A, a0). Any G-set X can be decomposed as a disjoint union of
“connected” G-sets. Here “connected” merely means single orbit or transitive G-
sets. These all have form G/H and we can note that p−1

H (a0) ∼= G/H as G-sets.
Using disjoint unions of (AH , pH)s for various subgroups H will yield a covering
space (B, p) with p−1(a0) ∼= X as G-sets. It is then more or less routine to check
that

Cov/A ⇆ G-Sets

is an equivalence of categories.

Thus we have three descriptions of π1(A, a0) for a connected global action A:

(i) equivalence (homotopy) classes of loops at a0,

(ii) π0(ΩA),

(iii) AutA(Ã, p) and thus the group G in the above equivalence.
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11. Single domain global actions II.

In this section we will examine general single domain global actions and their cov-
erings.

11.1. General single domain global actions and A(G,H)s

Suppose A = (XA,ΦA, GA) is a single domain global action. We thus have that ΦA

is a set with a reflexive relation 6 defined on it, then

GA : ΦA → Groups

can be considered as a (generalised) functor and we can form its colimit G =
colim GA. Each Gα, α ∈ ΦA acts on G by left multiplication via its image in G.
(Note: Gα need not be isomorphic to a subgroup of G, but other than that one has
virtually the situation of A(G,H).)

Define a global action G with |G| = G

ΦG = ΦA

(GG)α = Gα

(XG)α = G,

so G is a single domain global action.

If H is any subgroup of G, we can form a quotient global action G/H with |G/H | =
|G|/H , the set of right cosets ΦG/H = ΦG, etc, so G/H is again a single domain
global action.

It is clear that

π0(G) = π0(G/H) = 1.

Theorem 11.1. Any connected single domain global action is regularly isomorphic
to some G/H.

Proof. Let A be a connected single domain global action and let a0 ∈ A be a chosen
basepoint. Let GA be the global action constructed above from colim (GA : ΦA →
Groups).

The group G acts on A and also, of course, on |GA|. Define a function

p : |GA| → |A|

(using the base point) sending ω ∈ GA to ω.a0, i.e., read the word ω off from the
right acting on a0, inductively. The possible ambiguities in the word are due to cases
of α 6 β and the compatibility condition ensures this does not matter.

Since gα · ω gets sent to (gα · ωa0) = gα(ω.a0), this defines a regular morphism of
global actions.

Let HA = p−1(a0), which is the stabiliser of a0 in GA.
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Clearly

GA/HA
∼= A.

The only difference therefore between single domain global actions of the form
A((G,K),H) as introduced in section 9 and the general case is that the Hi may not
be subgroups and may have interrelations between them.

Examples 11.2.

1. As before take S3 = 〈a, b | a3 = b2 = (ab)2 = 1〉, H1 = 〈a〉, H2 = 〈b〉 to get
A(S3, {〈a〉, 〈b〉}). Then the colimit group is C3 ∗C2 and, of course, the stabiliser
of 1 in GA is merely Ker(C3∗C2 → S3), that is π1(A(S3, {〈a〉, 〈b〉}). The quotient
map

p : C3 ∗ C2 → S3

is that with kernel the normal closure of (ab)2 and writing K for that kernel (and
thus for π1), we have

A(S3, {〈a〉, 〈b〉}) ∼= A((C3 ∗ C2,K){〈a〉, 〈b〉}).

A similar picture emerges with the other examples.

2. For AK4 = A(K4, {〈a〉, 〈b〉, 〈c〉}), the colimit group is C2 ∗C2 ∗C2 = C
(3)
2 and the

stabiliser is the normal closure of abc. This normal subgroup has rank 3. Thus

AK4 has a second description as A((C
(3)
2 ,K),H), where H = {〈a〉, 〈b〉, 〈c〉}, these

subgroups being here subgroups of C
(3)
2 , not of K4. Of course, K ∼= π1(AK4).

3. The only change for Aq8 is that the colimit group is (C4 ∗C4 ∗ C4)/{1,−1}, the
free product with amalgamation.

4. Taking S3 again, but with presentation 〈x1, x2 | x2
1 = x2

2 = 1, (x1x2)
3 = 1〉,

H1 = 〈x1〉, H2 = 〈x2〉, gives colimit group C2 ∗ C2. The stabiliser of 1 / funda-
mental group is free on (x1x2)

3. We again get a second description as a ‘relative’
A((G,K),H).

5. For our final example, S4 with presentation 〈x1, x2, x3 | x2
1, i = 1, 2, 3, (x1x2)

3 =
1 = (x2x3)

3, (x1x3)
2 = 1〉 is S4 itself and the given description is the one we

have found earlier through the general process.

11.2. Coverings of single domain global actions

If A ∼= GA/HA as above then for Ã, its universal or simply connected covering, Ã is
also a single domain global action and as the diagram G

Ã
= GA,

Ã ∼= GA/HÃ
.
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Clearly there is a diagram

G
Ã
/H

Ã

��

∼= //
Ã

��
GA/HA

∼= // A

so H
Ã
⊆ HA.

It remains to relate H
Ã

more closely to HA.

If α ∈ Φ
Ã

= ΦA, then set (G′
A
)α = image ((GA)α → G).

Let

HA = {H 6 |GA| | for all σ ∈ |GA|, σHσ
−1 ∩ (G′

A)α = σHAσ
−1 ∩ (G′

A)α

for all α ∈ Φ}

and let H
Ã

=
⋂

{H ∈ H}. Then H
Ã
∈ HA and is minimal. Of course H

Ã
⊳ HA and

HA/HÃ
∼= π1(A). Thus as a corollary of the main classification theorem for coverings

we get:

Proposition 11.3. General connected coverings of A correspond bijectively to in-
termediate groups between H

Ã
and HA. 2

Remark 11.4. If π0(A) is not trivial, i.e. A is not connected, then it is important
to remember that Ã only covers the connected component of the basepoint.

Again we turn to our examples to see what these results give there.

In each case we have a description of A as A((GA,KA),H) and as our initial situation
had

KA = Ker(p : G→ XA),

where G is the colimit group of the original system, we have

KA
∼= π1(A, 1)

in each case. This implies that K
Ã

is trivial. We could also deduce this from the
description of HA with K

Ã
=

⋂

HA. (KA is normal in GA so σKAσ
−1 ∩ (G′

A
)α =

KA ∩ (G′
A
)α. In each example this is trivial, so HA contains the trivial group and

hence has that group as its intersection.)

We can describe the simply connected covering of A in each case:

1. A = A(S3, {〈a〉, 〈b〉}), Ã = A(C3 ∗ C2, {〈a〉, 〈b〉}), where as before 〈a〉 is to be
interpreted in context as a subgroup of the corresponding group.

2. AK4 = A(K4, {〈a〉, 〈b〉, 〈c〉}), ˜AK4 = A(C
(3)
3 , {〈a〉, 〈b〉, 〈c〉}).

3. Aq8 = A(q8, {〈i〉, 〈j〉, 〈k〉}), Ãq8 = A(GA, {〈i〉, 〈j〉, 〈k〉}), where GA has presenta-
tion

〈i, j, k | i4 = 1, i2 = j2 = k2〉.
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4. A = A(S3,H), with H = {H1, H2} with each Hi generated by a transposition,

Ã = A(C
(2)
2 , {〈x1〉, {〈x2〉}).

5. The case A(S4,H) with H = {H1, H2, H3}, as above (example 8.6), is already
simply connected, so is its own simply connected cover.

In the next section we examine a more complex example, namely the elementary
matrix group, En(R) of a ring R, which forms the connected component of the
identity in the global action GLn(R).

12. The Steinberg Group and Coverings of GLn(R)

A particularly important example of a single domain global action is the General
Linear Global Action GLn(R). We saw, example 2.4, that π0(GLn(R)) was the set
of right cosets of the group GLn(R) modulo the subgroup En(R) of elementary
matrices and hence was identifiable as being K1(n,R). We asked “is K2(n,R) ∼=
π0(GLn(R))?” It is to this question we now turn.

12.1. The Steinberg group Stn(R)

The usual approach to K2(n,R) is via the Steinberg group Stn(R). We earlier,
example 2.4, introduced the notation εij(r) for the elementary matrix with

εij(r)k,l =











1 if k = l,

r if (k, l) = (i, j),

0 otherwise .

Here, of course, (i, j) ∈ ∆, the set of non-diagonal positions in an n × n array.
Elementary matrices satisfy certain standard relations and the Steinberg group is
obtained by considering the group having generators xij(r), abstracting the ele-
mentary matrices, and having as relations just these standard, almost universal,
relations. More precisely (and a standard reference is Milnor’s notes, [16]), Stn(R)
is given by generators xij(r), r ∈ R, i, j = 1, 2, . . . , n, i 6= j, which are subject to
the relations:

St1 xi,j(a)xi,j(b) = xi,j(a+ b);

St2 [xi,j(a), xk,ℓ(b)] =

{

1 if i 6= ℓ, j 6= k
xi,ℓ(ab) i 6= ℓ, j = k

These are called the Steinberg relations.

There is an epimorphism

ϕ : Stn(R) → En(R)

given by mapping xi,j(a) to εi,j(a). The second (unstable) K-group, K2(n,R) is
then defined to be Ker ϕ.
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12.2. A more detailed look at GLn(R)

We will construct a global action analogous to Stn(R) but for this we need to under-
stand GLn(R) better. Early in this paper, §2.4, p.106, we introduced the elementary
matrix groups, GLn(R)α. Recall that we let ∆ be the set of off-diagonal positions
in an n×n array and called a subset α ⊆ ∆ closed if it corresponded to a transitive
relation, i.e. if (i, j) ∈ α and (j, k) ∈ α, then (i, k) ∈ α. The general linear global
action GLn(R) then had coordinate system Φ, the set of closed subsets of ∆ ordered
by inclusion. The underlying set of GLn(R) was the general linear group GLn(R)
and for α ∈ Φ, GLn(R)α was the group of elementary matrices generated by the
εi,j(r) with (i, j) ∈ α.

Clearly this single domain global action is of the form A(G,H). To form its connected
covering (which will cover the connected component of 1, that is, will cover the sub-
global action, En(R), determined by the elementary matrices), we need to take the
colimit of the GLn(R)α. Clearly to examine this colimit we need to see what the
maximal elements of Φ are, and to examine the corresponding GLn(R)α.

Lemma 12.1. If α ∈ Φ is maximal, then it is a total order on {1, . . . , n}.

Proof. Transitivity follows from closedness. If (i, j) ∈ α, then (j, i) /∈ α, since no
diagonal elements are in α, but as α is maximal, one or other of (i, j) and (j, i) must
be in α - otherwise we could add it in!

Lemma 12.2. Let Tn(R) be the group of upper triangular n× n matrices over R.
If α ∈ Φ is maximal, then

GLn(R)α
∼= Tn(R).

Proof. Pick an order isomorphism, f between α and the total order 1 < 2 < . . . < n.
Map the generator εi,j(r) to εf(i),f(j)(r). This extends to the required isomorphism
from GLn(R)α to Tn(R).

12.3. The Steinberg global action Stn(R)

It is known (cf. Milnor’s notes [16]) that Tn(R) has a presentation given by the
xk,ℓ(r), with 1 6 k < ℓ 6 n, and with the Steinberg relation (restricted to those in-
dices (k, ℓ) with k < ℓ) between them. Let Stn(R)α be the group given by generators
xk,ℓ(r) with (i, j) ∈ α and with the corresponding Steinberg relations, then

colimα∈Φ Stn(R)α = Stn(R),

so if we define a global action as below, it will be connected.

Definition 12.3. Let Stn(R) be the global action having Stn(R) as its underlying
set, ∆, above, as its coordinate system and, for α ∈ ∆, Stn(R)α as the corresponding
local group.
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The isomorphism GLn(R)α
∼= Tn(R) for maximal α together with the fact that

Tn(R) = Stn(R)α0
for α0 = {(i, j) : i < j} gives that there is an isomorphism

ϕα : Stn(R)α

∼=
→ GLn(R)α for maximal α compatible with the inclusions into Stn(R)

and GLn(R) and the homomorphism ϕ introduced earlier.

Two maximal α can be linked with each other by a zig-zag where intermediate
maximal elements (total orders) differ by the transposition of two elements only.
The corresponding isomorphisms Φα agree on intersections of the corresponding
groups thus giving an isomorphism

Stn(R) = colimα∈Φ Stn(R)α

∼=
→ colimα∈Φ GLn(R)α = G̃Ln(R).

The resulting map is then easily shown to be ϕ. It remains to analyse this map a
little more.

The kernel,

HA = Ker(Stn(R) ≃ colimα∈Φ GLn(R)α → En(R)),

is central (again see Milnor’s notes), hence

σHAσ
−1 ∩ ImGLn(R)α = HA ∩ GLn(R)α = {1}

as no element of GLn(R)α vanishes when mapped into GLn(R) as the mapping is
an inclusion. Thus the family, whose minimal element we need, contains the trivial
subgroup! Hence that must be the minimal element.

We have proved

Theorem 12.4. The simply connected universal covering of GLn(R) is isomorphic
to Stn(R). The covering map is given on elements by the evaluation mapping

ϕ : Stn(R) → GLn(R).

2

Corollary 12.5. The second K-group K2(n,R) is isomorphic to π1(GLn(R)). 2
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