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Abstract

Global actions were introduced by Bak [1] in order to have a ho-
motopy theory in a purely algebraic setting. In this paper we apply
his techniques in a particular case: the (single domain) unimodular
row global action. More precisely, we compute the the path connected
component and fundamental group for the unimodular row global ac-
tion. An explicit computation of the fundamental group of the (con-
nected component of) unimodular row global action is closely related
to stability questions in K-theory. This will be shown by constructing
an exact sequence with the fundamental group functor as the middle
term and having surjective stability for the functor K2 on the left and
injective stability for the functor K1 on the right.
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1 Introduction

Global actions were introduced by Bak, (see [1]) in order to have the flexi-
bility of combining algebraic and topological ideas. In this paper, we will be
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concentrating on single domain global actions. A single domain global action
consists of the following data: a set together with several groups acting on it
such that these group actions satisfy a certain compatibility condition. There
is a well-defined notion of homotopy in this setting and here we show that
this circle of ideas can be applied very effectively in the following situation:
given an associative ring R with unity, a unimodular row of length n over R
is by definition, an n-tuple of the form v = (v1, . . . , vn), with vi ∈ R such that
there exists w = (w1, . . . , wn), wi ∈ R with v · wt = 〈v, w〉 :=

∑
i viwi = 1.

The set of all unimodular rows of length n over R is denoted by Umn(R).
The action of the general linear group GLn(R) (and hence its elementary
subgroup En(R)) on Umn(R) allows one to define in a natural way a single
domain global action structure on Umn(R).

The aim of this paper is to investigate π0 and π1 of this single domain
global action, and to show that both objects are closely related to stability
questions in algebraic K-theory. An algebraic description for π0 is easy to
formulate and prove:

π0(Umn(R)) = Umn(R)/En(R),

where the object on the right denotes the orbit space of the action of En(R)
on Umn(R) with base point the orbit of e1 = (1, 0, ..., 0) in Umn(R).

An algebraic description of π1(Umn(R)) is more difficult and can defined
for the connected component of the base point of this global action, which
we denote by EUmn(R). Let Stn(R) denote the Steinberg group and let
θn : Stn(R) → GLn(R) denote the standard group homomorphism defined
by sending generators Xij(r) (i 6= j) of the Steinberg group to the elementary
matrices Eij(r) (i 6= j). (Note here that for i 6= j if eij denotes the n × n
matrix whose (i, j)-th entry is 1 and all other entries are 0, then for r ∈ R,
let Eij(r) = In + reij, where In denotes the n× n identity matrix.) Set:

1. Pn(R) = {σ ∈ GLn(R)|e1σ = e1}.

2. EPn(R) = Pn(R) ∩ En(R).

3. P̃n(R) preimage of EPn(R) in Stn(R) := θ−1
n (EPn(R)).

4. Bn(R) is a certain normal subgroup of P̃n(R) to be defined in Section
§3.
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Then, one has
π1(EUmn(R)) = P̃n(R)/Bn(R).

The relationship of π0 and π1 of Umn(R) to stability in algebraic K-
theory is expressed by two short exact sequences, one with π1 as its middle
term and the other with π0 as its middle term. The sequence with π1 has
surjective stability for the functor K2 on the left and injective stability for
the functor K1 on the right. The sequence with π0 has surjective stabilty
for the functor K1 on the left and injective stability for the functor K0 on
the right. Together,these short exact sequences are equivalent to the 8-term
exact sequence:

(K2,n(R))2 → K2,n(R)→ π1(EUmn(R))→ K1,n−1(R)/(K1,n−1(R))2 →

K1,n(R)→ π0(Umn(R))→ Ks
0,n−1(R)→ Ks

0,n(R).

of pointed sets. By definition,

(K2,n(R))2 = K2,n(R) ∩ (P̃n(R))2

and contains the
image(K2,n−1(R)→ K2,n(R))

(see (§5));

(K1,n−1(R))2 = (GLn−1(R) ∩ (EPn(R))2)/En−1(R),

where (EPn(R))2 is a normal subgroup of EPn(R) (see (§5)), which con-
tains En−1(R). Let Ks

0,m(R) be the set of all isomorphism classes of finitely
generated projective modules P such that for some r (depending on P )
P ⊕ Rr = Rm+r. The base point of Ks

0,m(R) is the isomorphism class of
Rm.

The first 3 terms of the exact sequence above, starting from the left, come
equipped with group structures and the maps between them are group ho-
momorphisms. So this much of the sequence is an exact sequence of groups.
Suppose that En−1(R) and En(R) are normal in GLn−1(R) and GLn(R) re-
spectively. Then K1,n−1(R) and K1,n(R) are groups and it turns out that
(K1,n−1(R))2 is a normal subgroup of ker(K1,n−1(R) → K1,n(R)) and that
the map π1(Umn(R)) → K1,n−1(R)/(K1,n−1(R))2 has as image the group
[ker(K1,n−1(R) → K1,n(R))]/(K1,n−1(R))2 and is a group homomorphism to
this group. So in this case, the first 5 terms behave like an exact sequence of
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groups. It is an interesting problem to find group structures on the remaining
objects so that the entire sequence behaves like an exact sequence of groups.

Assuming the ring R is commutative and noetherian of finite Krull di-
mension d and n is sufficiently large relative to d, van der Kallen [14], [15]
has found a group structure on π0(Umn(R)), but has shown that the map
GLn(R)→ π0(Umn(R)) is not always a group homomorphism. On the other
hand, Ravi Rao and van der Kallen [9] have found (nontrivial) examples
where it is a group homomorphism. In these examples, we get a 6-term
sequence which behaves like an exact sequence of groups. An interesting
problem is to find group structures on the Ks

0,i(R) such that the maps in-
volving these groups in the sequence are group homomorphisms.

The rest of the paper is organized as follows: Section 2 gives basic defin-
tions and many relevant examples of global actions. Section 3 describes the
notion of homotopy for global actions and in Section 4 we give the details
on simply connected coverings of global actions: first a global-action the-
oretic construction and then an algebraic one. Universality of the simply
connected covering then implies that these two constructions are isomorphic.
With this one computes the fundamental group of the elementary unimodu-
lar row global action. Section 5 constructs the exact sequence mentioned in
the introduction and deduces an interesting corollary on the vanishing of the
fundamental group, as predicted by algebra.

2 Preliminaries

2.1 Global actions

In this section, we recall from [1] the definition of a global action, a single
domain global action and their morphisms, and provide some examples. We
begin with the definition of a group acting on a set.

Definition 2.1. If G is a group and X is a set, then a (right) group action
of G on X is a function X ×G→ X, denoted by (x, g) 7→ x · g, such that:

1. x · e = x, for all x ∈ X, where e is the identity of the group G.

2. x · (g1g2) = (x · g1) · g2, for all x ∈ X and g1, g2 ∈ G.

Such a group action will be denoted by X x G.
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Definition 2.2. Let X, Y be sets with groups G,H acting on them respec-
tively. A morphism of group actions, (ψ, ϕ) : X x G→ Y x H, consists of
a function ψ : X → Y and a homomorphism of groups ϕ : G→ H such that
ψ(x · g) = ψ(x) · ϕ(g).

Definition 2.3. A global action A consists of a set XA (called the underlying
set of A) together with:

1. An indexing set ΦA, having a reflexive relation ≤ on it.

2. A family {(XA)α x (GA)α | α ∈ ΦA} of group actions on subsets (XA)α
of XA. The (GA)α are called the local groups of the global action.

3. For each pair α ≤ β in ΦA, a group homomorphism,

(θA)αβ : (GA)α → (GA)β,

called a structure homomorphism such that:

(a) The groups (GA)α leave (XA)α ∩ (XA)β invariant.

(b) The pair

(inclusion, (θA)αβ) : ((XA)α∩ (XA)β) x (GA)α → (XA)β x (GA)β

is a morphism of group actions. (This will be called the compati-
bility condition).

Definition 2.4. A global action A is said to be a single domain global action
if (XA)α = XA, for all α ∈ ΦA.

Remark 2.5. For simplicity of notation whenever only one global action is
involved, we shall drop the suffix A everywhere in the definition and write
X,Gα, Xα, θαβ instead.

Definition 2.6. Let G be a group and let Φ be an index set (equipped with
a reflexive relation) for a family Gα (α ∈ Φ) of subgroups of G. One defines
a single domain global action A from this data, by letting X = G and letting
each Gα act on X by right multiplication. If H denotes a subgroup of G,
then one can make the space G/H of right cosets Hg of H in G into a single
domain global action by letting each Gα act on G/H in the obvious way, i.e.
(Hg)gα = Hggα, for all gα ∈ Gα.
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We recall the definition of a morphism between global actions from [1].
To do this one requires the notion of a local frame, which is defined below.

Definition 2.7. Let A be a global action. Let x ∈ Xα be some point in a
local set of A. A local frame at x in α or an α-frame at x is a finite subset, say
{x = x0, . . . , xp} of Xα such that Gα-action on Xα is transitive on x0, . . . , xp
i.e., for each j, 1 ≤ j ≤ p, there exists gj ∈ Gα such that x0 · gj = xj.

Definition 2.8. If A and B are global actions, with underlying sets X, Y
and index sets Φ,Ψ respectively, a morphism of global actions is a function
f : X → Y which preserves local frames. We shall denote such a morphism
by f : A → B. More precisely, if x0, . . . , xp is an α-frame at x = x0, then
f(x0), . . . , f(xp) is a β-frame at f(x) = f(x0) for some β ∈ Ψ.

Example 2.9. Let A be a global action. Then the identity function from the
underlying set of A to itself is a morphism of global actions.

2.2 Important examples of global actions

We give below some examples of global actions by describing their underlying
set, indexing set, local sets and local groups. It is easy to check that the
compatibility condition holds. (See [1]).

• The line action: The line action, denoted by L is a global action
with underlying set X = Z and indexing set Φ = Z∪{∗}. Let the only
relations in Φ be ∗ ≤ n, for all n ∈ Z and n ≤ n for all n ∈ Z. The local
sets are Xn = {n, n+ 1} if n ∈ Z and X∗ = Z. Let the local groups be
Gn = Z/2Z, if n ∈ Z, G∗ = 1 and let {n, n + 1} x Gn be the group
action such that the non-trivial element of Gn exchanges the elements
n, n+1. Let θ∗≤n : {1} → Gn denote the unique group homomorphism.

• The general linear global action:

Given n ≥ 3, let Jn = ([1, n] × [1, n]) \ {(i, i) | 1 ≤ i ≤ n} i.e. the
cartesian product of the set {1, 2, . . . , n} with itself with the diagonal
removed.

A subset α ∈ Jn is called nilpotent if the following conditions hold:

– If (i, j) ∈ α, then (j, i) /∈ α.

– If (i, j), (j, k) ∈ α, then (i, k) ∈ α.
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Note that the empty set is a nilpotent subset and that the intersection
of nilpotent subsets is nilpotent. Let R denote an associative ring with
unity. The general linear global action, which we denote by GLn(R)
has underlying set GLn(R), the general linear group. The index set
Φn is the set of all nilpotent subsets α of Jn. We give Φn the partial
ordering defined by α ≤ β ⇔ α ⊆ β. For all α ∈ Φn, let the local
set (XGLn(R))α = GLn(R). For all α ∈ Φ, let the local group GLn(R)α
be the subgroup of GLn(R) consisting of all matrices whose diagonal
coefficients are 1, whose nondiagonal coefficients are 0 for coordinates
(i, j) 6∈ α and arbitrary for coordinates (i, j) ∈ α. This means that the
empty subset of Φn is assigned the trivial subgroup of GLn(R). Clearly
(GLn(R))α ∩ (GLn(R))β = (GLn(R))α∩β. Thus the assignment

Φn → subgroups of GLn(R),

sending
α→ (GLn(R))α

preserves not only partial orderings i.e. α ≤ β =⇒ (GLn(R))α ⊂
(GLn(R))β, but also intersections i.e. (GLn(R))α∩β = (GLn(R))α ∩
(GLn(R))β. It is straight forward and easy to verify that if we assign
to each pair α ≤ β ∈ Φn the natural inclusion ϕαβ : (GLn(R))α →
(GLn(R))β then we get a (single domain) global action. The intersec-
tion property is not needed here. It will be used later to establish the
covering property in the sense of the Steinberg extension.

It is not difficult to show that (GLn(R))α is generated by all elementary
matrices Eij(r), where (i, j) ∈ α and r ∈ R. We recall the definition
of an elementary matrix. If (i, j) ∈ Jn, let eij denote the n× n matrix
whose (i, j)-th entry is 1 and all other entries are 0. For r ∈ R, let
Eij(r) = In + reij, where In denotes the n× n identity matrix.

The subgroups (GLn(R))α, α ∈ Φ are known in the literature as the
standard unipotent subgroups of GLn(R). Since any elementary matrix
is contained in some (GLn(R))α and since each (GLn(R))α is generated
by elementary matrices, it follows by definition that the (GLn(R))α
generate the elementary subgroup En(R) of GLn(R).

• The elementary global action: The elementary global action has
underlying set En(R), the elementary group. The indexing set as well
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as the local groups are the same as those for the general linear global
action. Each local set is the whole En(R).

• The special linear global action: Suppose R is commutative. The
special linear global action has underlying set SLn(R), the special linear
group. The indexing set as well as the local groups are the same as
those for the general linear global action. Each local set is the whole
SLn(R).

Abusing notation, we shall let GLn(R),En(R) and SLn(R) denote repec-
tively the global actions defined above. Clearly, the canonical inclusions
En(R)→ GLn(R) and when R is commutative, En(R)→ SLn(R)→ GLn(R)
are morphisms of global actions.

Before we begin describing the Steinberg global action, we recall the def-
inition of the Steinberg group itself from [8], §5.

Recall that elementary matrices satisfy the property

• Eij(r)Eij(s) = Eij(r + s), for all r, s ∈ R,

and that the following commutator formulae hold:

• [Eij(r) Ekl(s)] = 1, if j 6= k, i 6= l, r, s ∈ R.

• [Eij(r) Ejl(s)] = Eil(rs), if i 6= l, r, s ∈ R.

The Steinberg group Stn(R), associated to a ring R is the free group de-
fined by the generators Xij(r), r ∈ R, (1 ≤ i, j ≤ n, i 6= j) subject to exactly
the same relations above with Eij replaced by Xij. Thus, the Steinberg group
is defined as a quotient F/N, where F denotes the free group generated by
the symbols Xij(r), r ∈ R and N denotes the smallest normal subgroup of F
modulo which the above relations are valid. The assignment Xij(r)→ Eij(r)
sends the relations between the generators of Stn(R) into valid identities
between elementary matrices.

• The Steinberg global action

The Steinberg global action has underlying set Stn(R), the Steinberg
group. The indexing set Φn is the same as that of the general linear
global action. For all α ∈ Φn the local set (XStn(R))α = Stn(R) and
the local group (Stn(R))α = 〈Xij(r) | (i, j) ∈ α, r ∈ R〉. If we assign
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to each pair α ≤ β ∈ Φn the canonical inclusion ϕαβ : (Stn(R))α →
(Stn(R))β then it is straight forward and easy to show that we get a
(single domain) global action.

Abusing notation, we let Stn(R) denote this global action. Clearly the
canonical homomorphism of groups Stn(R) → En(R) described above is a
morphism of global actions.

The next proposition provides the algebraic facts about the Steinberg
group, which will be needed in the (algebraic) homotopy theory of GLn(R)
and Umn(R) (to be defined in the next section).

Proposition 2.10. Let θ : Stn(R) → En(R) denote the canonical homo-
morphism. Let θE : Φn → subgroups of En(R), α → (En(R))α and let
θSt : Φn → subgroups of Stn(R), α → (Stn(R))α. Clearly, θE and θSt are
partial order preserving maps and thus functors. With these notations, one
has:

[1.] The maps θE and θSt preserve intersections and the commutative dia-
gram

Φn
θSt //

θE **VVVVVVVVVVVVVVVVVVVVVV Subgrps. of Stn(R)

θ
��

Subgrps. of En(R)

defines a natural isomorphism θSt → θE of functors.

[2.] The canonical homomorphisms

colim(En(R))α ←− colim(Stn(R))α −→ Stn(R)

are isomorphisms.

[3.] The canonical map ⋃
α∈Φn

(Stn(R))α →
⋃
α∈Φn

(En(R))α

is bijective.
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Proof. [1.] Let Sn denote the group of permutations of n elements. Let

π =

(
1 2 . . . n

π(1) π(2) . . . π(n)

)
∈ Sn. To each element π, we associate

the permutation matrix Mπ, whose πi-the column has zeroes in all
entries except i-th where it has 1.

The groups Sn acts on GLn(R) on the right by conjugation by permu-
tation matrices. It is easy to chek that Eij(r)

π = Mπ−1Eij(r)Mπ =
E(iπ)(jπ) and the resulting action of Sn on En(R) preserves the 3 rela-
tions above for elementary matrices. Thus the action of Sn on En(R)
lifts to an action of Sn on Stn(R) such that the homomorphism θ is
Sn equivariant. The group Sn acts on Jn in the obvious way namely,
(i, j)π = (iπ, jπ) and there is an induced action of Sn on Φn. It is
obvious that the maps θE and θSt are Sn equivariant. Let δ denote the
nilpotent set

{(i, j) | i < j, 1 ≤ i, j ≤ n} ⊂ Φn.

The set δ is a maximal nilpotent subset. It is easy to check that any
nilpotent subset is contained in a maximal nilpotent subset and that
any maximal nilpotent subset is conjugate under the action of Sn to δ.

To prove that θ defines a natural isomorphism of θE and θSt, we must
show that for any α ∈ Φn, the surjective canonical homomorphism
Stn(R)α → En(R)α is injective as well. By the previous paragraph, it
suffices to consider the maximal nilpotent set δ. But here the result
follows immediately from [8], Lemma 9.14.

It was shown, following the definition of the global action GLn(R)
that θE preserves intersections. θSt preserves intersections because
of the following facts: θE preserves intersections, each canonical ho-
momorphism (Stn(R))α → (En(R))α is bijective and (En(R))α∩β =
(En(R))α ∩ (En(R))β.

[2.] The left hand isomorphism follows immediately from [1.] above. The
right hand isomorphism is defined and is obviously surjective. Using
the definition of the Steinberg group by generators and relations, one
can construct straightforward an inverse to this homomorphism, since
any relation is contained in some local subgroup (Stn(R))α.

[3.] Let x ∈ (Stn(R))α and y ∈ (Stn(R))β. Let γ = α ∩ β. Suppose θ(x) =
θ(y). We must show x = y. Clearly, θ(x) = θ(y) in (En(R))γ. Let
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z ∈ (Stn(R))γ be such that θ(z) = θ(x). Since (Stn(R))γ ⊂ (Stn(R))α,
it follows that x = z, since the homomorphism (Stn(R))α → (En(R))α
is bijective. Similarly, y = z.

3 Elementary homotopy theory of global ac-

tions

This section summarizes in a convenient form the constructions and results
we need from the homotopy theory of global actions, in particular of single
domain global actions. They are due to the first named author.

3.1 The notion of homotopy

The most natural notion of homotopy is the following.
To begin we recall the notion of product for global actions. Suppose A

and B are global actions with underlying sets X and Y and indexing sets ΦA

and ΦB, respectively. Define the product global action A× B as follows. Its
underlying set is the Cartesian product X×Y of sets and its index set is also
the Cartesian product ΦA×ΦB with quasi-ordering defined by (a, b) ≤ (a′, b′)
if and only if a ≤ a′ and b ≤ b′. The local set (X × Y )(a,b) is the Cartesian
product Xa × Xb and the local group G(a,b) is the product group Ga × Gb.
Its action on (X × Y )(a,b) is the obvious one, namely coordinatewise.

Let f, g : A → B denote morphisms of global actions. Let L denote the
line action, cf. Section 2, with underlying set Z. For n ∈ Z let ιn : X →
X × L, x → (x, n). It clearly defines a morphism ιn : A → A × L of global
actions. The morphisms f and g are called homotopic if there is a morphism
H : A × L → B of global actions and integers n− ≤ n+ such that for all
n ≤ n−, fHιn = fHιn− and for all n+ ≤ n, gHιn = gHιn+ . The morphism
H is called, as in topology, a homotopy from f to g.

In some situations such as that of paths, a variant of the above concept is
needed. We shall call the one needed for paths, stable homotopy, and define
it in the next subsection. (In lecture notes distributed in the past, it was
called end-point homotopy or end-point stable homotopy.)
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3.2 Stable homotopy of paths and the fundamental
group

The goal of this section is to define the notion of stable homotopy for paths
and to define the fundamental group functor π1. In passing we define the
path connected component functor π0.

Throughout this section A and B denote global actions with underlying
sets X and Y , respectively, and L the line action.

The easiest and most natural way to define a path in A is as a finite
sequence x1, . . . , xn of points xi ∈ X such that for each i < n there is an
element g in some local group of A such that xi is in the domain of the
action of g and xig = xi+1. The following equivalent definition is better for
the stable homotopy theory we need and shall develop.

Definition 3.1. Let ω : L→ A denote a morphism. We say that it is stable
on the left or simply left stable if there is an integer n− such that for all
n ≤ n−, ω(n) = ω(n−). In this case we say that ω stabilizes on the left to
x = ω(n−). Similarly we say that ω is stable on the right or simply right
stable if there is an integer n+ such that for all n ≥ n+, ω(n) = ω(n+). In
this case we say that ω stabilizes on the right to x = ω(n+). We say that ω
is left-right stable if it is stable both on the left and on the right. In this case
we can clearly assume that n− ≤ n+. A path is a left-right stable morphism
ω : L→ A. A loop is a path which stabilizes on the left and on the right to
the same element of X.

A path ω : L → A is constant if ω(n) = x for all n ∈ Z and some fixed
x ∈ X. If ω is not constant then it is always the case that n− < n+. On the
other hand, if ω is constant then n− and n+ can be any integers. For this
reason, we exclude constant paths from the following definition.

Definition 3.2. Let ω denote a nonconstant path. The lower or left degree
of ω is defined by

ld(ω) = sup{n− ∈ Z | ω(n) = ω(n−) for all n ≤ n−}.

The upper or right degree of ω is defined by

ud(ω) = inf{n+ ∈ Z | ω(n) = ω(n+) for all n ≥ n+}.

Next we define the notion of composition for paths.
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Definition 3.3. Let ω and ω′ denote two paths. The initial point (in X) of
a nonconstant path ω is defined by

in(ω) = ω(ld(ω)).

The terminal point of a nonconstant path ω is defined by

ter(ω) = ω(ud(ω)).

The initial and terminal points of a constant path ω taking the constant
value x ∈ X is defined by

in(ω) = ter(ω) = x.

The composition ω · ω′ of paths ω and ω′ exists if ter(ω) = in(ω′) and is
defined as follows:

(ω · ω′) =

{
ω if ω′ is constant
ω′ if ω is constant.

If ω and ω′ are nonconstant then

(ω · ω′)(n) =

{
ω′(n) for all n ≤ ud ω′,
ω(n− ud ω′ + ld ω) for all n ≥ ud ω′.

It is clear that the composition law · on paths is associative.

We turn now to the notion of stable homotopy for paths.

Definition 3.4. A homotopy H : L×L→ A is called a stable (or end-point
stable) homotopy of paths if for any n ∈ Z, Hιn is a path and if for any pair
m,n ∈ Z, in(Him) = in(Hin) and ter(Hιm) = ter(Hιn).

Suppose there is a homotopy H : L × L → A and there exist integers
n−, n+ such that ω is the unique path with the property ω = Hιn for all
n ≤ n− and if ω′ is the unique path such that there is an integer n+ with the
property ω′ = Hιn for all n ≥ n+ then we say that ω is stably homotopic to
ω′ and write ω ' ω′.

The notion of homotopy is a generalization of the notion of path and has
a notion of composition such that the compostion of two end-point stable
homotopies of paths is again an end-point stable homotopy of paths. We
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shall take the time to explain this systematically, by replacing the line action
L in Definitions 3.1, 3.2 and 3.3 above, by any global action B × L where
B is an arbitrary global action. In other words, we are replacing the trivial
global action, consisting of one point being acted on by the trivial group,
by an arbitrary global action B. Thus instead of moving a point through
the space A, as in the case of a path, we are moving one space B through
another space A. In this setting the notion of constant homotopy becomes a
morphism H : B × L→ A such that for any pair m,n ∈ Z Hιm = Hιn.

We give now the analogues of Definitions 3.1, 3.2 and 3.3.

Definition 3.5. Let H : B × L → A denote a morphism. We say that it
is negatively stable (or lower stable) if there is an integer n− such that for
all n ≤ n−, Hιn = Hιn− . In this case we say that ω stabilizes negatively (or
below) to f = Hιn− . Similarly we say that ω is positively stable (or upper
stable) (italex) if there is an integer n+ such that for all n ≥ n+, Hιn = Hιn+ .
In this case we say that ω stabilizes positively (or above) to g = Hιn+ . We
say that ω is a homotopy if it is both negatively and positively stable. In this
case we say that f is homotopic to g. Clearly this definition of homotopy for
morphisms B → A is identical with that in Section §3.1.

Definition 3.6. Let H denote a homotopy. The negative or lower degree of
H is defined by

ld(H) = sup{n− ∈ Z | Hιn = Hιn−for all n ≤ n−}.

The positive or upper degree of H is defined by

ud(H) = inf{n+ ∈ Z | Hιn = Hιn+for all n ≥ n+}.

Next we define the notion of composition for homotopies.

Definition 3.7. Let H and H ′ denote homotopies B × L → A. The initial
morphism in Mor(B,A) of a nonconstant homotopy is defined by

in(H) = Hild(H).

The terminal morphism in Mor(B,A) of a nonconstant H is defined by

ter(H) = Hiud(H).
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The initial and terminal morphism of a constant homotopy H taking the
constant value f in Mor(B,A) is defined by

in(H) = ter(H) = f.

If H is a stable homotopy of paths then in(H) is called the initial path
and ter(H) the terminal path. The composition H ·H ′ of homotopies H and
H ′ exists if ter(H) = in(H ′) and is defined as follows:

(H ·H ′) =

{
H if H ′ is constant
H ′ if H is constant.

If H and H ′ are nonconstant then

(H ·H ′)(n) =

{
H ′(n) for all n ≤ ud H ′,
H(n− ud H ′ + ld H) for all n ≥ ud H ′.

Clearly if f ′ = in(H ′) and f = ter(H) then in(H.H ′) = f ′ and ter(H.H ′) =
f . Thus the relation of homotopy on morphisms in Mor(B,A) is an equiva-
lence relation. Furthermore if H and H ′ are composable and are at the same
time stable homotopies of paths then the composition H ·H ′ is also a stable
homotopy of paths. This shows that the relation of stable homotopy on paths
is an equivalence relation. It is clear that composition law · is associative,
although we won’t need this fact.

There is another important way to compose stable homotopies, but not
arbitrary homotopies, which goes as follows. This kind of composition will
be denoted by a square �.

Definition 3.8. Let H : L × L → A be a stable homotopy of paths. By
definition the elements in(Hin) and ter(Hin) do not depend on the choice of
n. Define the initial point (as opposed to intial path) of H by

inp(H) = in(Hin) for any n ∈ Z.

Define the terminal point (as opposed to terminal path) of H by

terp(H) = ter(Hin) for any n ∈ Z.
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If H and H ′ : L × L → A are stable homotopies of paths such that
terp(H) = inp(H ′) then the composition H�H ′ is defined and has the prop-
erty that in(H�H ′) = in(H) · in(H ′) and ter(H�H ′) = ter(H) · ter(H ′).
Moreover the composition law � is associative, although we won’t need this
fact.

We leave the construction of � to the interested reader. Theorem 3.11
below says that elementary stable homotopies are the only tools one needs
to construct H�H ′.

We are now in a position to construct the fundamental monoid Π1(A)
and fundamental group π1(A) of a pointed global action A.

Definition 3.9. Let A denote a pointed global action with base point ◦ in
X. The fundamental monoid

Π1(A) = Π1(A, ◦)

is the set of all loops at ◦, with composition given by the composition law
of Definition 3.3 and identity the constant loop at ◦.

We want to construct the fundamental group π1 from Π1. For this we
need a definition and a result.

Definition 3.10. A 1-step stable homotopy H : L × L → A is either a
constant stable homotopy or a nonconstant homotopy such that ud(H) −
ld(H) = 1. Clearly every stable homotopy of paths is a composition of a
finite number of 1-step stable homotopies. Let n = ld(H), ω = Hin, and
ω′ = Hin+1. A 1-step homotopy H is called elementary, if

(3.9.1) it is constant,

or the following holds. There is an i ∈ Z such that for all j ≤ i and all
j ≥ i+ 2, ω(j) = ω′(j) and there are elements x, y ∈ X satisfying one of the
following:

(3.9.2)

(
w′(i) w′(i+ 1) w′(i+ 2)
w(i) w(i+ 1) w(i+ 2)

)
=

(
x y y
x x y

)

(3.9.3)

(
w′(i) w′(i+ 1) w′(i+ 2)
w(i) w(i+ 1) w(i+ 2)

)
=

(
x, x, y
x, y, y

)
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(3.9.4)

(
w′(i) w′(i+ 1) w′(i+ 2)
w(i) w(i+ 1) w(i+ 2)

)
=

(
x, y, x
x, x, x

)

(3.9.5)

(
w′(i) w′(i+ 1) w′(i+ 2)
w(i) w(i+ 1) w(i+ 2)

)
=

(
x, x, x
x, y, x

)
Theorem 3.11. Every 1-step stable homotopy is a composition of elementary
homotopies and thus every stable homotopy is a composition of elementary
homotopies.

The proof is not very difficult and is left to the reader. However, in the
current paper, we do not use the fact that elementary homotopies generate
all stable homotopies, rather we use them, as in the proof of Corollary 3.13
below, to show directly that certain homotopies exist.

Definition 3.12. If ω is a path, define the inverse path ω−1 by

ω−1(n) = ω(−n).

Corollary 3.13. If ω is a path then ω·ω−1 is stably homotopic to the constant
path at in(ω).

The corollary follows by an easy application of elementary homotopies.

Definition 3.14. Let A denote a pointed global action. By 3.9 stable ho-
motopy respects composition in Π1(A). Thus the stable homotopy classes of
loops in Π1(A) form a monoid with identity the stable homotopy class of the
constant loop at the base point. By Corollary 3.13 every loop ω ∈ Π1(A) has
up to stable homotopy an inverse ω−1. Thus the stable homotopy classes of
loops in Π1(A) form a group which we denote by

π1(A)

and call the (algebraic) fundamental group of A.
Two points x, x′ ∈ X are called path connected if there is a path ω such

that in(ω) = x and ter(ω) = x′. The composition law for paths shows that
the relation path connected is transitive, the construction of the inverse path
ω−1 shows that the relation is symmetric, and the existence of the constant
path at any point shows that the relation is reflexive. Thus the relation path
connected is an equivalence relation on X.
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Definition 3.15. Let
π0(A)

denote the equivalence classes of the relation path connected on X. It is
called the set of path connected components of A. If A has a base point then
π0(A) is usually given as base point, the equivalence class of the base point
of X.

3.3 Path connected component of the unimodular row
global action

We now decribe the unimodular row global action and compute its path
connected component.

The unimodular global action: The unimodular global action has
as underlying set Umn(R), the set of all R-unimodular row vectors v =
(v1, v2, . . . , vn) of length n, with coefficients vi ∈ R. Recall that unimodular
means there is a row vector w = (w1, . . . , wn) such that v(tw) =

∑
i viwi = 1,

where t denotes the transpose operator on (not necessarily square) matrices.
(The row w is automatically unimodular, because 1 =t 1 =t (v(tw)) =
w(tv).) The general linear group GLn(R) acts on Umn(R) on the right, in
the usual way. The indexing set Φn as well as the local groups (En(R))α
are the same as for the global action GLn(R). Each local set is the whole
Umn(R) and the action of each local group En(R) on Umn(R) is via that
of GLn(R) on Umn(R). Abusing notation, we shall let Umn(R) denote also
this (single domain) global action. We give the underlying set of Umn(R)
the distinguished point e = (1, 0, . . . , 0).

Proposition 3.16. π0(Umn(R)) = Umn(R)/En(R). Give this coset space
the base point eEn(R). Then, the connected component of e in Umn(R) is the
coset space eEn(R).

Proof. We prove that v, w belong to the same path component in Umn(R)
if and only if there exists ε ∈ En(R) such that vε = w i.e., if and only if
vEn(R) = wEn(R).

Let v, w ∈ Umn(R) belong to the same path component and let ω be a
path from v to w. As ω is a morphism of global actions, there exist εi ∈
GLn(R)αi , 1 ≤ i ≤ N such that vε1 · · · εN = w. Then ε :=

∏
i εi ∈ En(R) has

the required property.
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Conversely suppose w = vε, for some ε ∈ En(R). Hence there exist Eij(λ),
λ ∈ R such that ε =

∏
Eij(λ). As each Eij(λ) lies in some local set, we can

easily define a path from v to w. Thus, π0(Umn(R)) = Umn(R)/En(R).
From this also follows that the path component of the base point e is

eEn(R).

We now introduce a global actions structure on the coset space above.
We will introduce another important global action which is a certain coset
space of the Steinberg group. These global actions are crucial in computing
the fundamental group of the unimodular row global action.

• The elementary unimodular global action: The elementary uni-
modular global action has as underlying set EUmn(R) = eEn(R), the
path connected component of the base point in Umn(R). The index set
as well as the local groups are the same as those for Umn(R). Each
local set is the whole of EUmn(R). Abusing notation, as usual, we let
EUmn(R) denote this global action. We give it the base point e.

• The Steinberg unimodular global action: Let Pn(R) denote the
subgroup of GLn(R) which leaves e fixed. Clearly each matrix in Pn(R)

takes the form

(
1 0
v τ

)
, for some v ∈Mn−1,1(R), τ ∈ GLn−1(R).

Let EPn(R) = Pn(R) ∩ En(R). There is an obvious canonical identifi-
cation

EUmn(R) = En(R)/EPn(R)

of global actions, which is induced by sending each element eε in
EUmn(R) to εEPn(R). The global action on the right is the obvious
one: the underlying set is the right coset space En(R)/EPn(R) and the
index set Φn and local groups En(R)α are the same as for Umn(R).
The local sets are all of En(R)/EPn(R) and the action of each local
group on En(R)/EPn(R) is induced by the natural right action of the
group En(R) on it. Let θ : Stn(R) → En(R) denote the canonical
homomorphism. Let

Bn(R) = 〈x−1abx ∈ θ−1(EPn(R)) | x ∈ Stn(R), a ∈ Stn(R)α, b ∈ Stn(R)β,

for some α, β in Φn〉.
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Clearly Bn(R) is a normal subgroup of θ−1(EPn(R)).

The Steinberg unimodular global action StUmn(R) has underlying set
the right coset space Stn(R)/Bn(R). The indexing set Φn and local
groups Stn(R)α are the same as those of the Steinberg global action
Stn(R). Each local set is all of Stn(R)/Bn(R) and the action of each
Stn(R)α on Stn(R)/Bn(R) is induced by the natural right action of the
group Stn(R) on it. Abusing notation, we shall denote the Steinberg
unimodular action also by Stn(R)/Bn(R). We give it the distinguished
point eBn(R). It is easy to check that this is a path-connected global
action.

There is a canonical base point preserving morphism

Stn(R)/Bn(R)→ En(R)/EPn(R)

of coset spaces and global actions, which is induced by the map

Stn(R)→ EUmn(R)

sending each x in Stn(R) to eθ(x).

We recall the definition of a covering morphism (see [1]) by introducing
another important global action: the star global action.

Definition 3.17. Let A be a path-connected global action with underlying
set X, index set Φ and local groups Xα x Gα, for α ∈ Φ. Given α ∈ Φ
and x ∈ X, let star(x) denote the following global action: the underlying set
Xstar(x) is the union of all xGα where Gα is a local group which acts on x i.e.,

Xstar(x) = ∪
{α∈Φ|x∈Xα}

x ·Gα

The index set Φstar(x) consists of all α ∈ Φ such that Gα acts on x.
Φstar(x) inherits its ordering from Φ. If α ∈ Φ, then (Xstar(x))α = xGα and
(Gstar(x))α = Gα.

Definition 3.18. A morphism f : B → A of global actions is surjective, if it
is surjective map on the underlying sets. A surjective morphism f : B → A of
global actions is called a covering morphism if for every b ∈ XB, the induced
map f : star(b)→ star(f(b)) is an isomorphism of global actions.
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The next proposition records some facts which are needed for the (alge-
braic) homotopy theory of Umn(R).

Corollary 3.19. The canonical homomorphism Stn(R) → En(R) of path-
connected global actions is a covering morphism in the sense of [1], §10.

Corollary 3.20. The canonical morphism StUmn(R)→ EUmn(R) is a cov-
ering morphism of path-connected global actions.

4 Coverings, fundamental group and elemen-

tary unimodular row global action

In this section we state (without proof) results for homotopy theory in the
framework of global actions. The interested reader should refer to [1], §11.
These will be applied in the concrete case of the elementary unimodular row
global action to compute its fundamental group explicitly.

We give some basic definitions and then outline the construction of a
connected, simply connected covering of the path-connected single domain
global action (EUmn(R), eEPn(R)). The checking of details is not difficult
and is left to the reader.

Definition 4.1. A path-connected global action A with base-point a0 is said
to be simply connected, if the fundamental group of A at a0 is trivial i.e.,
π1(A, a0) = e.

Theorem 4.2. There exists a path-connected, simply connected base point
preserving covering of the path-connected global action (EUmn(R), eEPn(R)).
Moreover, it is of the form En(R)/HB, where HB is a normal subgroup of
EPn(R).

Proof. Follows from “Structure theorem” for single domain global actions
(see [1], Definition 3.3, Theorem 11.1, Proposition 11.3.)

We now would like to prove that the path-connected, simply connected
covering of (EUmn(R), eEPn(R)) is also universal. For this, we state without
proof the “Lifting criterion” in the context of global actions.

Lemma 4.3. Let q : (B, b0) → (EUmn(R), eEPn(R)) be a pointed covering
morphism of path-connected global actions Let C be a path connected global
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action with base point c0. Let f : (C, c0)→ (EUmn(R), eEPn(R)) be a pointed

morphism. Then, a morphism f̃ : (C, c0)→ (B, b0) lifting f exists if and only
if f∗(π1(C, c0)) ⊂ q∗(π1(B, b0)). Moreover, if f exists, then it is unique.

Corollary 4.4. Every path-connected, simply-connected covering of the con-
nected single domain global action (EUmn(R), eEPn(R)) is universal. In par-
ticular, any two path-connected, simple connected coverings of the single do-
main global action (EUmn(R), eEPn(R)) are isomorphic.

Proof. Let f : (C, c0) → (EUmn(R), eEPn(R)) be a morphism from a path-
connected, simply connected covering (C, c0). The lifting criterion ensures
that (C, c0) is universal, as f∗(π1(C, c0)) = e. Universality then implies that
any two path-connected, simple connected coverings of (EUmn(R), eEPn(R))
are isomorphic.

Corollary 4.5. Let (En(R)/HB, eHB) be the path-connected, simple con-
nected of (En(R)/EPn(R), eEPn(R)) with pointed covering morphism p :
(En(R)/HB, eHB)→ (En(R)/EPn(R), eEPn(R)). Then,

π1(EUmn(R), eEPn(R)) ' p−1(eEPn(R)).

Proof. See [1], Theorem 10.17.

We can view the fault line between algebra and topology more clearly.
This helps us to compute the fundamental group of EUmn(R) explicitly.
The notion of universal cover is clear: Given EUmn(R), a universal cover
X → EUmn(R) is a cover such that given any other cover X ′ → EUmn(R)
there is unique base point preserving map X → X ′ making the usual diagram
commute. The existence of a universal cover for a single domain action has
two distinct proofs, one algebraic and the other topological. The algebraic
proof shows that StUmn(R)→ EUmn(R) is a universal cover. The topolog-
ical proof seen above, shows that any connected simply connected cover Y
is universal and explicitly constructs one. The universality of the topological
and algebraic constructions yields a unique isomorphism StUmn(R) → Y
making the usual diagram commute.

We now record the key observation regarding coverings in coset spaces.
This leads us to explicitly computing the fundamental group of EUmn(R).

Proposition 4.6. Let n ≥ 3 be an integer and let K ⊂ H be subgroups
of En(R). Then, p : En(R)/K → En(R)/H defined by p(Kε) = Hε is a
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covering morphism of global actions if and only if H2 ⊂ K, where H2 =
〈H ∩ x−1(En(R))α(En(R))βx〉 i.e., H2 is the subgroup of H generated by all
elements in H which are also of the form x−1εαεβx, for some x ∈ En(R) and
some local group elements εα, εβ.

Proof. It is easy to check that p is a surjective morphism of global actions.
We now prove that p is injective on stars if H2 ⊂ K i.e., we prove that
p : star (Kε)→ star (Hε) is injective if H2 ⊂ K. Let Kε1, Kε2 ∈ star (Kε)
with p(Kε1) = p(Kε2) i.e., ε2ε

−1
1 ∈ H.

As Kε1, Kε2 ∈ star (Kε), there exist local group elements εα, εβ ∈
(En(R))α, (En(R))β respectively such that Kε1 = (Kε)εα and Kε2 = (Kε)εβ.
Now p(Kε1) = p(Kε2) implies εεαε

−1
β ε−1 ∈ H i.e., εεαε

−1
β ε−1 ∈ H2. Thus

εεαε
−1
β ε−1 ∈ K, as H2 ⊂ K. This proves ε2(ε1)−1 ∈ K i.e., p is injective, if

H2 ⊂ K.
Conversely suppose that En(R)/K → En(R)/H is a covering morphism.

It is enough to prove that every generator of H2 lies in K, as K is a
subgroup. Let xεαεβx

−1 ∈ H. Then (Kx)ε−1
α , (Kx)εβ ∈ star(Kx), with

p((Kx)ε−1
α ) = p((Kx)εβ). Injectivity of p on star(Kx) implies Kxε−1

α =
Kxεβ, i.e., xεαεβx

−1 ∈ K, proving that every generator of H2 lies in K.

Theorem 4.7. Let EUmn(R) be the connected single domain global action
with base point eEPn(R). Then, the simply connected (universal) covering of
EUmn(R) is En(R)/(EPn(R))2. Thus

π1(EUmn(R), eEPn(R)) ' EPn(R)/(EPn(R))2

' P̃n(R)/Bn(R) ' P̃n(R)/(P̃n(R))2

under the isomorphism induced by the homomorphism θ : Stn(R) → En(R).
(see Proposition 2.10). Here (EPn(R))2 is defined as in Proposition 4.6 above

and the same Proposition also shows that (P̃n(R))2 ' Bn(R).

Proof. Let the simply connected covering of EUmn(R) be given by En(R)/HB,
where HB is a normal subgroup of EPn(R). Using Proposition 4.6, it is easy
to check that En(R)/(EPn(R))2 is a covering of En(R)/HB, by observing that
(HB)2 ⊂ (EPn(R))2.

We now prove that En(R)/(EPn(R))2 is a simply connected covering of
En(R)/HB. For this note that p∗(π1(En(R)/(EPn(R))2)) ⊂ π1(En(R)/HB),
which is trivial as En(R)/HB is a simply connected covering of EUmn(R).
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Now as p∗ is injective, one has π1(En(R)/(EPn(R))2) is trivial, thus showing
that En(R)/(EPn(R))2 is another simply connected covering of the global
action EUmn(R). By Corollary 4.4 we have En(R)/(EPn(R))2 ' En(R)/HB

is the universal, path-connected, simply-connected covering of the single do-
main global action EUmn(R). Using Corollary 4.5, we see that

π1(EUmn(R), eEPn(R)) ' p−1(eEPn(R)) = EPn(R)/(EPn(R))2

' P̃n(R)/Bn(R) ' P̃n(R)/(P̃n(R))2.

5 Stability in K-theory and fundamental group

of unimodular row global action

In this section we construct certain exact sequences of pointed sets. Under
suitable conditions on the stable rank of the ring under consideration these
exact sequences of pointed sets turn out to be exact sequences of groups.
The sandwiching of π1(EUmn(R)) in this exact sequence of groups helps us
to conclude (in certain situations) about vanishing of π1(EUmn(R)). This
matches with the well-known algebraic results.

5.1 Exact sequences for path-connected and fundamen-
tal group functors of unimodular row global action

In this section we construct exact sequences for path-connected and funda-
mental group functors of the unimodular row global action. Let Ks

0,m(R) be
the set of all isomorphism classes of finitely generated projective modules P
such that for some r (depending on P ) P ⊕ Rr ' Rm+r. The base point of
Ks

0,m(R) is the isomorphism class of Rm.

Proposition 5.1. Let R be a ring and n ≥ 3 be an integer. Then, the
following exact sequences of pointed sets exist:

1.
K1,n(R)

α−→ π0(Umn(R))
β−→ Ks

0,n−1(R)
γ−→ Ks

0,n(R)

where the base point of K1,n(R) is [In] and the base point of π0(Umn(R))
is [e].
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2.

(K2,n(R))2
δ−→ K2,n(R)

η−→ π1(EUmn(R))
µ−→ K1,n−1(R)/(K1,n−1(R))2

λ−→

K1,n(R)

By definition,
(K2,n(R))2 = K2,n(R) ∩ (P̃n(R))2;

(K1,n−1(R))2 = (GLn−1(R) ∩ (EPn(R))2)/En−1(R),

where (P̃n(R))2, (EPn(R))2 are defined analogous to H2 in Proposition
4.6.

Proof. 1. Define α : K1,n(R) → π0(Umn(R)) by σ 7→ (eσ)En(R). Clearly
this map preserves base points. For defining β : π0(Umn(R)) →
Ks

0,n−1(R) note that given v ∈ Umn(R), there exists a natural surjec-
tive map βv : Rn → R defined by βv(w) = w · vt with kerβv ⊕ R ' Rn

i.e., [kerβv] ∈ Ks
0,n−1(R). Define β : π0(Umn(R)) → Ks

0,n−1(R) by
β([v]) = [kerβv]. This is a well-defined base-point preserving map. (For
details see [11].) That it is an exact sequence of pointed sets follows
using ideas as in Lemma 1.3 in [11].

2. We first define the maps δ, η, µ, λ.

2(a) The map δ is the natural inclusion map.

2(b) Define η : K2,n(R) → π1(EUmn(R)) by η(Y ) = Y (P̃n(R))2. Note
that Y ∈ K2,n(R) implies that θn(Y ) = In; hence θn(Y ) ∈ EPn(R)

and so Y ∈ P̃n(R). Hence η(Y ) is defined.

2(c) To define the map µ : π1(EUmn(R)) → K1,n−1(R)/(K1,n−1(R))2,
recall that π1(EUmn(R)) ' EPn(R)/(EPn(R))2, via the standard
homomorphism θn : Stn(R)→ GLn(R). Given σ ∈ EPn(R), there

exists τ ∈ GLn−1(R) such that σ =

(
1 0
v τ

)
∈ En(R). Note that

τ ∈ GLn−1(R)∩En(R) defines an element τEn−1(R) of K1,n−1(R),
which we denote by [σrd], the class of the right diagonal of σ. It is
easy to check that this map is well-defined.

Define µ(Y (P̃n(R))2) = [(θn(Y ))rd](K1,n−1(R))2.As µ(In(P̃n(R))2) =

[(θ(In))rd](K1,n−1(R))2 = [In−1](K1,n−1(R))2, we have that µ(P̃n(R))2 ⊂
(K1,n−1(R))2.
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2(d) The map λ : K1,n−1(R)/(K1,n−1(R))2 → K1,n(R) is the natural
one induced by the right diagonal inclusion of GLn−1(R) inside

GLn(R) i.e., the map given by [τ ](K1,n−1(R))2 7→
(

1 0
0 τ

)
En(R).

This map is well-defined: for if [τ ] = [τ ′], then ττ ′−1 ∈ (K1,n−1(R))2

i.e., ττ ′−1 ∈ GLn−1(R) and

(
1 0
0 ττ ′−1

)
∈ (EPn(R))2 ⊂ En(R).

Thus,

(
1 0
0 τ

)
En(R) =

(
1 0
0 τ ′

)
En(R).

3. Having defined the maps, we first check that we get a complex.

3(a) Note that for Y ∈ (K2,n(R))2, (η ◦ δ)(Y ) = η(Y ) = Y (P̃n(R))2) =

e(P̃n(R))2), as Y ∈ (P̃n(R))2). Thus, η ◦ δ = e.

3(b) For Z ∈ K2,n(R), consider (µ◦η)(Z) = µ(Z(P̃n(R))2)) = [θn(Z)rd] =
[In], as Z ∈ K2,n(R). This proves that µ ◦ η = e.

3(c) One also has that λ◦µ = e, as (λ◦µ)Z(P̃n(R))2 = λ(µ(Y (EPn(R))2)) =
λ([Yrd]) for some Y ∈ EPn(R) via the identification of π1(EUmn(R))

with the orbit space EPn(R)/(EPn(R))2.Now λ([Yrd]) = [

(
1 0
0 Yrd

)
]

= [In] ∈ K1,n(R), as Y ∈ EPn(R).

4. Now we check exactness at each place:

4(a) We check ker η ⊂ Imδ. Let Y ∈ K2,n(R) ∈ ker η. Hence, Y ∈
P̃n(R)2 ∩ K2,n(R), which by definition is (K2,n(R))2. Thus, Y be-
longs to Imδ.

4(b) We now check that ker µ ⊂ Imη. Let Y (P̃n(R))2 ∈ ker µ. Then,

µ(Y (P̃n(R))2) = [(θnY )rd](K1,n−1(R))2 = [In](K1,n−1(R))2, which

implies (θnY )rd ∈ (K1,n−1(R))2.Now write

(
1 0
0 (θnY )rd

)
=
∏

(i,j) εijε
′,

where εij ∈ En(R) are elementary generators and ε′ ∈ En−1(R).
Breaking up ε′ further into a product of elementary generators,

we get that

(
1 0
0 (θnY )rd

)
=
∏

(i′,j′) εi′j′ , with εi′j′ ∈ En(R). Thus,

X := θ−1
n

(
1 0
0 (θnY )rd

)
makes sense as an element of Stn(R).

26



Let X ′ = θ−1
n ((

∏
(i′,j′) εi′j′)

−1) ·X Then, clearly

θn(X ′) = ((
∏

(i′,j′)

εi′j′)
−1) · θn(X) = In,

i.e., θn(X ′) ∈ K2,n(R). We claim that η(X ′) = Y (P̃n(R))2 i.e.,

X ′(P̃n(R))2 = Y (P̃n(R))2 i.e., X ′Y −1 ∈ (P̃n(R))2. For this we
prove θn(X ′Y −1) ∈ (EPn(R))2, from which it follows thatX ′Y −1 ∈
(P̃n(R))2, proving that X ′(P̃n(R))2 = Y (P̃n(R))2, as required. For
this note that θn(Y ) ∈ EPn(R) and write

θn(Y ) =

(
1 0
v (θn(Y ))rd

)
=

(
1 0
v In−1

)(
1 0
0 (θn(Y ))rd

)
Then, θn(X ′Y −1)

= (
∏

(i′,j′)

εi′j′)
−1)·

(
1 0
0 (θnY )rd

)
·
(

1 0
0 ((θn(Y ))rd)−1

)
·
(

1 0
−v In−1

)
.

Thus, θn(X ′Y −1) =

(
1 0
−v In−1

)
. That this lies in (EPn(R))2, can

be clearly seen by writing it as a product of elementary generators
of the type Ei1(vi), where v = (v2, . . . , vn)t.

4(c) We check ker λ ⊂ Imµ. Let [Z](K1,n−1(R))2 ∈ ker λ, i.e.,

(
1 0
0 Z

)
∈

En(R), with Z ∈ K1,n−1(R). Then, clearly µ(θ−1
n P̃n(R))2 =

(
1 0
0 Z

)
,

proving that ker λ ⊂ Imµ.

Proposition 5.2. Let R be a ring and let n ≥ 3 be an integer.Then,

(K2,n(R))2
δ−→ K2,n(R)

η−→ π1(EUmn(R))
µ−→ K1,n−1(R)/(K1,n−1(R))2

λ−→

K1,n(R)
α−→ π0(Umn(R))

β−→ Ks
0,n−1(R)

γ−→ Ks
0,n(R).

is an exact sequence of pointed sets.
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Proof. Define α : K1,n(R) → π0(Umn(R)) by α([σ]) = (e1σ)En(R), i.e., α
takes a matrix in GLn(R) to its first row. Using the fact that for n ≥ 3,
En(R) is generated by elementary matrices of the form E1i(λ) and Ei1(λ′),
with λ, λ′ ∈ R and i ≥ 2, we can check that this map is well-defined.

It remains to check exactness at K1,n(R). For this first consider (α ◦
λ)([σ](K1,n−1(R))2), with [σ] ∈ K1,n−1(R). This equals α(λ([σ]K1,n−1(R))2) =

α

((
1 0
0 σ

)
En(R)

)
= eEn(R), proving that Im(λ) ⊂ Ker(α).

Let [σ] ∈ Ker(α). Hence, (e1σ)En(R) = eEn(R) i.e., σ is of the form(
1 0
v τ

)
·ε, for some ε ∈ En(R). Rewrite σ =

(
1 0
0 τ

)
·ε′, with τ ∈ GLn−1(R), ε′ ∈

En(R). Then clearly we get that λ([τ ]K1,n−1(R))2) = [σ]. This completes the
proof of exactness at K1,n(R).

We deduce an important corollary of the result above when certain terms
of the above sequence are groups.

Corollary 5.3. Let d ≥ 2 be an integer. Let R be a commutative and
associative ring such that the maximal ideal space of R is a noetherian space
of dimension ≤ d (e.g. R is a noetherian ring of Krull dimension atmost d).
Then, π1(EUmn(R), eEPn(R)) = e, for all n ≥ d+ 3.

Proof. Note that n ≥ d + 3 implies that π0(Umn(R)) = e. This gives the
following exact sequence of groups:

(K2,n(R))2 → K2,n(R)→ π1(EUmn(R))→ K1,n−1(R)/(K1,n−1(R))2 →

K1,n(R)→ 1.

Noting that (K2,n(R))2 contains the image(K2,n−1(R) → K2,n(R)) (see
(§5)); we have

K2,n(R)

(K2,n(R))2

' K2,n(R)/image(K2,n−1(R)→ K2,n(R))

(K2,n(R))2/image(K2,n−1(R)→ K2,n(R))
.

Thus,

K2,n(R)

(K2,n(R))2

' cokernel(K2,n−1(R)→ K2,n(R))

(K2,n(R))2/image(K2,n−1(R)→ K2,n(R))
.
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This now gives the following exact sequence of groups:

e→ cokernel(K2,n−1(R)→ K2,n(R))

(K2,n(R))2/image(K2,n−1(R)→ K2,n(R))
→ π1(EUmn(R))→

ker(K1,n−1(R)→ K1,n(R))

(K1,n−1(R))2

→ e.

That π1(EUmn(R)) = e for all n ≥ d + 3 now follows from results on
injective and surjective stability for K1(R),K2(R). (See [4], [12], [10], [5], [6],
[7], [13].)

Corollary 5.4. Let A be a Dedekind ring of arithmetic type with infinitely
many units. Then, π1(EUmn(R), eEPn(R)) = e for all n ≥ 3.

Proof. Note that in this case d = 1. The result then follows from the corre-
sponding stability results for Dedekind rings of arithmetic type with infinitely
many units. (See [7], [16], [17], [10].)
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