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1 Introduction

This article introduces a general algebraic concept of space with motion. The spaces
consist of a set X together with a collection of group actions G, ~ X, where G, is a
group acting on a subset X, & X. It is possible that a given subset of X is acted on by
several different groups. The group actions are tabulated by letting o above run through
an index set ® called a coordinate system. We structure the set {G, ~ X,|a € @}
of group actions by equipping ® with a transitive reflexive relation < and imposing the
condition that G defines a functor ® — ((groups)), a — G,, such that if 0 € G, and p
its image in G3 under the homomorphism G,<g then for any x € X, N Xg,0x = px. The
resulting triple (®, G, X) is called a global action. Motion is provided by the concept of
path. A path is a sequence xg, - - - , X, of points in X such that for each 0 < ¢ < p—1, there
is a coordinate o; € ® with the property that x;,x;11 € X,, and o;x; = x;4; for some
0; € G,,. It turns out that there is a global action L called a line such that paths in a given
global action A are determined by morphisms from L to A. We shall use this natural and
intuitive construction of paths to carry over to algebra all of the experience we have with
paths in topological spaces. One consequence of this program will be a homotopy theory
for algebraic structures which includes a natural, intuitive, as well as rigorous concept of
algebraic deformation of morphisms. There are two prerequisites for realizing this goal
and they are supplied in the current article. First one must show how to make the set
Mor(A, B) of all morphisms from a global action A to a global action B, into a global
action. This allows one to deform a morphism f : A — B to a morphism g : A — B
by a path from f to g. The second is to formulate a general condition for global actions,
which guarentees that the exponential map E : Mor(A, Mor(B,C)) — Mor(A x B,C)



is an isomorphism of global actions. This implies that the cylinder method for deforming
a morphism f to a morphism ¢ is equivalent to the path procedure above. With this
equivalence, one develops fundamental constructions and principles of algebraic homotopy
theory along the lines of their topological precedents. This will be done in a sequel to the
current paper.

In order to apply the algebraic homotopy theory above to developing a theory of defor-
mation for morphisms in arbitrary categories, the notion of global object will be used.
This concept is introduced also in the current article. It is a generalization to arbitrary
categories of the notion of global action and serves in the current article to provide depth
and perspective for the notion of global action.

The remainder of the article is organized as follows. §2 introduces the notion of global
action and provides numerous examples. These include the line action L mentioned
above, other related, geometrically inspired examples, and global actions which we chris-
ten Volodin models. The Volodin models will be used in a future paper to provide an
algebraic definition of higher Volodin K-groups and algebraic foundations of algebraic
K-theory. Next the concept of global object is introduced, as well as the concept of a
representation of a global object by a global action. Examples of both concepts are given
and it turns out that the geometrically inspired global actions at the beginning of the
section are representations of global simplicial complexes, i.e. of global objects in the
category of (abstract) simplicial complexes. The section closes with two results showing
how to functorially construct global objects from primitive data. These constructions will
be enormously important in constructing a deformation theory for morphisms in arbitrary
categories.

83 studies the concept of morphism for global actions. There is a general notion of
morphism and two important special kinds of morphisms, namely normal morphisms and
regular morphisms. The regular morphisms provide the strongest notion of morphism
and preserve all the structural concepts in the definition of a global action. The general
notion takes individually into account, the group actions making up a global action, but
does not reflect the coherence among the actions, given by the transitive reflexive relation
on the coordinate system ® and the functoriality of the global group functor G. Normal
morphisms lie somewhere between regular and general. All regular morphisms are normal,
but not conversely.

We define first the general notion of morphism and then that of regular morphism. The
notion of chart is introduced and used to define a global structure on the set Mor(A, B) of
all morphisms from a global action A to a global action B. As a global action, Mor(A, B)
is a contravariant functor in the first variable, but is not defined over all morphisms in the



second variable. The notion of normal morphism is introduced so that Mor(A, B) becomes
a covariant functor in the first variable over all normal morphisms. This result will be
very important for algebraic homotopy theory, since it will imply that algebraic homotopy
groups are functorial over a large class of normal morphisms called co—L-morphisms.
Next the notions of infimum and strong infimum global action are introduced. Volodin
models and the geometrically inspired global actions in §2 are examples of strong infimum
actions. It is shown that any morphism whose target is an infimum or strong infimum
action is co—normal and that the exponential morphism E : Mor(A, Mor(B,C)) —
Mor(A x B,C) is an co— normal isomorphism if C' is an infimum action and a regular
isomorphism if C is a strong infimum action. These results will be also required in
developing algebraic homotopy theory.

84 introduces the notion of subaction of a global action and the notion of relative action.
A relative action is a pair consisting of a global action and a subaction. Relative actions
are required in the homotopy theory of global actions. §4 repeats the entire program of §3,
with relative actions replacing global actions. The details are not routine, as in the case of
topological spaces. The added complications arise from the notion of relative chart which
is needed to put a relative global structure on the set of all morphisms Mor(A, B) from
a relative action A to a relative action B. Relative charts are subtler than their absolute
counterparts and this added subtlety has to be followed up throughout the entire section.
This done, one gets the same results as in §3.

The current article is written in an elementary style and is selfcontained. From a technical
standpoint, an advanced undergraduate level familiarity with sets, groups, simplicial com-
plexes, and categories is all that is required. From an appreciation standpoint, experience
in algebraic topology and algebraic K-theory are helpful.

It is my pleasure to extend my gratitude to CONICET-DAAD and my host in Argentina,
Guillermo Cortinas for giving me the opportunity to present a course on global actions
and nonabelian K-theory in 1995 at the Universities of Buenos Aires and La Plata. Spe-
cial thanks are due Elizabeth D’Alfonso whose notes for the course were very helpful in
preparing the current article. I am also indebted to Alexei Stepanov whose notes for my
seminar on global actions were similarly very useful.

2 Global actions

A global action is an algebraic object which is formed by fitting or gluing together vari-
ous group actions. The construction resembles that of several well known mathematical



objects which are formed by fitting certain building blocks together, in our case group ac-
tions, to form more complicated structures. Examples include simplicial complexes where
the building blocks are simplices, CW-Complexes where the building blocks are closed
disks, manifolds where the building blocks are open disks of a fixed dimension, and vari-
eties (resp. schemes) where the building blocks are affine varieties (resp. affine schemes).
Furthermore the homotopy theory of global actions resembles that of the topological ex-
amples above in so far as the building blocks turn out to be homotopically trivial, being
n-connected for all n > 0.

DEFINITION 2.1 A global action is a set {G, ~ X,|a € ®} of groups G, acting on
subsets X, of some set | X|, subject to the following conditions.

(2.1.1) @ is equipped with a transitive, reflexive relation < . If the relation < is a partial
ordering, i.e. < 8 and § < « imply a = 3, then the global action is called a partially
ordered action.

® equipped with the relation < will be frequently considered as a category. As such, there
is at most one morphism o < § between any two objects o, 5 € . f a £ fand f £ «
then these morphisms are inverse to each other.

(2.1.2) The function X : ® — subsets | X|, a +— X, has in general no special properties. If
the relation < is a partial ordering, if the set subsets | X | is partially ordered by inclusion,
and if the function X above is order reversing, i.e. a contravariant functor, then the global
action is called contravariant.

(2.1.3) G is a covariant functor ® — ((groups)), a +— Ga.

(2.1.4) Compatibility condition. If o < § then G, leaves X, N Xy invariant and for
all 0 € G, and all x € X, N X, 07 = Ga<g(0)x. (Note that if X, N Xp is empty, the
compatibility condition is automatically satisfied.)

® is called the coordinate system of the action and each element of ® is called a
coordinate. The functor G is called the global group functor of the action and
the function X the global set function. |X| is called the enveloping set. If « is
a coordinate then G, is called the local group at o and X, the local set at a. Let
x € |X|. The local group G, or an element o € G, is said to be defined at x whenever x
in X,. A group element of a global action is an element of some local group G,.

REMARK Many global actions satisfy the additional property that |X| = Uyece X, or even
the property that | X| = X, for some a € ®. If a global action doesn’t have this property
one can introduce it by enlarging ® with an element * such that * < « for all @ € ®
and then setting X, = |X| and G, = {1}. However, this will change subtly the structure



of the global action, as we shall see for example in the definition of an co— exponential
action in (3.18) and in Theorem 3.23 and its proof.

It is allowed that X, = ¢. This will be convenient when making certain constructions,
since it is not necessary to check whether or not X, is empty.

The examples below illustrate the concept of a global action.

ExAMPLE 2.2 Let G be a group acting on a set |X|. Let ® be a set which indexes a
set {G,|la € ®} of subgroups of G. Assume that G, = Gs < o = . Partially order
{G,|a € ®} by inclusion and give ® the induced partial ordering. Clearly the rule a — G,
defines a functor ® — ((groups)). Define the function X : & — subsets |X|, a — X, by
X, = |X| for all &« € ®. Then one obtains a global action (®, G, X) which is contravariant
in X.

DEFINITION 2.3 Suppose that in (2.2), G = |X| and the action of G on |X| is by
multiplication. Suppose that G, = {1} for some * € ® | that {G,|a € ®} is closed under
arbitrary intersections, and that the following condition is satisfied: If G, and Gpg are
contained in some subgroup G., then the subgroup (G,,Gp) of G generated by G, and
G is identical with a subgroup G.. Then (®,G, X) is called a Volodin model. (It
turns out that the Volodin K-groups of rings or of rings with extra structure such as
an involution are algebraic homotopy groups of certain Volodin models, cf. § 6. The
intersection property of Volodin models is needed to show that the algebraic homotopy
groups of a Volodin model agree with the ordinary homotopy groups used by Volodin of
a related topological space.)

If U is a set, let

Perm(U) =Autges(U)
fPerm(U) ={o € Perm(U)|o fixes all but a finite number of elements of U}.

If U is a well ordered nonempty finite set, let

cPerm(U) = cyclic subgoups of Perm(U) generated by the cyclic
permutation which sends each element of U,
except for the last, to its successor and
sends the last element to the first.



ExXAMPLE 2.4 This example is called the line action and is important for the homotopy
theory of global actions. Let & = Z U {x}. Give ® the partial ordering such that there
is no relation between elements of Z and such that * < for all n € Z. Let |X| = Z
and define X : ® — subsets | X|,a = n — {n,n+ 1} and o = * — |X|. Define
G : & — ((groups)),a = n+— G, = Perm({n,n + 1}) and @ = * — G, = {1}. Then the
triple (®, G, X) is a contravariant action.

The next example generalizes the one above.

ExAMPLE 2.5 Let S denote an abstract simplicial complex and let |X| denote the set
of vertices of S. If a is a subcomplex of S, let X, denote the set of its vertices. Call a
subcomplex « simple, if X, has a partition into subsets U such that any finite subset of
U is a simplex in a and such that any simplex of « is a subset of some U. Clearly if «
is simple then the partition above of (X,) is unique; let Part(X,) denote this partition.
Let ® denote the set of all simple subcomplexes of S. Partially order ® by defining
a £ 84 X, 2 Xp and every member of Part(X) is a union of members of the Part(X,).
Clearly the subcomplex whose vertices are |X| and whose simplices are the singleton
subsets of | X| is the smallest element of ®. For « € ®, define

U€cPart(Xeq)

fGo = H fPerm(U)

U€Part(Xq)

There is a canonical action of G, (resp. fG,) on X, defined by the action of each
permutation group Perm(U) (resp. fPerm (U)) on U. Define

gl(s) = (2,6, X)
fgl(S) = (@, fG, X).

Then gl(S) and fgl(S) are global actions called simplicial actions.

Well order now the vertices |X| of S and let ¢® denote the subset of ® of all simple
subcomplexes « such that Part(X,) contains only finite sets. The smallest element of
®, say *, clearly lies in ¢®. Give ¢® a new partial ordering such that « £ 8 & a = *.
Thus if o # * # [ then either a = S or there is no relation between o and S. For a € ¢®,
define (¢X), = X, and



G, = H cPerm(U).

UcPart(Xa)

Define

cgl(S) = (¢®, cG, cX).

Then cgl(S) is a global action called a cyclic simplicial action.
To prepare for further examples, a few concepts from category theory are recalled.

Let C be a category. Let O be an object in C. Let O' ~ O be a subobject of O. If
o € Autc(O) then one says that o leaves O' invariant or stabilizes O, if there is a
p € Autc(O') such that the diagram

O'—— 0
commutes. Clearly if p exists, it is unique. The set of all automorphisms of O which
stabilize O' form a subgroup

Stabo (OI)

of Autc(O) called the stabilizer of O in O. There is a canonical group homomorphism

Stabo(Ol) — AutC(O’)
o = p

Let P be an object of C. A P-point of C is an element of Mor¢(P,0) where O is any
object of C. For a fixed P, the concept of P-point allows one to associate to an arbitrary
object O of C, an underlying set, namely the set Morc(P,O) of all P-points in O.
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Moreover given any set P of objects of C (for the current purposes, it can be assumed that
no two distinct objects in P are isomorphic), it makes sense to define the underlying
set of P-points of O as the set | Jp.p More(P,0). If O' ~— O is a subobject then there
is a canonical injection

P-points (O') C P-points (O)
of sets which will be frequently used to identify the former set with a subset of the latter.

Next we generalize the concept of global action to arbitrary categories by the concept
of global object. Then we define the notion of representing a global object by a global
action. After that a canonical method of constructing global objects from simple data is
developed. All of this provides a wealth of examples of global objects and global actions
and paves the way for applying global action methods to many different kinds of problems.

DEFINITION 2.6 Let C be a category. A global object in C consists of a set {O,
Ola € ®} of subobjects O, = O of an object O of C and a set {G, — Autc(O,)|a € @} of
groups G, and group homomorphisms G, — Autc¢(O,,) satisfying the following conditions.

(2.6.1) @ is equipped with a transitive, reflexive relation <. If the relation < is a partial
ordering then the global object is called a partially ordered object.

(2.6.2) The function O : & — subobjects(O), a — (O, — O), has in general no special
properties.

If the relation < is a partial ordering, if the class subobjects (O) is given the canonical
transitive, reflexive relation defined by inclusion among subobjects, and if the function O
above is relation reversing, i.e. a contravariant functor, then the global object is called
contravariant.

(2.6.3) G is a covariant functor ® — ((groups)), a — G,.
(2.6.4) Compatibility condition. If < 5 then the pullback diagram

Oa005>cpa—> 0,

|

05 0)

exists in C and there is a (necessarily unique) group homomorphism G, — Aute(O,NOp)
such that ¢, and ¢g are G, -equivariant.



Clearly the concept global action is identical with that of global set.

DEFINITION 2.7 Let (®, G, O) be a global object in the category C. Let P be a set of ob-
jectsin C. A P-representation of (¢, G, O) isaset {X,|a € ¢, X, € P-points(0,), X, is
Gy-invariant}. The P-representation of (®, G, O) is the set {P-pointsO,|a € ®}. It is
easy to check that (®,G, X) is a global action. The P-representation of a contravariant
object is a contravariant action, but the same is not true of an arbitrary P-representation.

ExAMPLE 2.8 Let C denote the category of abstract simplicial complexes. Let S be
an object of C. Let ® be as in (2.5) and for each @ € ®, set S, = . Thus S, is a
simple subcomplex of S. Let G, and fG, be defined as in (2.5). Thus G, and fG, are
subgroups of Autc(S,). One checks routinely that (®,G,S) and (@, fG,S) are global
simplicial complexes. Moreover if P denotes the simplicial complex with precisely one
vertex then the P-representation of (®,G, S) (resp.(®, fG, S)) is the global action gl(.5)
(resp.fgl(S)) defined in (2.5).

Let ¢® be as in (2.5) and for each a € ¢®, set (¢S), = « and let (cG), be as in (2.5).
Then (c¢®, cG,cS) is a global simplicial complex and the P-representation of (¢®, cG, cS)
is the global action cgl(S) defined in (2.5).

The following method of constructing global objects from data generalizes Example 2.2,
even in the case of sets, and is very useful.

CONSTRUCTION-LEMMA 2.9 Let C be a category and O an object in C.

(2.9.1) Global data for O consists of a set {O, — O|a € @} of subobjects O, — O of
O and a set {G, & Autc(O4)|a € @} of subgroups G, & Autc(O,).

(2.9.2) Given global data, define a transitive reflexive relation <.. on ®, called the canon-
ical contravariant relation , as follows: a <., 8 < there is a commutative diagram

Oa>—> )

|/

Op

such that G, € Stabo,(Op) and the canonical homomorphism G, — Aut¢(Og) has its
image in G. One checks straightforward that the triple (®, G, O) is a global object such
that O is contravariant. Moreover, if < is any transitive reflexive relation on ® such that



((®,2),G,0) is a global object with O contravariant then the identity map & — & is a
morphism (®, <) — (P, <) of partially ordered sets.

(2.9.3) Given global data, define a reflexive relation <. on @, called the canonical
relation , as follows: o <., 8 <= there is a pullback diagram

05ﬂ0a>—> O,

]

0,3 0)

in C such that G, and Gg & Stabo,(Op N O,), the canonical homomorphism G —
Aute(Og N O,) is injective, and the image (G, — Autc(Op N O,)) is contained in the
image of the previous homomorphism. It follows that if o <. 8 then there is a unique
homomorphism G, — G5 such that the morphism O3sN0O, — Og is G,-equivariant. Let
< be a transitive reflexive subrelation of <., for example the relation <., defined above.
Let ® have the relation <. One checks straightforward that the triple (®, G, O) is a global
object. Moreover, if < is any transitive reflexive relation on ® such that ((®, <), G, O)
is a global object then the identity map ® — & is a morphism (®, <) — (P, <,,) of
relations. In particular (®, <..) — (P, <) is a morphism of relations.

PROOF The only assertions that were left to prove are those concerning the relation <.,
in (2.9.2) and <., in (2.9.3). The proofs are similar and we carry out only that for <.
Suppose o £ 5. By contravariantness, there is a commutative diagram

Op— O .

|/

Op

JFrom the compatibility condition (2.6.4), it follows that the morphism Og — O, is
Gq-equivariant. But this says that G, leaves Og invariant. Furthermore it is clear that
the homomorphism G, — Aut¢(0O,) must have its image in G, because there is exactly
one homomorphism G, — Autc(0O,) which makes Og — O, G,—equivariant and the
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functorially given homomorphism G, — G makes Og — O, G,—equivariant. Thus
a <. B, by definition (2.9.3). O

Let ¥ be an index set. Let O be an object in a category C and let O : ¥ — subobjects(O),
a— (O, — 0), be a function. Let

denote the category whose objects are {O,|a € ¥} and whose morphisms are the unique
morphisms O, ~— Og such that the diagram

oa\ O /Oﬁ

commutes. If S € Suby(O) is a subcategory and if colimS exists in C then there is a
canonical morphism colimS — O.

The following method of constructing global objects generalizes Example 2.8.
CONSTRUCTION-LEMMA 2.10 Let C be a category and O an object in C.

(2.10.1) Let {O, — Ola € ®} be a set of subobjects O, — O of O. For each a € ®,
let {Og; — O4l(r,1) € ®,} be a set of subobjects Oy ; — O, of O, such that there is a
subcategory S, € Subs,(O,) with the property that the colim (S,) exists in C and the
canonical morphism colim (S,) — O, is an isomorphism. Let G, = {0 € Autc(O,)|o €
Stabo, (Oai)V(a,1) € @4}. The sets {0y — Ola € @} and {G, & Aute(On)|a € @}
define global data in the sense of (2.9.1).

(2.10.2) Given the data above, define a transitive reflexive relation <. on ® as follows:
a Z.. B & there is a commutative diagram

Oa>—> 0)

|/

Op

11



such that for each (5, j) € ®g, the object Og ; is a colimit of not necessarily all subobjects
Oa,i — Og,; for which there is a commutative diagram

Oa,i Oa

]

Op; — Op .

This implies G, & Stabg, (Og) and the canonical homomorphism G, — Aut¢(Og) takes
its image in Gig. Applying (2.9.2), one obtains that the triple (®, G, O) is a global object
such that O is contravariant.

(2.10.3) Given the data above, define a reflexive relation <., on ® as follows: a <., § <
there is a pullback diagram

in C such that O, N Op is a colimit of not necessarily all subobjects On; = O, N
Ogp(resp.Og,; — O4 N Op) for which there is a commutative diagram

12



(resp.

Og,j

| >\

0aNOg——= 04 ),

the canonical homomorphism Gz — Autc(O, N Op) is injective, and the image (G, —
Aute(O, N Op)) is contained in the image of the previous homomorphism. Let < be a
transitive reflexive subrelation of <., for example the relation <. defined above. Let ®
have the relation <. Applying (2.9.3), one obtains that the triple (®,G,0) is a global
object. Moreover, the identity map & — & defines a morphism (®,5) — (®,<,,) of
relations.

3 Morphisms and morphism spaces

There is a general notion of morphism for global actions and two important special kinds
of morphisms, namely normal morphisms and regular morphisms. The set Mor(A, B) of
all morphisms from a global action A to a global action B will be given the structure of a
global action such that Mor(,) defines a contravariant functor with values in global actions
with respect to the first variable over all morphisms and a contravariant functor with
values in global actions with respect to the second variable over all normal morphisms.

Regular morphisms provide the strongest notion of morphism and preserve all the essential
structural concepts in the definition of a global action. Two global actions which are
regularly isomorphic are essentially the same. On the other hand, two global actions which
are only isomorphic can behave very differently, since their structures are not necessarily
in 1 — 1 correspondence. For example, they can have different higher algebraic homotopy
groups because the construction of such groups is functorial only over a certain class
of morphisms containing the regular morphisms. This class is called the oo -L-normal
morphisms and will also be defined below.

The notion of morphism depends on the concepts of path, local path, and local frame.
The concepts local path and local frame are really the same, but the notion local frame
suggests possible directions for movement rather than a definite direction of movement
and this will be helpful in developing the notion of normal morphism.
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If A is a global action, let

® 4 = coordinate system of A
G 4 = global group functor of A
X4 = global set function of A
|A| = enveloping set of A.

DEerINITION 3.1 Let A be a global action.

(3.1.1) A path in A is a sequence X,, - - - , X, of points in |A| such that for each i (0 £ ¢ <
p — 1), there is a group element g; defined at x; with the property that g;x; = x;;1. If
0 = p, it is assumed that x, lies in some local set (X 4)q.

(3.1.2) A local path at o € &4 is a path x,, -+ ,x, in A such that each x; € (X4), and
each g € (G4)qa- (Clearly if x,,--- ,%, is a local path then so is Xr(x,), -, Xr(p) Where 7
is any permutation of (p + 1) letters.)

(3.1.3) Let x € (X4)q. A local frame at x in « or simply an a-frame at x is a sequence

X = X,,- - ,X, of points in (X4), such that for each i (1 £ i < p) there is a ¢g; € (Ga)q
such that g;x = x;. (Clearly x,xy,- - ,X, is an a-frame at x < x,xy, - - - ,X, is a local path
at a.)

DEFINITION 3.2 A morphism f:4 — B of global actions is a function f:|A| — |B]|
which preserves local frames or equivalently local paths. Specifically if x,,--- ,x, is an
a-frame at x, then f(x,), -, f(x,) is an S-frame at f(x,) for some § € ®p.

DEFINITION 3.3 A regular morphism 7 : A — B of global actions is a triple (74, ng, 7x)
satisfying the following conditions.

(3.3.1) ng : P4 — Pp is a relation preserving function, i.e. a covariant functor.

(3.3.2) ng : G4 — (GB)ps() is a natural transformation of group valued functors on ®4
where (G'g)n,() denotes the composition of ne with G .

(3.3.3) nx : |A| = |B| is a function such that nx((X4)a) & (XB)ns(a) for all o € @ 4.

(3.3.4) For each @ € ® 4, the pair (ng,nx) : (Ga)a ™ (Xa)a = (GB)nota) ™ (XB)ns(a)
is a morphism of group actions, i.e. for 0 € (G4)o and x € (Xa)a,nx(@)(9x) =
ng(a)(o)(nx(a)(x)). (This implies that a regular morphism is one in the usual sense).

A regular isomorphism 7 : A — B is a regular morphism such that there is a regular
morphism 1’ : B — A called the regular inverse of 1 with the property that 7y is inverse
to ne, Ny is inverse to nx, and for each a € ®4 n;(ns(c)) is inverse to Ne ().
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It is of course not true in general that a regular morphism which is an isomorphism is a
regular isomorphism.

The notion of chart, to be introduced next, will be used to put a global action structure
on the set Mor(A, B) of all morphisms from a global action A to be a global action B.

DEFINITION 3.4 Let A and B be global actions. An A-chart in B is a morphism f :
A — B of global actions and a function 3 : |A| — ®p such that the following conditions
are satisfied.

(3.4.1) f(x) € (Xp)g(x) for all x € |A].

(3.4.2) If x,x1,- -+ ,%, is an a-frame at x € |A| then f(x),f(x1),--- ,f(x,) is a b-frame at
f(x) for some b > 5(x), B(x1), -+, B(xp)-
DEFINITION-LEMMA 3.5 Let (f, 5) be an A-chart in B.

If
o= (o) € [] (GB)sey
x€|A|
define
of: |[A| — |B|.
x > oy f(x)

Then of is a morphism A — B of global actions and (of, 3) is an A-chart in B.

PROOF Since oy € (Gp)s), it follows that of(x) € (Xp)gx). Thus the pair (of, 3)
satisfies (3.4.1). To show that of is a morphism of global actions and that (of, 5) is an

A-frame in B, it suffices to show that (3.4.2) is satisfied. Let x,,-- - ,x, be a local frame at
X, € |A|. By definition f(x,), - - - ,f(x,) is a b-frame at f(x,) for some b > 3(x,), -, B(xp)-
Let py,,- -, px, denote respectively the images of oy, -, 0, in (G ), under the canon-

ical homomorphisms (Gp)gx;) — (Gp)p (0 = 1 = p). Clearly py f(x,), -+, px,f(%p) is
a b-frame at py f(x,). But pyf(x;) = oyf(x;) by (2.1.4). Thus of(x,), - ,0f(x,) is a
b-frame at of(x,) and b 2 [(x,),-- -, B(x,). O

DEeFINITION 3.6 Let (f,8) be an A-chart in B. An A-frame at f on (f, ) is a set

f=1,1,---,f, : A — B of morphisms for which there are elements oy,---,0, € []
x€|A|
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(GB)p(x) such that o;f =f; (1 <4 < p). (In view of Lemma (3.5), f =1{,, f1,--- ,f; is also
an A-frame at f; on (f;, 5) for any i (0 <i < p).)

The next lemma will be very useful.

LoCAL-GLOBAL LEMMA 3.7 Let (f, 3) be an A-chart in B. Then f=1£,,f;,--- ,f, is an
A-frame at f on (f, ) & for each x € |A|,f(x),fi(x), - ,f,(x) is a local frame at f(x) in

B(x).
PROOF The assertions are trivial consequences of Lemma (3.5).

DEFINITION 3.8 An A-normal morphism g : B — (' of global actions is one which
preserves A-frames, i.e. if f f;,--- f, is an A-frame at f on (f, §) then gf.gf;,--- ,gf, is an
A-frame at gf on (gf, ) for some A-chart (gf,v) in C. A normal morphism g: B — C
is one which preserves A-frames for any global action A. An A-normal (resp. normal)
isomorphism is an A-normal (resp. normal) morphism which has an A-normal (resp.
normal) inverse.

It is not true in general that an A-normal (resp. normal) morphism which is an isomor-
phism in the usual sense is an A-normal (resp. normal) isomorphism.

LEMMA 3.9 A regular morphism is normal.

PROOF Let n : B — C be a regular morphism. If (f,5) is an A-chart in B then
it follows straightforward that (nxf,ns() is an A-chart in C. Let f,f;,--- ,f, be an A-

frame at f on (f,3) and let 01,---,0, € [] (Gg)sr) such that oif = f; (1 < i < p).
X€E|A|

If 0 = (o) € g!4|(GB)[3(x)a define 1¢(0) = (1a(B(x))(0x)) € gg‘(Gc)%w(x))- Then

ne(oi)(nxf) = nxfi (1 = ¢ < p), by (3.3.4). Thus nxf,nxfi,--- ,nxf, is an A-frame at nxf
on (ana n@ﬂ) O

Next the set Mor(A, B) of all morphisms from a global action A to a global action B is
given the structure of a global action.

DEFINITION 3.10 Let A and B be global actions. Let |Mor(A, B)| denote the set of all
morphisms from A to B. Define a global action

(®(4,8), G(a,B); X(4,B))

whose enveloping set is |Mor(A, B)| as follows. This global action will be denoted by
Mor(A, B). Define

(D(A,B) = {ﬁ : ‘A| — (bB}
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Give ®(4,p) the transitive reflexive relation defined by g < 4’ & f(x) < f'(x) Vx € |A|.
For 8 € ®(4,p), define

(Gap)s = ][ (Gs)swo-

x€E|A|

If B < B, there is for each x € |A| a functorially defined homomorphism (G z)sx) —
(GB)p(x) and therefore a homomorphism (Ga,p))s — (G(a,))sp which is obviously
functiorial in 3. For 3 € ®(4,p), define

(X(a,8))p = {f: |A] = |B||(f, 8) A — chart in B}.

By (3.5), if 0 € (G(a,p))p and f € (X(4,p))s then of € (X4 5))s and so there is an action
of (G(a,B))s on (X(4,p))s. All the conditions for a global action are obviously satisfied
except possibly the compatibility condition (2.1.4) which can be easily checked.

PROPOSITION 3.11 As a functor taking values in global actions, Mor(,) is contravari-
ant and regular over all morphisms in the first variable and covariant over all normal
morphisms in the second variable. More precisely the following holds.

(3.11.1) Let C be a global action and let f : A — B be a morphism of global actions.
Then f defines a regular morphism

n= Mor(f,1¢) : Mor(B,C) — Mor(A,C)

as follows. Define the relation preserving morphism

ne : PB,c)y = Pa,c)-
B Bt

Define the natural transformation

ne : G,o) = Gac)
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where

16(B)(Ge)gs, 18 the diagonal homomorphism

Gosw =~ I (Go)ses

x€|A], f(x)=y

under the convention that the empty product of groups, which can occur on the right
hand side of the arrow above, is the trivial group. Define

nx : |Mor(B,C)| — |Mor(A,C)|.
g gf

Then n = (ne, N, Nx) is a morphism of global actions.

(3.11.2) Let A be a global action and let g : B — C be a morphism of global actions.
Then the function
Mor(14,8) : |Mor(A, B)| — |[Mor(A,C)|

is a morphism Mor(A, B) — Mor(A, C) of global actions < g is A-normal.
PROOF (3.11.1) Straightforward and routine. Details are left to the reader.

(3.11.2) Let (f,5) be an A-chart in B and let f = fy,f;,--- ,f, be an A-frame on (f, 3).
By definition of the term local frame, fy, - - - , f; is also a local 3-frame in the global action
Mor(A, B) and conversely, any local frame in Mor(A, B) is an A-frame on some A-chart
in B. Thus the function Mor(1ya,g) : |[Mor(A, B)| — |Mor(A, C)| is a morphism of global
actions < it preserves A-frames < g is A-normal.[]

REMARK If B is a global action then letting ®5 denote a subcategory of ®p whose
objects exhaust those of ®p, one obtains a global action B = (®p/, Gg, Xg) which at
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first glance looks very much like B, in fact the identity map |B| — |B| defines a regular
morphism B’ — B which is an isomorphism of global actions, but not in general a regular
isomorphism. Consequences of the structural difference between B’ and B can be observed
by comparing the global action Mor(A, B') with the global action Mor(A, B), via the
canonical morphism Mor(A, B') — Mor(A, B). The set of A-charts in B’ is in general
smaller than the set of A-charts in B, which has the consequence that the domain of a
local group (Ga,p))s is in general smaller than the domain of the corresponding group
(Ga,B))p, i-e. (Xa,B))s g (X(a,8))p- Of course the corresponding comparison between
the domain of the local group (G ), and that of (Gg)s is equality, i.e. (Xp/)y = (Xp)p. It
is worth noting that if B satisfies the condition that for each coordinate b, the canonical
homomorphism (Gp), — Perm((Xp);) is injective then the construction in (2.9.3) shows
how to enlarge the set of morphisms in &5 to an absolute maximum for the data (see
(2.9.1)) provided by B.

DEFINITION 3.12 Let g : B — C be a morphism of global actions. A sequence A,,---,A4;
of global actions is called a normal chain of length n for g if g is A;-normal and if for each
i (1 £i¢<n—1), the morphism Mor(1s, ,,---,Mor(la,,g))---): Mor(A;, Mor(A;_4,
-, Mor(Ay,B))---) = Mor(A;, Mor(Ai—1, -+ ,Mor(A,,C))--+) is A;;1-normal. Let
N be a class of global actions. The morphism g is called n-A-normal if every sequence
of n objects from N forms a normal chain for g. The morphism g is called N/'-normal
(resp. oco-A-normal) if it is 1-A/-normal (resp. n-A-normal for all n > 0). If N =
{A} (resp. N = all global actions), we shall write co-A-normal (resp. oco-normal) in
place of co-A-normal.

If the expression t-morphism denotes anyone of the notions of normality above or the
notion of regularity then a t-isomorphism is a t-morphism which has a t-morphism as its
inverse.

In order to associate to a morphism g: A — B of global actions a long exact sequence of
algebraic homotopy groups, we shall need that g is co-L-normal where L is the line action
defined in Example (2.4).

LEmMMA 3.13 If g : B — C is a regular morphism then for any global action A, the
morphism Mor(la,g) : Mor(A, B) — Mor(A,C) is regular. Thus g is co-normal.

PROOF By (3.9)and (3.11.2), the morphism Mor(la,g) : Mor(A,B) — Mor(A,C)
exists. Let (1s,7ne,nx = g) be the regular structure of g. We define a regular structure
(o, phg, ox = Mor(14,8)) for Mor(1y4,g) as follows.

Define the coordinate morphism
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po : Pa,B) = Pac).
B ne

Define the natural transformation

pa 2 Gea,p) — Ga,c)

by the commutative diagram

va(B)

(Ga,p))s (G(A,0))ua(s)

IT (Ga,B))sx) [T (Gac))ne (s

x€elA| [T ne(B(x)) x€l4]
x€|A|

One checks straightforward that (ue, e, Mor(1a,g)) is a regular morphism.

That g is oo-normal follows by a trivial induction argument from the result just proved.
O

DEFINITION 3.14 Let N denote the name of a kind of morphism defined in (3.12). A
global action is called an N action if it has the property that every morphism to it is an
N morphism. For example an co -normal action has the property that every morphism
to it is co-normal.

For the results below on the exponential law, the notion of product is needed. We construct
this next.

DEFINITION-LEMMA 3.15 Let A and B be global actions. Their
product A x B is constructed as follows.

Ppup =Py x Pp

and (o, 8) < (o, ') & a £ o'andf < f'.
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Gaxp=GaxGp
|Ax B|=|A| x |B|
XAxB:XA XXB.

For any coordinate (o, 5) € ®ax g, there is an obvious action of (G ax8)(a,8) 00 (XaxB)(a,8):
namely the one defined coordinatewise. One checks easily that A x B satisfies the universal
property of a product.

The following notation will be used below. If S and T are sets, let
(S, T) = MOT((sets)) (S, T).

If U is also a set then there is a canonical isomorphism

~

(3.16) E-HUUSKI)T)
f— Ef

of sets such that E f(u,s) = f(u)(s). Its inverse is obviously the function

E':(UxS,T) — (U,(S,T))
fr—FE'f

where (E'f(u))(s) = f(u, s).
DEFINITION 3.17 Let A, B and C be global actions. We define a regular morphism
E : Mor(A,Mor(B,C)) - Mor(A x B,C)

as follows. Denote the structural components of the global action Mor(A, Mor(B,C)) by
((I)(A,(B,C))a G(A,(B,C))a X(A,(B,c))). Define

Eg : ®a,8,0)) ———— Qaxn,0)

(141, (B, @¢)) (1A} x [BJ, @¢)
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to be the set theoretic exponential isomorphism (3.16). Clearly Eg preserves the transitive
reflexive relation. Define the natural transformation

Ec : G s.c)) = (Gaxp,c))Es()

such that

Ec(a) : (Gas,0))a (GaxB,c))Eala)

H ( ( )(y)) H GC) (Boa)(x,y)

xel|A| yEIBI (x.y)€|A|x|B|

maps the factor (G¢)a(x)(y) via the identity map onto the factor (G¢)(mga)xy) = (Gc)amx)y)-
One verifies easily that the composite mapping |Mor(A, Mor(B,C))| — (JAl, (|B|, |C]))
@ > (3.16) >> (|]A| x |B|,|C|) takes its image in [Mor(A x B,C)| and we define

Ex : |[Mor(A,Mor(B,C))| = |Mor(A x B,C)|

to be the resulting mapping. One checks straightforward that

E = (E<I>7 EG, EX)

is a regular morphism. (It fails in general to be an isomorphism (resp. regular isomor-
phism) because Ex is not necessarily surjective (resp. Ex ((X(a,B,c)))a) is not necessarily

all of (X(4x5,0))Fa(a))-

Let A,,---,A; be an arbitrary sequence of global actions. Iterating the procedure above,
one defines for any n > 2 a regular morphism

E, : Mor(A,, Mor(An_1,---,Mor(A;,C))---) = Mor(A, x --- x A;,C)

as follows. For m = 2, the morphism is defined above. Suppose n > 2 and that the
morphism has been defined for every natural number N where 2 < N < n — 1. Let
E,,_, denote the morphism for the sequence A,_1,---,A;. Define F, for the sequence
Ap, A1, -+, Ay as the composite of the regular morphism Mor(14,, E,—1) (see (3.13))
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and the regular morphism Ey : Mor(A,, Mor(A,—1 X -+ x Ay, B)) = Mor(A4, x -+ X
Ay, B).

The next definition is made to cope with the problem of finding an inverse to the morphism
E, above.

DEFINITION 3.18 Let P be a class of global actions closed under finite products. A
global action C is called co-P-exponential if the morphism F : Mor(A, Mor(B,C)) —
Mor(A x B,C) is an oo-P-normal isomorphism for all pairs A,B € P. C is called
regularly oco-P-exponential if F is a regular isomorphism for all pairs A, B € P. If
P = all finite products of A (resp. P = all global actions A such that |A| = Uyca, Xa)
then C is called co-A-exponential (resp. co-exponential) if it is co-P-exponential.

LEMMA 3.19 Suppose the global action C is oco-P-exponential (resp. regularly oco-P-
exponential). Then for any sequence A,,---, A; € P such that n > 2, the morphism E,
in (3.17) is an co-P-normal (resp. regular) isomorphism.

PROOF For n = 2, the conclusion holds by hypothesis. Proceeding by induction on n,
we can assume that the result holds for n — 1. By definition E,, = EsMor(1,E,_1). By
induction E, and Mor(1l, E,_;) are co-P—isomorphisms (resp. regular isomorphisms).
The conclusion of the lemma follows. [

The next condition provides a useful criterion for guaranteeing that a global action is
oo-normal and either oo-exponential or regularly co-exponential.

DEFINITION 3.20 Let A be a global action. If A € &4, let &4 22 = {a € Dyla >
BY B € A}. A is called an strong infimum action if for any finite subset A € &4
and any finite nonempty set U € |A| such that (X4)s N U # @ for each 8 € A, the set
{a € B4 22|U an o — frame} is either empty or contains an initial element. A is called
an infimum action if it satisfies the condition above at least for A = & (empty set).

The next lemma provides a condition guaranteeing that a global action is a strong infimum
action and the lemma thereafter proves the important result that if the target object in
a morphism space is an infimum (resp. strong infimum) action then morphism space
inherits this property.

Any global action A has the property that if o and 8 are coordinates such that o < 8
then for each x € X, N X3, (Ga)a(x) & (Ga)s(x). The next lemma introduces the reverse
implication coupled with a certain intersection property as a sufficient condition for A
being a strong infimum action.

LEMMA 3.21 Let A be a global action. Consider the following conditions.

(3.21.1) Let o, B € ®4. Then o £ < X,NXp # ¢ and for all x € X,N X, (Ga)a(x) &
(Ga)s(x)-
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(3.21.2) Let o, B € ®4. Then o < f & X,NXp # ¢ and Ix € X,NXp such that (G4)(x)
€ (Ga)p(x).

(3.21.3) Let ¥ € @ 4. Then for any x € NpcwXa;, Nacw (Ga)a(x) = (Ga)a(x)

for some B € @y .

The assertion of the lemma is that if A satisfies (3.21.2) and (3.21.3) then it is a strong
infimum action.

PROOF Let U be alocal frame. Let A € ®,4 be a finite set such that for each § € A, XsN
U# ¢ Let U = {ae ®,2°%|U local a—frame}. If u € U then U € Naey(Ga)alu) =
(Ga)p(u) for some f € @4, by (3.21.3). Clearly U is a local f—frame. Since (G4)p(u) &
(G 4)a(u) it follows from (3.21.2) that § < «. This holds of course for all « € ¥. Thus we
are finished if A = ¢. If A # ¢, we must show that 6 < 3 for any 6 € A. Let u € XsNU.
Since § £ « for any o € U, it follows from (3.21.2) that (Ga)s(u) € Nacw(Ga)a(u) =

(Ga)p(u). Thus 6 < g. O

REMARK Where as the simplicial actions ¢l(S) and fgl(S) in (2.5) and any Volodin model
(2.3) satisfy the strong infimum condition, only the Volodin model satisfies the conditions
in the lemma above.

LEMMA 3.22 If B is an infimum (resp. strong infimum) action then for any global action
A, Mor(A, B) is an infimum (resp. strong infimum) action.

PROOF Let U € |[Mor(A, B)| be a finite nonempty subset. Let A & ®4 gy be a finite
subset such that for each 6 € A, (X(4,8))s NU # ¢. Let ¥ = { € ®(4,)|U a f—frame,
d £ BV e A} and assume ¥ # ¢. We must show that U has an initial element. For each
x € |A], let U(x) = {f(x)| f € U},A(x) = {0(x)| 6 € A}, and ¥(x) = {B(x)| 8 € ¥}.
By hypothesis, for each x € |A| there is a coordinate by € ®p such that U(x) is a by —
frame and 0(x) < by < fB(x) for all 6 € Aand all € U. Let v : |[A] = Pp,x — by.
Clearly 6 < v < fforall § € Aandall 5 € ¥. Let u € U. To complete the proof, it
suffices to show that (u,7) is an A—chart. Let 8 € ¥. Since (u, ) is an A—chart and
v £ B, it follows trivially that (u,~y) is an A—chart. O

The next theorem is a main result.

THEOREM 3.23 An infimum action is co—normal and co—exponential. A strong infimum
action is co—normal and regularly co—exponential.

The proof of Theorem 3.23 will use the next lemma several times.

LEMMA 3.24 Let A and B be global actions. Let (f,3) be an A—chart in B and let
f = fo,f1,--+, f, be an A—frame at (f,5). If xo,---,x, € |A| is a local frame in A
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then {f;(x;)| 0<i<p, 0= j < ¢} is a local b—frame for some b € ®p such that b =
ﬁxoa"' aﬂxq-

PROOF Since (fy, ) is an A-chart in B, it follows by definition that f3(xo), - - - , fo(x,) is a
local b-frame for some b € ®p such that b = By, -, Bx,- Thus (Gp)s acts transitively on
fo(x0),- - - ,fo(x4). To complete the proof, it suffices to show that (Gp), acts transitively
on {fj(x;)| 0= i< p, 0=j =< q}. Since fy,--- ,f, is an A —frame at (f, 3), (G(4,p))s acts
transitively on fy, - - - , f,. Thus for any x € |A|, (Gg)g, acts transitively on fy(x), - - - , f,(x).
Using the canonical homomorphism (G B)ﬂXj — (GB)p and the observation that fy(x;) €
(XB)s, one concludes that (Gpg), acts transitively on fy(x;),---,f,(x;). Since this holds
for each j such that 0 £ j < ¢ and since (Gp), acts transitively on fy(xo), - - -, f,(x,), it
follows that (Gp), acts transitively on {f;(x;)|0<i<p, 0= j < g¢}. O

PROOF of (3.23) Let C be an infimum action. We shall show that C is co—normal.
Lemma 3.22 reduces the proof to showing that C' is A—normal for any global action A.
Let g : B — C be a morphism of global actions. Let (f, ) be on A — chart in B. Let
f=1y,f,---,f, be an A—frame at (f, 3). We must show that gfy, - - , gf, is an A—frame
in C. We construct first a coordinate (v : |A| = ®¢) € P4,y such that (¢gf, ) is an
A—chart in C.

For x € |A], let U(x) = {gfo(x),--- , ¢9f,(x)}. By the Local-Global Lemma 3.7, f5(x), - - -,
f,(x) is a local frame in B. Since g is a morphism, it follows that U(x) is a local frame
in C. By the infimum condition for C, the set ¥(x) = {c¢ € ®¢|U(x) a ¢ — frame} has
an initial element c,. Define v : |[A| = ®¢,x — ¢. We show that (gf,~) is an A—chart
in C. Let xq,--,x%, be a local frame in A. By (3.24), {fi(x;)| 0 < i< p, 0 =<5 < ¢}
is a local frame in B. Thus {¢fi(x;)| 0 < ¢ < p, 0 £ j < ¢} is a local c—frame for
some ¢ € ®¢. Clearly y(x;) = ¢y; < ¢, because c,; is initial in ¥(x;). This shows that
(gf,7) is an A—chart in C. By the Local-Global Lemma 3.7, f;, - - -, f, is an A—frame at
(f,7) © fo(x),- -+ ,f(x) is a local y(x)—frame for all x € |A|. But the right hand side of
the equivalence holds by definition of y(x). This completes the proof that C' is A—normal.

Let C denote again an infimum action. We shall show that C is co—exponential. Let
A and B be global actions such that |A| = Uyea,(X4)a and |B| = Ugeo, (Xp)s. Let E
Mor(A, Mor(B,C)) — Mor(A x B,C) be the morphism in (3.17). We shall prove
that F has an oo—normal inverse. By (3.22), Mor(A, Mor(B,(C)) is an infimum ac-
tion and thus by the first assertion of the current theorem, it must be co—normal. Thus
if an inverse to F exists, it must be co—normal. So it suffices to show that F has an
inverse. There is an obvious candidate for an inverse, namely the set theoretic map
E':|Mor(Ax B,C)| — (4,(B,C)),f — E'f, where (E'f(x))(y) = f(x,y). We shall show
that F'f € |[Mor(A, Mor(B,(C))| and that the resulting map E' : [Mor(A x B,C)| —
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|Mor(A, Mor(B,(C))| is a morphism Mor(A x B,C) — Mor(A, Mor(B,C)) of global
actions. From the set theoretic definition of E’, it is obvious that E’ will be inverse to F.

We prove that E'f : |A| — (B, C) is a morphism A — Mor(B, C) of global actions. There
are two properties to verify. First, if x € |A| then E'f(x) : |B| — |C|, y — (E'f{(x))(y), is a
morphism B — C of global actions. Second, the resulting map E'f: |A| — |Mor(B,C)|,x
— E'f(x), is a morphism A — Mor(B, C) of global actions.

Let x € |A| and let yp, - ,y, be a local frame in B. Then x is a local frame in A
because |A| = Ugea,(Xa)o and so (x,y0), -, (X,y,) is a local frame in A x B. Thus
f(x, y0), -+, f(x,y,) is a local frame in C. But f(x,y;) = (E'f(x))(y;) (0 £ j < ¢). Thus
(E'f(x))(vo), -+ , (E'f(x))(y,) is a local frame in C. Thus E'f(x) : B — C' is a morphism
of global actions.

Let xp,---,X, be a local frame in A. We shall verify that E'f(xo),---,E'f(x,) is a
local frame in Mor(B,C). For each element y € |B|,y is a local frame in B be-

cause |B| = Ugea,(Xp)s. Thus (x0,v), -, (Xp,y) is a local frame in A x B. Thus
f(xo0,y), -+ ,f(xp,y) is a local frame in C. By the infimum condition for C, we know
that the set {c¢ € ®¢| f(x0,¥), - ,f(xp,y) a c—frame} has an initial element c,. Define

v : |B| = ®¢,y — ¢,. We shall show that (E'f(x¢),7) is a B — chart in C. Suppose this
has been done. It follows then from the Local-Global Lemma 3.7 that E'f(x,), - - - , E'f(x,)
is a B—{frame on (E'f(xg),7). But then by definition, E'f(xo), - - - , E'f(x,) is a local frame
in Mor(B, (), which is what we have to verify.

We show now that (E'f(xo),7y) is a B—chart in C. Let yo,---,y, be a local frame in
B. We must show that (E'f(x0))(vo),- -, (E"f(x0))(y,) is a local c—frame for some ¢ €
®¢ such that ¢ > y(vo),-- -, 7(y,)- Since xo,---,X, is a local frame in A and yo,--- ,y,
a local frame in B, {(x;,y;)]0=i<p, 0=j=¢q} is a local frame in A x B. Thus
{f(x;,4;)] 0< i < p, 0 < j < ¢} is a local c—frame for some ¢ € &¢. But by definition of
v,¢ > (y,) for all j such that 0 < j < gq.

Next we show that the function E' : |Mor(A x B,C)| — |Mor(A, Mor(B,C))| is a
morphism Mor(A x B,C) — Mor(A, Mor(B,C)) of global actions. Let f = fo,fj,
-, f, € |Mor(A x B,C)| be alocal frame in Mor(A x B,C). We must show that
E'fy,---, E'fy is a local frame in Mor(A, Mor(B,C)). For each element (x,y) in A x
B, fo(x,y), -+ ,f,(x,y) is a local frame in C, by the Local-Global Lemma 3.7. By the
infimum condition for C, the set {c € ®¢| fo(x,v), - ,f(x,y) a ¢ — frame} has an initial
element c(xy). Define v : |A| = (|B], ®¢),x = c(,_)- We claim that (E'fy,v) is an A —
chart in Mor(B,C). It will follow then from the definition of v and the Local-Global
Lemma 3.7 that E'fy,---, E'f, is an A — frame at (E'f,7). But this says by definition
that E'fy,---, E'f, is a local frame in Mor(A, Mor(B,C)) and we are finished.
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We show now that (E'f,7) is an A—chart. Let xo,---,x, be a local frame in A. We
must show that E'f(xy),- - E'f(x,) is a local é—frame in Mor(B,C) for some ¢ : |B| —
®¢ such that 0 = y(xo), -+ ,7v(x,). Since f = fo,f;,--- , £, is a local frame in Mor(A x
B, C), there is an Ax B— chart (fy, €) in C such that f, - - - ,f, is an Ax B— frame at (fo, €).
For any fixed y € |B|, (fo(,v),e(,y)) is an A—chart in C and fy(,y),--- ,f,(,y) is an A—
frame at (fo(,y),e(,y)). Since xq, - - - , X4 is a local frame in A, it follows from (3.24) that
the set {fi(x;,y)] 0 £ i < p, 0 < j < ¢} is a local frame in C. Since C satisfies the
infimum condition, the set {c € ®¢|{fi(x;,y)| 0 < i< p, 0= j < g} alocal frame in C}
has an initial element d,. Clearly d, = (v(x;))(y) (0 £ j < g). Define ¢ : |B| —
Oc,y — d(y). Thus 6 =2 vy(x;) (0 £ j < ¢). Since (Ff(x;))(y) = fo(xj,y) (0 = j =
g) and {fi(x;,y)| 0= i <p, 0= j < q}is a 6(y)—frame, it is clear that (Ff(x¢))(y),---,
(Ff(x4))(y) is a 6(y)—frame. By the Local-Global Lemma 3.7, Ff(xo),--- , Ff(x,) is a B—
frame at (Ff(x¢),0) provided that (Ff(xo), ) is a B—chart in C. We show this next.

Let yo, - - - , yr be alocal frame in B. We must show that (Ff(x0))(vo), -, (Ff(x0))(y,) isa
c—frame for some ¢ € ®¢ such that ¢ = §(yo), -+, 0(y,). Since theset {(x;,yx)[ 0= j < ¢,
0= k=<r}isalocal framein AxB and fy, - - ,f, is an Ax B—frame in C, it follows from
(3.24) that {fi(x;,yx)| 0 i<p, 05j<¢q, 0=k =r} is a c-frame for some ¢ € P¢.
From the definition of §, it is obvious that ¢ = 0(yo),- - ,0(y,). Since (Ff(xo))(yx) =
fo(x0,yk) (0 =k = r) and {fi(x;,y%)| 0S¢ <p, 055X ¢q, 0k S r}is ac-frame, it is
clear that (Ff(xo))(vo),- -, (Ff(x0))(yr) is a c—frame. This completes the proof that C
is co—exponential.

Suppose finally that C is a strong infimum action. We shall show that C is regularly
oo—exponential. Our task is to show that the morphism E : Mor(A, Mor(B,C)) —
Mor(A x B,C) above has a regular inverse E’. There are obvious candidates for the
components (Ey, Ef, E') of E'. Define

(3.25) E% : Mor(A x B,C)| — |[Mor(A, Mor(B,C))|
f— E'f
where f — E'f is the map constructed above. Define
By : Daxnc) — P(a8,0)
as the set theoretic inverse (see (3.16)) of Es. Define the natural transformation
Eg : Guxs.e) — (Gas.o))e()
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such that

Eg(a) : (Gaxs,c))a (G4, B, (o)

Heweraxim(Gelagy  Teta (yepm (Ge) mp@eow)

maps the factor (G¢)a(xy) Via the identity map to the factor (G¢) et ()@ = (G0)ax

If E' is a regular morphism then it is obvious from its construction that it is the regular
inverse to the regular morphism E.

All the properties for E’' to be a regular morphism are obvious, except the one that
ES((X(AXB,C))a - (X(A,(B,C)))Eg,(a) for any a € ®axB,c)- To establish this, it is enough
to show that if (f,«) is an (A x B)-chart in C then (E%(f), E5(a)) is an A—chart in
Mor(B,C). Let xq, - -+ ,x, be alocal frame in A. We must show that E% (f)(x¢), - - - , E%(f)
(xp) is a y — frame in Mor(B,C) for some 7y : |[B| — ®¢ such that v 2 Ejf(a)(x;) (0 <
i £ p). For each y € |B|, the elements (x¢,¥), - ,(xp,y) form a local frame in
A x B. Thus f(xo,¥), - ,f(xp,y) is a local frame in C. By the strong infimum condition
for C, the set {c € ®¢| f(x0,y), -+ ,f(xp,y) a c—frame, c = E§(x;)(y) (0 =14 < p)} has an
initial element ¢,. Define v : |B| = ®¢, y — ¢,. Clearly v 2 Ej(c)(x;) (0 <4 < p). We
shall show that (E’ (f)(x0),7) is a B—chart in C. Suppose this has been done. It follows
then from the Local-Global Lemma 3.7 and the fact that E' (f)(x0)(y), - - - , Ex (f)(x,) (v) is
a yy)—frame for each y € |B| that E'(f)(xo),- -, E(f) (xp) is a B—frame at (E'y (f)(x0),
7). But this says by definition that E'% (f)(xo),- - - , E% (f)(xp) is a y—frame in Mor (B, C).
This would complete the proof of the theorem.

We show now that (E' (f)(xg),) is a B—chart in C. Let yq,-- -, y, be a local frame in B.
Then {(x;,y;)| 0= i< p, 0 <5 < g} is alocal frame in A x B. Thus {f(x;,y,)| 0 <7 < p,
0 =< j =< ¢} is a local c—frame for some ¢ € ®¢ such that ¢ 2 a(x;,y;) = E(a)(x:)(y;)
(0<i<p, 0<j<q). Since By(B)(xo)(y) = [(xo,x;) (0= q), it is clear that
E'(£)(x0)(Y0), -+, E' (f)(x%0) (yq) is a c-frame and ¢ = E(a)(x0)(y;) (0=j =< ¢q). O

4 Relative actions and their morphism spaces

The homotopy theory of global actions will require pointed actions and more generally
relative actions. These concepts will be introduced next. They are subtler than their
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topological counterparts and more care must be taken to define and develop them. The
main result of the section is a relative version of the exponential law proved in the previous
section.

The organization and development of the current section will follow closely that of the
previous.

DEFINITION 4.1 Let A be a global action. A subaction of A is a global action B such that
|B| € |A| and the inclusion above defines a morphism B — A of a global actions. If B is a
subaction of A then we write B € A.Let n € NU{oco} and let V/ be a class of global actions.
A subaction B € A is called n-A-normal (resp. regular) if the canonical morphism
B — A is n-N-normal (resp. regular). A proper subaction is a regular subaction such
that the canonical morphism ®p — ®,4 is injective. A standard subaction is a proper
one such that &5 = {a € ®4|(X4a)a N |B| # ¢}, Pp is a full subcategory of @4, and for
all @ € ®p,(Xp)o = (X4)a N|B| and (Gg)y = Stabg,((XB)a) :=1{0 € (Ga)alo(XB)a =
(XB)a}'

The next lemma is obvious.

LEMMA 4.2 Let A be a global action. If Y € |A| then there is a unique global action
B such that |B| =Y and B is a standard subaction of A.

DEFINITION 4.3 Let A be a global action. A base point for A is a subaction B € A
such that |B| has precisely one point. Any base point is an co—normal subaction. A base
point is called respectively regular, proper, or standard it it is such as a subaction.

DEFINITION 4.4 A relative global action A is an ordered pair (A1), A®) of global
actions sucht that A® is an co—normal subaction of A(. It is called respectively regular,
proper, or standard if the subaction A® C A( is such.

DEFINTION 4.5 A pointed global action is a relative global action A = (A1), A®)
such that A® is a base point for A, A pointed action is called respectively regular,
proper, or standard if its base point is such.

DEFINITION 4.6 A morphism f : A — B of relative actions is a morphism f : A —
BW of global actions such that f takes |A®)| to |B®| and defines a morphism A® — B
of global actions. A morphism f : A — B of relative actions is called regular if the
morphisms f : A® — B® (; = 1,2) of global actions carry a fixed regular structure.

DEFINITION 4.7 Let A be a relative action. A pair U = (UM, U®) of local frames
in A is an ordered pair of local frames U® in A® (; = 1,2) such that U® C UM, A
pair (UM, U®) is called full, if U® = UMD N |A®)|. A pair (UMD, U?) is said to be at
(M, a®@)e & ,0)x P 4, if U is alocal frame at o). A pair (U1, U®@) of local frames
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at (o, a®) is called a relative local frame at (o, a) or an (a®, a(®)— relative
local frame if (G 42) o (u) € (G 40)),m (1) for some and therefore any u € U®).

The concept of relative A-chart in B where A and B are relative actions is needed to put
a global structure on the set M or(A B) of all morphisms from A to B. We introduce this
notion next. If [A®)| = ¢ = |B®)|, it reduces to the concept of chart for global actions.

DEFINITION 4.8 Let A and B be relative actions. A relative A-chart, or snnply A-
chart, in B is a morphism f : A — B of relative actions and a function 8 : |[A®| —
® 50y U Dy such that the following conditions are satisfied. Set

|A(1)\<2)\ = |A(1)\ \ |A(2)\.

(4.8.0) Then f3 takes |[AM\@)| to ® 5y and |AP)| to @ 5.

(4.8.1) If x € |[AM\®)| then f(x) € (Xpm)pw)- If x € [AP)| then f(x) € (Xp®)pw)-
(

t

4.8.2) If (UM, U?) is a full pair of local frames in A then (fUW fU®) is a rela-
ive local frame at some (b)), b)) € ®pza) x ®ge such that f(u) < b for all u €
N\U®P, and B(u) < b@ for all u € U?.

DEFINITION-LEMMA 4.9 Let A and B be relative actions. Let (f, ) be an A-chart in B.
It

o= (OX) € H GB(l) )y X H GB(z)

x€|AO\@)| x€|A®)|

define

of : |[AD| = |BW.
x — oy f(x)

Then of is a morphism A — B of relative actions and (of, ) is an A-chart in B.

PROOQF It is clear that (of, 3) satisfies (4.8.0) and (4.8.1). To show that of is a morphism
of relative actions and that (of, 8) is an A-frame in B, it suffices to show that (4.8.2)
is satisfied. Let ({xq, - ,%p},{X0,***,%X¢}), ¢ < p, be a full pair of local frames in
A. By definition f(xo), -, f(x,) is a b)-frame for some b)) € ®zu) such that b» >
B(xg41), -+, B(xp) and f(xg), -+, f(x,) is a b@-frame for some b® € ®pe) such that
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b 2 B(xq), -, B(xq) and (Gpe )y f(x0) € (Gpw)pw f(%0). It follows that oy, f(xo),
ooy, f(xp) is a bD-frame, that oy, f(Xo), - -+ , 0%, f(X,) is @ b -frame, and (G )ye (04
f(x0)) & (Gpm ) (0%, f (%0))- T

DEFINITION 4.10 Let A and B be relative actions. Let (f,3) be an A-chart in B. A
(relative) A-frame at f on (f,3) is a set f =1f,f;,---,f, : A — B of morphisms for

which there are elements oy,---,0, € [[ (Gpw)sx) X I (Gpe)sx) such that
x€|A\®)| XE|A®)|

oif =1 (1 <4< p). (In view of Lemma 4.9, f =f, f1,--- ,f, is also an A-frame at f; on

(£, 8) for any i (0 < i < p).)

The next lemma will be very useful, just as the analogous lemma in §3.

LocAL-GLOBAL LEMMA 4.11 Let A and B be relative actions. Let (f, 5) be an A-chart in
B. Then f = f;,f},--- ,f, is an A-frame at fon (f, 8) & for each x € [AW|,{(x),f,(x),- -,
f,(x) is a local (not relative local) frame at f(x) in 4(x).

PROOF The assertions are trivial consequences of Lemma 4.9.

DEFINITION 4.12 Let A, B and C be relative actions. An A- normal morphism g: B —
C of relative actions is one such that g : B®® — C® preserves A®Y) — framesand g : B — C
preserves A-frames, i.e. if f,f;,---  f; is an A-frame at f on (f, ) then gf,gf;,--- ,gf, is an
A-frame at gf on (gf, ) for some A-chart (gf,v) in C. A normal morphism g: B — C of
relative actions is one which preserves A-frames for any relative action A. An A-normal
(resp. normal) isomorphism is an A-normal (resp. normal) morphism which has an
A-normal (resp. normal) inverse.

It is not true in general that an A-normal (resp. normal) morphism which is an isomor-
phism in the usual sense is an A-normal (resp. normal) isomorphism.

LEMMA 4.13 A regular morphism of relative actions is normal.

PROOQOF Let n: B — C be a regular morphism of relative actions. If (f, 3) is an A-chart
in B then it follows straightforward that (nxf,nsf) is an A-chart in C. Let f,f;,--- ,f,
be an A-frame at f on (f,3) and let 0y,---,0p, € [ (Gpw)sx) X I (Gpe»)sw

xE[AND)| XE[A®)|
such that o;f = f; (1 § p) If o = (OX) € H (GB(1))5(X) X H (GB(z))g(X),
KE[ANG)| <E|A®)|

define 7¢(0) = (nc (8

(x
77G(Uz)(77xf) = nxf; ( <
on (nxf,neB). O

Next the set Mor(A, B) of all morphisms from a relative action A to a relative action B
is given the structure of a relative action.

Do) € IT (Gowlnyse X 11 (Goe)n,m)pe0 - Then

(o
KE[AN)| XE[AQ)]
< p), by (3.3.4). Thus nxf,nxfi,--- ,nxf, is an A-frame at nxf
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DEFINITION 4.14 Let A and B be relative actions. Define a relative action

Mor(A, B) = (Mor(A, B)Y, Mor(A, B)®)

as follows. Mor(A,B)? = Mor(AM B@). Mor(A, B)Y is the global action whose
enveloping set is |[Mor(A, B)| and whose global structure

(®(a,8), Ga,By, X(a,8)0)

is defined as follows. Define

(I)(A,B)(l) = {ﬂ : |A‘ — ®pay U @B(z)‘(4.8.0) satisﬁed}.

Give ®(4 gy the transitive reflexive relation defined by 8 = ' & B(x) = B'(x) Vx €
|AM|. For B € ®(4,p)w, define

Gupmls=- JI Gsw)swx [I (Gse)sew-

XE|AM\®)| X€|A®)|

If 3 < B, there is for each x € [AM\?)| a functorially defined homomorphism (G g ) g —
(Gpm)p(x) and for each x € |A®)| a functorially defined homomorphism (G ge)) g —
(Gp®)p () and therefore a homomorphism (G(a,p))s — (G(a,p))s Which is obviously
functiorial in 8. For € @4 o), define

(Xeapm)p =A{f: [AD| - [BW] | (f, 8) A— chart in B}.

By (4.9),if 0 € (G4,5m)p and f € (X4 pyw))p then of € (X4 pyn))p and so there is an ac-
tion of (G4 gym)s on (X4 gy )p- It is easily established that (Mor(4, B)Y Mor(A, B)®)
satisfies all the conditions for a relative action.

PROPOSITION 4.15 As a functor taking values in relative actions, Mor(,) is contravari-
ant and regular over all morphisms in the first variable, under the condition that only

regular relative actions are allowed in the second variable, and covariant over all normal
morphisms in the second variable. More precisely the following holds.

(4.15.1) Let C be a regular relative action and let f: A — B be a morphism of relative
actions. Then f defines a regular morphism

32



n= Mor(f,1¢) : Mor(B,C) — Mor(A,C)

as follows. Let v : ®,a) — P,» denote the canonical morphism determined by the
regularity of C. Define the relation preserving morphism

Ne@) ‘I’(B,C)(l) - (I)(A,C)(l)-

B+ Bof
where 8 of is defined by
B(f(x)) if x € \A(l)\@)\ and f(x) ¢ B®
Bof(x) =< va(f(x)) if x € |[AM\?)| and f(x) € B®
B(f(x)) if x € |A@)],
Define the natural transformation

Na) - G(B,C)(l) — G(A,C)(l)

by
nem (B) : (Gs,oym)s (Ga,c)0)ng 0y (8
[I (Gew)swy x Tl (Geo)p) I[I (Gew)potg XTI (Geoe)potx)
ye| BONG)| ye|B®| €| AGNG)| €| A®)]
where

Na® (B)G ) =11y ¢ |B®| and i = 2 if y € |B®|) is the diagonal homomorphism

(GC(2))[3(y) — H (GC’(i))ﬂof(x)a
xe|AM |, f(x)=y

under the convention that the empty product of groups, which can occur on the right
hand side of the arrow above, is the trivial group. One checks straightforward that
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Y = (new, New, Nx)

defines a regular morphism

nV: Mor(B,C)") — Mor(A,C)M

of global actions and that n(® = nx]| Mor(B,c) defines a morphism

n® : Mor(B,C)® — Mor(A,C)®

of global actions. Use (3.11.1) to provide n® with a regular structure. One checks
routinely then that

) (2))

n=n"n

is a regular morphism

n: Mor(B,C) — Mor(A,C)

of relative actions. Moreover, Mor(B,C) and Mor(A,C) are regular relative actions
whose regular structures is induced in the obvious way from that of C.

(4.15.2) Let A be a relative action and let g : B — C be a morphism of relative actions.
Then the function

Mor(14,8) : |[Mor(A, B)Y| — |Mor(4,C)Y|

is a morphism Mor(A, B) — Mor(A, C) of global actions < g is A-normal.
PROOF (4.15.1) Nothing has been left to prove.

(4.15.2) Let (f,5) be an A-chart in B and let f = fy,f;,--- ,f, be an A-frame on (f, 3).
Let (f', 3') be an A®M)-chart in B® and let f' = f},f!, - - - ,f}, be an A®)_frame on (f, 3').
By definition of the term local frame, fy, - - - , f; is also a local S-frame in the global action
Mor(A, B)Y) and conversely, any local frame in Mor(A, B)®") is an A-frame on some A-
chart in B. Similarly f, - - -, f}, is a local §'-frame in the global action Mor(A, B)®? and

conversely, any local frame in Mor(A, B)® is an A®)-frame on some A()-chart in B®).
Thus the function Mor(14,g) : |Mor(A, B)Y| — |Mor(A,C)"| defines a morphism
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Mor(A,B) — Mor(A,C) of relative actions < Mor(14,g) preserves A-frames and
Mor(14,9)? : |Mor(A, B)®| — |[Mor(A,C)?| preserves Al-frames < g is A-normal.
U

DEFINITION 4.16 Let ¢ : B — (' be a morphism of relative actions. A sequence
A,,---, Ay of relative actions is called a normal chain of length n for g if g is A;-normal
and if for each 7 (1 £ ¢ £ n — 1), the morphism Mor(ls,_,,---,Mor(1la,,9))---) :
Mor(A;, Mor(A;_1,--- ,Mor(Ay,B))---) — Mor(A;, Mor(A;_1,---,Mor(A,,C))---)
is A;;1-normal. Let A be a class of relative actions. The morphism g is called n-AN -
normal if every sequence of n objects from N forms a normal chain for g. The morphism
g is called A-normal (resp. co- N -normal) if it is 1-A/-normal (resp. n-A/-normal for
all n > 0). If N = {A} (resp. N = all relative actions), we shall write co-A-normal
(resp. co-normal) in place of co-N-normal.

If the expression t-morphism denotes anyone of the notions of normality above or the
notion of regularity then a t-isomorphism is a t-morphism which has a t-morphism as its
inverse.

LEMMA 4.17 If g: B — (' is a regular morphism of relative actions then for any relative
action A, the morphism Mor(1la,g) : Mor(A,B) — Mor(A,C) is regular. Thus g is
oo-normal.

PROOF By (4.13)and (4.15.2), the morphism Mor(14,8) : Mor(A,B) — Mor(A,C)
exists. Let (1s,7ng,Nx = g) be the regular structure of g. We define a regular structure
(Ko, fig, bx = Mor(14,g)) for Mor(14,g) as follows.

Define the coordinate morphisms

Pow = g pyw = Lo cyw,
B = e

po : Pa gy = Pacy@-
B = neef

Define the natural transformation

Mg : G(A’B)(l) — G(A,C)(l)

by the commutative diagram
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Hg1)(B)

G(A B) (1) (G(A,C)(l))uq,a) (8)
[[ (Ggw)s I[I (Geo)aey . 11 (Gew)n,meen X I (Gee ), (B(x))
x€|AM\@)| X€|A(2)\ T xe|AM\@)| x€|A?)|

where

T = H naw (B H new (8

XE[AON@)| xE[A®)|

and define the natural transformation

Ha@ : G(A,B)(z) — G(A,C)(z)
as in the proof of (3.13).
One checks straightforward that (pe, g, Mor(1a,g)) is a regular morphism.

That g is co-normal follows by a trivial induction argument from the result just proved.
O

DEFINITION 4.18 Let N denote the name of a kind of morphism defined in (4.16). A
relative action is called an N action if it has the property that every morphism to it is
an N morphism.

The following definition is needed for the exponential law.

DEFINITION 4.19 Let A and B be relative actions. Define the relative action

A B

as follows.

(A B)Y = A® x BO)

The enveloping set of (A 1 B)® is defined by
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(Aa B)®| =AW] x [B?|U[A®] x |BY)]|
where the union is taken in |[AM)| x |[BM|. The coordinate system of (A 0x B)® is defined
by

@(AIXIB)(Q) = QA(l) X (I)B(2) U @A@) X @B(l)

where the union is now disjoint. Morphisms between elements are defined coordinatewise.
The global group functor of (A 1 B)® is defined by

(G (2)) — { (GA(l))a X (GB(z))g if (a,ﬁ) € D, 1) X Dy
(AvaB)?) ) (a,) (Ga®)a X (Ggm)p if (o, B) € P u X Ppay.

The global set function for (A > B)® is defined by

(X (2)) — { (XA(I))a X (XB(Q))ﬂ if (a,IB) € D 0 X Dy
(AxB)®) ) (a,B) (X42)a X (Xpm)s if (o, B) € g0 X @pa).

The action of (G4wp)® )@, ON (X 4mp)® )(a,p) 18 coordinatewise.

In the next definition, the notation (S,7) = Mor((ses)) (S, T), where S and T are sets,
will be used. This notation was introduced already in (3 16).

DEFINITION 4.20 Let A, B and C be relative actions. We define a regular morphism

E: Mor(A,Mor(B,C)) = Mor(Ax B,C)

as follows. Denote the structural components of the relative action Mor(A, Mor(B,C)) by
((I)(A,(B,C)), G(A,(B,C)), X(A,(B,C)))- Define E41) such that the diagram

E,q)

PaB,o)W P (asB,0)D)

I N

(1AD], (IBD], @g0) U o)) 5z ([AD] x [BO], @) U@ en)

(3.16)
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commutes. Clearly Egu) preserves the transitive reflexive relation. Define Ege) as in
(3.17), i.e. such that the diagram

E @

P(am,0p@ D (anam,0)2

(AW}, (1BW], @) (3_—163(\/1(1” x [BW], B

commutes.

Define the natural transformation

EG(U : G(A,(B,C))(n — (G(AMB,C)(l))E,I,(l)()

such that

Eco(a): (G(A,(B,C))(l))a — (G(AMB,C)(I))E@(U(&)

maps the factor of (Giagepymw)a = [I [ I (Gew)apw)X( I (Go@)axw))]

x€[AO\@)| ye| BO\D)| ye|B®)|
x Il [ Il (Ge®)aw) ) with the subscript a(x)(y) via the identity map onto the fac-
x€|A®)| ye|BW)|

tor of (G asan,c)0))a = Il (Gom)E,maenx 1T (Geo)w,maxy
(<) €l A\ x| BOND)| (x,9)€|(A5B))|

with the subscript (Fgma)(x,y). Define the natural transformation
Eger t Gap,ep® = Glasp,e)®

as in (3.17), i.e. such that

Eqe(a) : (G(A,(B,C))<2>)a - (G(AmB,C)@))Eq,@) (@)

maps the factor of (G4 popy®)e = [I ( Il (Ge@)a)y)) With the subscript a(x)(y)
x€|AM)| ye| BO)|
via the identity map onto the factor of (Gawpc)®)E, 0@ = 11
? (x40 x| BO)|

38



(Gc(z))(Eé(z)a)(X,y) with the subscript (Eg@ @)(X,y). One verifies routinely that the com-

posite mapping |Mor(A, Mor(B,C))®| — (JAW|, (|BW|,|CH]) @ > (3.16) >>
(jAY)] X |BW,
|CM]) takes its image in |[Mor(A > B,C)Y| and we define

Ex :|Mor(A, Mor(B,C))V| = |Mor(Ax B,C)Y|

to be the resulting mapping. One checks straightforward that

EW = (Eywy, Fgw), Ex)

is a regular morphism

EW : Mor(A, Mor(B,C))" — Mor(Awxa B,C)Y

of global actions. (It fails in general to be an isomorphism (resp. regular isomorphism)
because Ex is not necessarily surjective (resp. Ex((X(4,(5,c))m)a) is not necessarily all

of (X(AmB,C)(l) )Eq,u) (a)). Let

Exey = Ex| \mor(a5,0)®)

and
E(2) = (Eq,(?), EG’(2)7 EX(2))'

Then by (3.17),

E® : Mor(A, Mor(B,C))® —— Mor(Ax B,C)®

Mor(AD, Mor(BD, C®) —— Mor(AD x BM, C@)

is a regular morphism of global actions. One checks straightforward that

E = (E(l)’ E(Q))
is a regular morphism
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E : Mor(A,Mor(B,C)) — Mor(Ax B,C)

of relative actions.

Let A,,---,A; be an arbitrary sequence of global actions. Iterating the procedure above,
one defines for any n > 2 a regular morphism

E, : Mor(A,,Mor(A,_1,---,Mor(A,,C))---) = Mor(A, > ---a1 Ay, C)

as follows. For n = 2, the morphism is defined above. Suppose n > 2 and that the
morphism has been defined for every natural number N where 2 < N < n — 1. Let
E,,_1 denote the morphism for the sequence A, _q,---,A;. Define F, for the sequence
ApyAp—1,- -+, Ay as the composite of the regular morphism Mor(14,, E,—1) (see (4.17))
and the regular morphism Fy : Mor(A,, Mor(Au,—1 > --->x1 Ay, B)) = Mor(A, > ---
Ay, B).

The next definition is made to cope with the problem of finding an inverse to the morphism
E, above.

DEFINITION 4.21 Let P be a class of relative actions closed under finite operations by .
A relative action C is called co-P-exponential if the morphism E : Mor(A, Mor(B, C))
— Mor(A > B,C) is an oo- P-normal isomorphism for all pairs A, B € P. C is called
regularly oco- P-exponential if F is a regular isomorphism for all pairs A, B € P. If
P = all finite a4 —products of A (resp. P = all relative actions A such that |A®)| =
Uaea ;) (X 4@ )a (i = 1,2)) then C is called co-A-exponential (resp. co-exponential)
if it is co- P-exponential.

LEMMA 4.22 Suppose the relative action C is oo- P-exponential (resp. regularly co-P-
exponential). Then for any sequence A,,---, A; € P such that n > 2, the morphism F,,
in (4.20) is an co-P-normal (resp. regular) isomorphism.

PROOF The proof is exactly the same as that of (3.19).

DEFINITON 4.23 Let A and B be relative actions. A morphism f: A — B is called neat if
it preserves relative local frames, i.e. if U C |A®| ( = 1,2) are finite nonempty subsets
such that U® C UM and (UM, U®P) forms a relative local frame in A then (fUW, fU®)

forms a relative local frame in B.

DEFINITION 4.24 A relative action A is called a strong neat action if the following
condition is satisfied. The assumptions of the condition are as follows.
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(4.24.1) Let A® C @, be a finite subset. Let U®D C |A®D| (i = 1,2) be finite
nonempty subsets such that U® C UM, Suppose that for each 62 € A®, (X, )50
NU® # ¢. Suppose that U® is a local frame at o € ® 4y (i = 1,2) such that(G 4 )se)
(u) € (G 4m)) o (u) for all @ € A@ and all u € (X 1) 50 NU®P, and such that 6@ <
a® for all 6@ e A@),

The conclusion of the condition is that there is a ) € ® 4 such that 6@ < 52 <
a@ for all 6@ € A® and such that (UM, U?) is a relative local frame at (o, 3).

A relative action A is called a neat action if the conclusion above is satisfied for at least

A = ¢,

A subspace B € A of a global action A is called a neat (resp. strong neat) subspace
if the pair (A, B) is a neat (resp. strong neat) relative action.

Clearly a pointed action is a strong neat relative action.
LeEMMA 4.25 If f : A — B is a morphism of relative actions and B is neat then f is neat.

PROOF Let (UM, U®) be arelative frame in A. Since fis a morphism of relative actions,
the pair (fUM, fU?) fulfills the assumption (4.24.1) for A® = ¢. Thus (fUM,fU®?) is
a relative local frame in B. [J

The next condition provides a useful criterion for guaranteeing that a relative action is
oo-normal and either co-exponential or regularly oo-exponential.

DEFINITION 4.26 A relative action A is called a strong infimum (relative) action if
AWM and A® are strong infimum global actions and the following condition is satisfied.
The assumptions of the condition are as follows.

(4.26.1) Let A®D C @, (i = 1,2) be finite subsets. Let U® C |A®| (i = 1,2) be fi-
nite nonempty subsets such that U® € UM, Suppose that for each 6 € A® | (X 1)) g0 N
U £ g Suppose that the sets ¥ = {al) ¢ @fﬁ;% Uvh ol
—frame, (5(1) § 04(1) A (5(1) € A(l),(GA@))(g(Q)(’U,) g (GA(l))a(l)(u) A 5(2) € A® and
u € (Xa@)se NUPDY and ¥@ = {a® € &40 UP oP-frame, 62 < o® Vv
§@ € A®} are nonempty.

The conclusion of the condition is that ¥(® (; = 1,2) contains an initial element 3® such
that (GA(Z))ﬁ(Z) (u) g (GA(1))ﬁ(1) (u) for all u € U®.

A relative action A is called an infimum (relative) action if A) and A® are infimum
actions and the conclusion above is satisfied for at least (A", A®)) = (¢, ¢).

The following lemma is easy to verify.
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LEMMA 4.27 A standard pointed action is an infimum (resp. strong infimum) relative
action < the global action A is an infimum (resp. strong infimum) action.

LEMMA 4.28 Let A be a relative action. Then A is an infimum (resp. strong infimum)
action < A is a neat (resp. strong neat) action and A® (; = 1,2) is an infimum (resp.
strong infimum) global action.

PROOF =) Suppose that assumption (4.24.1) holds. We must show that the conclusion
required for a neat or strong neat action holds. Set AM) = ¢. Let ¥ (i = 1,2) be defined
as in (4.26.1). Since the a(? given in (4.24.1) belong to ¥® (i = 1,2), the ¥ are not
empty. Let 3 € U be initial elements in W@, respectively, which are guarenteed by
the conclusion for (4.26.1). The initialness of the 3® implies that 3% < (). Moreover
the conclusion for (4.26.1) says that U® is a 3)-frame, that 6 < B® for all §? ¢
AP and that (G42) g (w) € (Gam)sw (u) for all uw € UR. Since B < oV, it follows
that (G 4m)gw (u) € (Gaw)qm (). Thus A is a neat or strong neat action.

<) Suppose that the assumption (4.26.1) holds. We must show that A is an infi-
mum or strong infimum action. By the neatness hypothesis on A, there is a 6® €
® 4 such that 6@ < 4 < B3 for all 6@ € A® and (G @)@ (W) € (Gam)so (u)
for allu € U®. This says that v® € ¥®. But since f? is initial in U@, it fol-
lows that 8@ < 7@ and thus (G40),@(u) = (Gae)se (v). Thus (Gue)ge(u) S
(G aw)se (u) for all w € UP. Thus A is an infimum or strong infimum action. O

We take the opportunity now to summarize a few trivial, but useful facts. Some have
been used already and others will be used soon.

LEMMA 4.29 For each fact below for global actions, there is also a corresponding one
given for relative actions.

(4.29.1) Let A be a global action. If U € V € |A| and V is a local frame then so is U.

(4.29.2) Let f : A — B be a morphism of global actions. Let 8,7 € ®(4,p5) such that
f(x) € B(x)Ny(x) for all x € |A|. If < v and (f,7) is an A—chart in B then so is (f, 5).
(4.29.3) Let A be a relative action. If U®) C V® C |A®| (5 = 1,2) such that U® C
UM and (VY V() is a relative local frame then so is (U, U®).

(4.29.4) Let f : A — B be a morphism of relative actions. Let S,y € &, ) such
that f(x) € B (x)N v (x) for all x € [AM|. If 8 < 7 and (£, ) is an A—chart in B then
so is (f, B).

LEMMA 4.30 If B is an infimum (resp. strong infimum) relative action then for any
relative action A, Mor(A, B) is an infimum (resp. strong infimum) action.
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PROOF Since Mor(A,B)® = Mor(A®, B®) it follows from (3.22) that Mor
(A, B)? is an infimum (resp. strong infimum) action.

We show mnext that Mor(A, B)Y) is an infimum (resp. strong infimum) action. Let

U C |Mor(A, B)M| be a finite nonempty subset Let A®) C <I>(A mm be a finite subset
such that for each 6 € A® (Xa,mm)s N UM £ ¢. Let ¥ = {B € <I>AB(1)\U a
B-frame, 6 < BV § € AW} and assume UM £ ¢. We must show that \Il( ) has an
initial element. For each x € AW et UM (x) = {f(x)| f € U}, AWD(x) = {§(x)| § €
AW} and ¥W(x) = {B(x)| B € ¥W}. By hypothesis, for each x € |A()| there is a
coordinate by € ®pay U @2 such that UM (x) is a by-frame and 6(x) < b, < B(x) for all
§ € AW and all B € ¥, Similarly for all x € |A®)|, there is a coordinate b, € ®pe
such that UM (x) is a by-frame and §(x) < b, < B(x) for all § € AM and all 8 € T
Let v : |[AD] = ®pa) U Ppey,x = by Clearly v € ®4 gy and § < ¢ < 3 for all
§ € AM and all B € UMW, Let u € U. To complete the proof, it suffices to show that
(u,7) is an A-chart. Let 3 € ¥, Since (u, ) is an A-chart and v < 3, it follows from
(4.29.4) that (u,) is an A-chart.

We show finally that the conclusion for (4.26.1) holds. Let A® U®  and ¥® be as in the
assumption (4.26.1). For x € |[AY| define A®)(x), U®(x), and ¥ (x) as in the paragraph
above. For a fixed x , the data A®(x), U®(x), and ¥ (x) satisfies (4.26.1) applied to B.
Let b9, € U0(x) be initial elements which are guarenteed by the conclusion of (4 26. 1)
applied to B. Let v® : [AD)] —) <I>B(1) U®pe,x — b, and 7@ : [AD] - @) x

b, Clearly ¥ € ® 4 pyw, 0 < 4@ < O for all 60 € AW and all 50 ¢ \IJ(), and
(Gay@) e (1) € (Gapw),w(u) for all u € UP. Moreover for any u € UV, (u,yM)
is an A-chart in B because for any g%, (u,3") is an A- chart in B; and for any u €
U, (u,y?) is an AM-chart in B® because for any 52 € ¥@), (u ﬁ(Q)) is an AW -chart
in B®.0

The next theorem is a main result.

THEOREM 4.31 An infimum relative action is co-normal and oco-exponential. A strong
infimum relative action is co-normal and regularly co-exponential.

PROOF Let C be an infimum action. We shall show that C is co-normal. Lemma 4.30
reduces the proof to showing that C' is A-normal for any relative action A. Let g: B — C
be a morphism of relative actions. Since C®) is co-normal as a global action, the morphism
g : B® — C® is co-normal and thus A®M)-normal. Let (f, 3) be on A-chart in B. Let
f=1y,f;,- -, f, be an A-frame at (f, 5). It remains to show that gfy, - - - , gf, is an A-frame
in C. We construct first a relative coordinate (7 : |[AM| = &) UPpw) € (4,0 such
that (gf,~y) is an A-chart in C.
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Let FV) = {fy,---f,}. For x € |[AD| let FO(x) = {fo(x),---,f,(x)}. By the Local-
Global Lemma 4.11, F®(x) is a local frame in B®" or B® depending on whether x €
|AN@) | or x € \A(2)|, respectively. Thus gF'®)(x) is a local frame in either C() or C®)
depending on whether x € [AM\®)| or x € |A@)|, respectively. Let UW(x) = {c €
Doy| gF®(x) local frame in C®; i = 1 or 2 depending on whether x € |[AM\®)| or
x € |A@)| resp.}. By the infimum condition for C® ¥()(x) has an initial element
cx- Define 7y : [AD| — @0y U @y, X 5y

We show that (gf, ) is an A-chart in C. Let (U, U®) be a full pair of local frames in A.
By (3.24), (FOUW FMU@) is a pair of local frames in B. Thus (gFMUM g FOU?)
is a pair of local frames in C. By the conclusion of (4.26.1) for C, (¢FYUW | gFMU?)
is a relative local frame at some (c( ), @) € ®pa) x Poe. Thus (gfUD, gfU?) is a
relative local frame at (¢, ¢@), by (4.29.4). But from the definition of y, we know that
for each x € UM\U® ( resp. x € U( N, v(x) = ex £ (resp. y(x) = ¢ < ). This
shows that (gf, ) is an A-chart in C.

(From the definition of +, it follows immediately that ¢f = gfy, gf1,-- -, gf, is an A-frame
on (gf,v). This completes the proof that C' is A-normal.

Let C' denote again an infimum relative action. We shall show that C' is co-exponential.
Let A and B be global actions such that |A®| = Uaea ;) (X4 )a and |BO| = Usea
(Xpw)s- Let E : Mor(A, Mor(B,C)) — Mor(A va B,C) be the morphism in (4.20).
We shall prove that E has an oco-normal inverse. By (4.30), Mor(A, Mor(B,C)) is an
infimum action and thus by the first assertion of the current theorem, it must be oo-
normal. Thus if an inverse to E exists, it must be co-normal. So it suffices to show
that E has an inverse. There is an obvious candidate for an inverse, namely the set
theoretic map E' : |Mor(A = B,C)Y| — (A, (B,0)),f — E'f, where (E'f(x))(y) =
f(x,y). We shall show that E'f € |[Mor(A, Mor(B,C))"| and that the resulting map
E': |Mor(Awx B,C)V| — |Mor(A, Mor(B,C))"| is a morphism Mor(A i B, C)()
Mor(A, Mor(B,C))" of global actions. From the set theoretic definition of E, it is
obvious that E’ will be inverse to E.

We prove that E'f : |[AY)| — (B, C) is a morphism A(l) — Mor(B,C)Y of global actions.
There are two properties to verify. First, if x € |[A®)| then E'f(x) : [BY| — [C|V), y

(E'f(x))(y), is a morphism B — C of relative actions. Second, the resulting map E'f:
AW — |Mor(B,C)Y|,x — E'f(x), is a morphism A®) — MOT(B C)® of global actions.

The demonstration that y — (E'f(x))(y) is a morphism B®) — CM) of global actions is
the same as the analogous demonstration in the proof of Theorem 3.23. Furthermore it is
clear that the morphism E'f(x) : BY — C( takes |B@| into |[C®| and that the pattern
of the demonstration above can be repeated to show that E'f(x)| e is a morphism
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B® — C® of global actions. Thus E'f(x) : B — C' is a morphism of relative actions.

Let xg, -+ ,%, be a local frame in A, We shall verify that E'f(xo), - - , E'f(x,) is a local
frame in Mor(B,C)". For each element y € |[BY| y is a local frame in B! because
|\BY)| = Ugea ) (Xpw)s- Thus (xo,y), -+, (X, ) is a local frame in (A p< B)Y. Thus
f(x0,9), -+, f(xp, y) is a local frame in C) and if y € B® then it is also a local frame
in C?. By the infimum condition for C", we know that for y € B\ the set {c €
Qoo | f(x0,y), - ,f(xp,y) c-frame} has an initial element ¢,. By the infimum condition
for C®, we know that for y € B@ the set {c € ®ce [f(x0,¥), - ,f(xp,y) c-frame} has
an initial element c,. Define v : |B(1)\ — Py U @2,y — ¢,. We shall show that
(E'f(x¢),7) is a B-chart in C. Suppose this has been done. It follows then from the
Local-Global Lemma 4.11 that E'f(x),-- -, E'f(x,) is a B-frame on (E'f(xo),7). But
then by definition, E'f(x,),--- , E'f(x,) is a local frame in Mor(B,C)"), which is what
we have to verify.

We show now that (E'f(xp),7) is a B-chart in C. Let (V) V@) be a full pair of local
frames in B. We must show that (E'f(x)V®Y, E'f(x0)V®) is a relative local frame at
some (M), @) € (®a), o) such that y(y) < ¢ for all y € VNV and y(y) < @
for all y € V. Let U = {xp,---,%,}. Then (U x VU U x V?) is a pair of local
frames in A b1 B. Thus (f(U x VY), f(U x V®)) is a pair of local frames in C. Since
(EHYUVO (EHUVE) = (f(U x VW), f(U x V@)), the former pair is one of local
frames in C. By the conclusion of (4.26.1) for C, ((E'f)UV®, (E'f)UV®) is a relative
local frame at some (cV,c®) € ®,a) x ®ne. Thus ((E'f)(x) VD, (E'f)(x)VP) is a
relative local frame at ("), ¢(?)), by (4.29.4). But from the definition of -, it follows that
for y € VAN\V® y(y) = ¢, £ M and for y € V@ (y) = ¢, < 2.

It is clear that the morphism E'f : AN — Mor(B,C)M takes |A®| into |Mor(B,C)®)|.
We show that the function (E'f)| 4| : [A®| — |[Mor(B, C)®| defines a morphism A® —
Mor(B,C)® of global actions. This will complete the proof that E'f : A — Mor(B,C) is
a morphism of relative actions. Observe first that Mor(B,C)® = Mor(BM,C®). Then
check that the function (E'f)[ 4 is identical with the function E'(f| 4@, pa)) where the
latter E' is the morphism E' : Mor(A® x BM C®) — Mor(A®, Mor(BM,C®@)) of
global actions, which is constructed in the proof of (3.23). By the conclusion of Theorem
3.23, E'(f| 4@« pm) is a morphism of global actions.

Next we show that the function E' : |Mor(A < B,C)V| — |Mor(A, Mor(B,C))Y]| is a
morphism Mor(A = B,C) — Mor(A, Mor(B, C)) of relative actions.

To begin we show that E’ is a morphism Mor(A = B,C)Y — Mor(A, Mor(B,C))®
of global actions. Let f = fo,f;,---,f, be a local frame in Mor(A > B,C)Y.  We

45



must show that E'fy,--- , E'f, is a local frame in Mor(A, Mor(B,C))"). For each el-
ement (x,y) in A x B, fy(x,y),- -+ ,f,(x,y) is a local frame in C(V); by the Local-Global
Lemma 4.11. Furthermore if (x,y) € X 4qp)» then fy(x,y), -+ ,f,(x,y) is also a local
frame in C®. By the infimum condition for C(M), it follows that for (x,y) € (A i<
B)M\®) | the set {c € ®ce| fo(%,9), - ,f,(x,y) c-frame} has an initial element c(xy).
By the infimum condition for C?, it follows that for (x,y) € X(asap)@, the set {c €
Qoo | fo(x,y),--- ,fp(x,y) c-frame} has an initial element c(,). Define v : [A| — (|B],
Qe U P ), X — ¢x,_). We claim that (E'fy, ) is an A-chart in Mor(B,C). It will fol-
low then from the definition of v and the Local-Global Lemma 4.11 that E'fy, - -- , E'f, is
A- an frame at (E'f, ). But this says by definition that E'fy, - - - , E'f, is a local frame in
Mor(A, Mor(B,C))") and we are finished.

Let (UM, U®) be a full pair of local frames in A. We must show that ((E'f)UWV, (E'f)U®)
is a relative local frame at some (6,6®) € @ 1) X ()@ such that y(x) < 60
for all x € UM\U® | and y(x) < 6@ for all x € U®. Let F = {f =f,,--- ,f,}. S

F is a local frame in Mor(A > B,C)M there is an A 1 B ~chart (fp,e) in C such
that F is an A ba B-frame at (fy, ). For any fixed y € |BUI\®)|, (fo( ,9),e( ,y)) is an
A-chart in C' and F( ,y) = {fo( ,y),---.5(, )} is an A-frame at (fo( ,y),e(
any fixed y € |B@|, (fo( ,y),e( ,y)) is an A —chart in C@ and fy( ,y), - ,6( ,y) is
an AW-frame at (fo( ,y),e( ,y)). Since (UM, U®) is a pair of local frames in A, it
follows from (3.24) that (F(UM,y), F(U®, y)) is a pair of local frames in C. Since C
satisfies the infimum condition, the pair (F(U®M,y), F(U®, y)) is a relative local frame at
some (d( ), d( )) € (P UPp@e) X P such that d?(,) € &0 if y € | BOV?)| and d§,1) €
Do if y € [BP|. Thus (FUD,y), {({UD,y)) is a relative local frame at (d", d), by
(4.29.4). Thus (E'H)UW (), (B'T)UD(y)) is a relative local frame at (d”,d”). Define
50 1 BO 5 @0y U,y — ds. Define 6@ : B@ — &),y — dP. By the Local-
Global Lemmas 3.7 and 4.11, ((E'f)UW | (E'f)U®) is a relative local frame at (59, 6(?)) <
((E'f)(u),6M) is an B-chart in C for some v € UM and ((E'f)(u),6®) is a BM-chart
in C® for some u € UP. Assume the right hand side of the equivalence above has

been shown. Then we are finished, because from the definition of ~, it follows that
v(x) £ 6@ for all x € UM\U® and (x) < 6@ for all x € U®).

We show now that ((E'f)(u),d™)) is a B-chart in C for any u € UM, Let (VY V)
be a full pair of local frames in B. We must show that ((E'f)(u)V®, (E'f)(u)V@) is a
relative local frame at some (c(!), ) € ®,a) x P such that 60 (y) < ¢ for all y €
VO\V® and 60 (y) £ @ for all y € V@, By (3.24), (F(U, V), F(U,V®)) is a pair of
local frames in C. Thus ((E'F)UV®, (E'F)UV @) is a pair of local frames in C. Since C is
an infimum action, ((E'F)UV®) (E'F)UV®) is a relative local frame at some (c(!), ¢?)) €

<

=

p—
@)
~
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Py X P . Since 5V was picked by the conclusion of (4.26.1), its “universal” properties
tell us that 6 (y) < ¢ for all y € VI\V® and 6@ (y) < @ for all y € V@, But by
(4.29.4), ((E'f)(u)VO, (E'f)(u)V?) is a relative local frame at (c(), ¢?). This completes
the proof.

The demonstration that ((E'f)(u),0®) is a B(-chart in C? for any u € U® is the
same as the corresponding demonstration in the proof of Theorem 3.23. This completes
the proof that E' : Mor(A < B,C)Y — Mor(A, Mor(B,C))®" is a morphism of global
actions.

Clearly E' : Mor(A = B,C)") — Mor(A, Mor(B,C))" takes |Mor(A > B,C)®| into
(A® (BMW,C®)).  1In fact, Mor(A < B,C)® = Mor(A® x BM C®) and E'
|| Mor(AM x B, ¢, 18 identical with the function |Mor(AMxBW C@)| — |Mor(A®, Mor
(BW, C®))| defined by the morphism E’ : Mor(AY x BO) C®)) — Mor(A®, Mor(BW,
C®@)) of global actions in Theorem 3.23. Thus E' : Mor(A = B,0)® — Mor
(A, Mor(B,C))® is a morphism of global actions. Thus E' : Mor(A = B,C) — Mor
(A, Mor(B,C)) is a morphism of relative actions. This completes the proof that C is
oo-exponential.

Suppose finally that C is a strong infimum action. We shall show that C is regularly
oo-exponential. Our task is to show that the morphism E : Mor(A, Mor(B,C)) —
Mor(A i B, C) has a regular inverse E’. There are obvious candidates for the structural
components (Ef, B, EY) of E'. Define

(4.32) E% : Mor(Ax B,C)| — |Mor(A, Mor(B,C))|
f— E'f
where f — E'f is the map constructed above. Define

Byt @amp,o) — @uamono (i=1,2)

as the set theoretic inverse (see (3.16)) of Egu). Define the natural transformations

Ego : Gasp,oy) — (G(A,(B,C))(i))E;(i)( y (1=1,2)

as follows. For o € ®(44p ¢y, define the group homomorphism

é;(l) () : (G(A[xlB,C)(l))a — (G(A,(B,C’))(l))E;(l)(a)
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such that the factor of (G(wp,c)m)a = I1 (Gew)a(xy) X I1

(9)€[AMND) x| BAN@)| (x,y)€|(A=B)?)|

(Gc®)a(xy) With the subscript (x,y) is mapped via the identity map onto the factor of

(Ga,s,onm)e m@ = [T [ II (Geow)w L @)@ X [I (Geo)w e Jew)] X
® x€| AD\@)| ye|BION®)| ye|B?)|

IT [ 11 (GC(Z))(E;(I)a)(X)(y) with the subscript (Ej.,a)(x)(y). For a € @ 4up o),

x€|A®)| ye|BM)|
define the group homomorphism

Eqey (@) 2 (Gasp,oy®)a = (Gasepe)e B! (@)

such that the factor of (Gawp.cy®)a = II (Go®)a(xy) With the subscript
(x,y)€lAW x| BD)|
a(x,y) is mapped via the identity map onto the factor of (G4 p,cpe)e B (@) = I1

x€|AM)|
( I—[( )|(GC(2))(E;(2)Q)(X)(y)) with the subscript (E:D(z)oz) (X) (y)
ye|BU
All the properties for E’ to be a regular morphism are obvious, except the one that
By (Xasn,0)0)a & (X(am,0)@) e, (@ for any @ € Sap cyo (1= 1,2).

We prove first the case i = 1. To establish this, it is enough to show that if (f, «) is an (A
B)-chart in C then (E'%(f), £}, (c)) is an A-chart in Mor (B, C).

Let (UM, U®) be a full pair of local frames in A. We must show that ((E'f)UW, (E'f)U®)
is a relative local frame at some (y),7®) € ®pcym X Doy such that A >
(Eloya)(x) for all x € U@, We construct 71 and ¥® as follows. Suppose y € B\,
Define V() (y) = {c € ®,0)| f(UD x {y}) c-frame, ¢ 2 a(x,y) V x € UY\UP}. Suppose
y € B?. Define ¥ (y) = {c € (I)C(2)| f(ut )x{y}) c-frame, ¢ > ax,y)Vxe UD\ U@}
Suppose y € B, Define ¥ (y) = {c € ®p»| F(UP x {y}) c-frame, ¢ 2 a(x,y) Vx €

(2}, By the strong infimum condition for C® (i = 1,2), the sets \Il(l)( ) and ¥ (y)
have initial elements cg(f) and cg(f), respectively. Define y(") : |[BU| = &) UPqe), y — cg(ll).
Define 7@ : [BO| = ®,0),y — . By construction, v > (B o) (x) for all x €

(\U® and 4@ 2 (E.,a)(x) for all x € U®. Suppose we know for any x € U@ that
((E'f)(x),y") is a B-chart in C and that ((E'f)(x),y?) is a B®-chart in C®. Then from
the definition of 4, it follows that (E'f)U® € (G 5.cym )0 (B'T)(x), ie. (E'T)UN is alo-
cal frame at v, and that (E'T)U® C (G5 oy@),e (E'T)(x), i.e. (BT)U® is alocal frame
at y®. Furthermore by the strong inﬁmum property for C, (Go@ )@y (E'T)(x,y)

C
(GC(1))7(1)(y)(E'f)(X y) for any x € U and Yy € |B(1 | Thus (G(B,C)(z)),y(z)(E f)( ) g
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(G(p,cyw), (E'f)(x). Thus (E'H) UM, (E'f)UP) is a relative local frame at (y(),y(®)
and 7V 2 (B, a)(x) for all x € UN\U® and 4@ 2 (B, o) (x) for all x € U®.

We show now that for any x € UM, ((E'f)(x),y") is a B-chart in C. Let (V) V)
be a full pair of local frames in B. We must show that ((E'f)(x)V®), (E'f)(x)V®) is a
relative local frame at some (c(V),c?) € ®;u) x @@ such that ¢ > ~1(y) for all y €
VO\V® and @ > v@(y) for all y € VP, Since (UM x VI, UW x V@) is a pair of
local frames in A< B, (Ef)UNVO (B UDVE) = (fUW x VD) fUD x V) is
a pair of local frames in C. Let AW = {a(x,y)| x € UN\UP,y € BO\AY} and A®@ =
{a(x,y)] x € UN\U® y € BAY, (If UV\U®P = ¢ then of course A = ¢ = A®)
By the strong infimum condition for C, ((E'f) UMV, (ET)UMNVA) is a relative lo-
cal frame at some (cV),c®) € ® 1) X @pe such that ¢ > afx,y) for all a(x,y) €
AW and ® > a(x,y) for all a(x,y) € A®. From the construction of v, it follows that
M > 4 (y) for all y € VIV and ¢ > 4 (y) for all y € V@,

We show now that for x € U®), ((E'f)(x),~y?) is a BM-chart in C®). Let V be a local
frame in B1). We must show that (E'f)(x)V is a local frame at some ¢ € ®) such that
c 2y (y) forally € V. Since U x V is a local frame in (4 > B)? (Ef)UPV =
f(U® x V) is a local frame at some ¢ € ®q. From the construction of v?), it follows
that ¢ > y®(y) for ally € V. Thus by (4.29.1), (E'f)(x)V is a local frame at ¢ and
c>y@(y) forally e V.

This completes the proof that E% (X 4up.c)m)a

N

(X(A,(B’C))(l))E;(l) (a) for any a €

(I)(AMB,C)(U :

To complete the proof of the theorem, it remains now to show that E% (X 4p,c)@)a &

(X(A,(B,C))(z))E;(Z) (o) for any @ € ®4..p oy .Observe that Mor(A > B, C)® = Mor(AM x
BW, C®) and Mor(A, Mor(B,C))® = Mor(AW, Mor(BW,C®)). But by Theorem

3.23, the morphism EY% : Mor(A® x BO C@) — Mor(AWY, Mor(BM,C®@)) of global

actions is regular and therefore has the desired property above. [
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