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Abstract. Employing Bak’s dimension theory, we investigate the nonstable quadratic K-group
K1,2n(A,�) = G2n(A,�)/E2n(A,�), n� 3, where G2n(A,�) denotes the general quadratic
group of rank n over a form ring (A,�) and E2n(A,�) its elementary subgroup. Considering
form rings as a category with dimension in the sense of Bak, we obtain a dimension filtration
G2n(A,�) ⊇ G0

2n(A,�) ⊇ G1
2n(A,�) ⊇ · · · ⊇ E2n(A,�) of the general quadratic group

G2n(A,�) such that G2n(A,�)/G
0
2n(A,�) is Abelian, G0

2n(A,�) ⊇ G1
2n(A,�) ⊇ · · · is a

descending central series, andGd(A)2n (A,�) = E2n(A,�)whenever d(A) = (Bass–Serre dimension
of A) is finite. In particular K1,2n(A,�) is solvable when d(A) <∞.

Mathematics Subject Classifications (2000): 20G15, 20G35.
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1. Introduction

The concepts of �-quadratic form, quadratic module, and general quadratic group
over a form ring (A,�) were introduced by A. Bak who studied their K-theory
(see [2, 5, 10]). Although the quadratic setting is much more complicated than
the linear one, it is being gradually established that most results concerning the
K-theory of general linear groups can be carried over to the K-theory of gen-
eral quadratic groups. In the linear situation, there have been extensive studies of
normal subgroups of general linear groups and of non-stable K1 of these groups.
Suslin showed using his localization-patching method, that the elementary sub-
group En(A) of the general linear group GLn(A) is normal providing A is module
finite and Bak [3] used localization-completion methods to establish that the non-
stable K-group K1,n(A) := GLn(A)/En(A) is a nilpotent by Abelian group (and
thus solvable) when the Bass–Serre dimension of A is finite. In the quadratic situ-
ation, the normality of the elementary subgroup is proved in [4] by generalizing
methods used in [3] and again in [5] by developing a quadratic analog of the trans-
vection procedure used in [12]. A partial statement without proof of the normality
result above is found earlier in [10]. In the current paper we prove the quadratic
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analog of Bak’s result, namely that nonstable K1 of a general quadratic group is a
nilpotent by abelian group (and thus solvable) when the Bass–Serre dimension of
the ground ring is finite. The presence of both short and long roots in the elementary
quadratic subgroup makes the proof of the quadratic analog considerably more
complicated than that of the linear result.

The rest of paper is organized as follows. In Section 2 we briefly recall the basic
concepts of quadratic module and general quadratic group over form rings. The ele-
mentary subgroup of the general quadratic group is defined. We then recall the sum
and product of form ideals in form rings and state the first of several conjugation
results. Its proof gives an indication of the flavor of the long computations to come
in Section 4 and how to deal with short and long roots in elementary quadratic
groups.

In Section 3 we give a self-contained account of a portion of Bak’s dimen-
sion theory, which is tailored to the needs of the current paper. Dimension theory
provides for any ‘good’ pair G, E of group valued functors on a category with
dimension, a normal filtration G ⊇ G0 ⊇ G1 ⊇ · · · ⊇ E such that G/G0 is
Abelian and G0 ⊇ G1 ⊇ · · · is a descending central series with the property
that Gdim(A)(A) = E(A) whenever dim(A) is finite. We then describe the category
of form rings as a category with dimension whose dimension function is Bass–
Serre dimension and show that the pair of functors G2n, E2n, n� 3 satisfies all,
except possibly one of the conditions for being good. Section 4 consists of several
long computations whose goal is verifying that the one missing condition above is
satisfied.

We fix some notation for the rest of the paper. If a and b are elements of some
group, let ab = aba−1 and [a, b] = aba−1b−1. It is easy to see that following
commutator formulas hold.

C(1) [a, bc] = [a, b]b[a, c],

C(1) [ab, c] = a[b, c][a, c].

Let A be an associative ring with identity 1. For any n ∈ N, let GLn(A) denote
the general linear group over A, i.e., the group of all invertible n × n matrices
and En(A) its elementary subgroup, i.e., the subgroup of GLn(A) generated by all
elementary matrices eij (a).

2. General Quadratic Groups and their Elementary Subgroups

The purpose of this section is to establish notation and recall some basic results,
as well as get started developing a conjugation calculus which will be required in
Section 4.

We begin by recalling the basic concepts of quadratic module over a form ring
and of general quadratic group.
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Let A be a ring with an involution denoted by a 	→ a, and let λ ∈ Center(A)
such that λλ = 1. Let

�min = {a − λa | a ∈ A} and �max = {a ∈ A | a = −λa}.

Clearly �min and �max are additive subgroups of A such that �min ⊆ �max and
satisfy the closure property a�mina ⊆ �min and a�maxa ⊆ �max for all elements
a ∈ A. Let � be an additive subgroup of A such that

(1) �min ⊆ � ⊆ �max,
(2) a�a ⊆ � for all a ∈ A.

� is called a form parameter and the pair (A,�) is called a form ring.

Remark. There is a generalization of the notion of form ring in [2, Section 13]
for which the conclusions of the current paper are valid. Checking details is straight
forward and is left to the reader. The generalization replaces the notion of invo-
lution by that of λ-involution. A λ-involution consists by definition of an element
λ ∈ A and an anti-automorphism a 	→ a of A such that λaλ = a for all a ∈ A.
Setting a = 1, we obtain that λλ = 1. One defines �min = {a − aλ|a ∈ A}
and �max = {a ∈ A|a = −aλ}. A form parameter is by definition an additive
subgroup � of A such that �min ⊆ � ⊆ �max and a�a ⊆ � for all a ∈ A.
The reason that λ is appearing on the right instead of on the left is that λ is not
necessarily in Center(A) and we use right A-modules below in the definition of
quadratic module.

Let (A,�) and (A′,�′) be form rings relative, respectively, to λ and λ′. A ring
homomorphism µ: A −→ A′ such that for any a ∈ A, µ(a) = µ(a), µ(λ) = λ′
and µ(�) ⊆ �′ is called a morphism of form rings. A morphism µ: (A,�) −→
(A′,�′) of form rings is called surjective if µ: A −→ A′ is a surjective ring
homomorphism and µ(�) = �′.

In order to construct later relative groups for the general quadratic group, we
introduce now the notion of form ideal in a form ring, due to Bak. Let I be an ideal
of A which is invariant under the involution of A, i.e., I = I. Let

�max = I ∩� and �min = {x − λx | x ∈ I} + 〈xαx | x ∈ I, α ∈ �〉.

Clearly �min and �max depend only on the form parameter � and the ideal I and
satisfy the closure property a�mina ⊆ �min and a�maxa ⊆ �max for all a ∈ A. A
relative form parameter of I is an additive subgroup � of I such that

(1) �min ⊆ � ⊆ �max

(2) a�a ⊆ � for all a ∈ A.

The pair (I, �) is called a form ideal in (A,�).
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Let V be a right A-module and f a sesquilinear form on V , i.e., a biadditive
map f : V × V −→ A such that f (ua, vb) = af (u, v)b for all u, v ∈ V and
a, b ∈ A. Define the maps h: V × V −→ A and q: V −→ A/� by h(u, v) =
f (u, v)+λf (v, u) and q(v) = f (v, v)+�. The function q is called a�-quadratic
form on V and h its associated λ-Hermitian form. The triple (V , h, q) is called a
quadratic module over (A,�). It is called nonsingular, if V is finitely generated
and projective over A and the map V → HomA(V,A), v 	→ h(v,−) is bijective,
i.e. the Hermitian form h is nonsingular. A morphism (V , h, q) → (V ′, h′, q ′) of
quadratic modules over (A,�) is an A-linear map V → V ′ which preserves the
Hermitian and �-quadratic forms.

Define the general quadratic group G(V, h, q) to be the group of all auto-
morphisms of (V , h, q). Thus

G(V, h, q) = {σ ∈ GL(V ) | h(σu, σv) = h(u, v), q(σv) = q(v)
for all u, v ∈ V },

where GL(V ) denotes as usual the group of all A-linear automorphisms of V .
Suppose h and q are defined by the sesquilinear form f . If (I, �) is a form ideal in
(A,�), define the relative general quadratic group

G(V, h, q, (I, �)) = {σ ∈ G(V, h, q) | σ ≡ 1 mod I, f (σv, σv)−
−f (v, v) ∈ � for all v ∈ V }.

THEOREM 2.1 (Bak). If (V , h, q) is nonsingular then the group G(V, h, q,
(I, �)) is well defined, i.e. does not depend on the choice of f, and is normal in
G(V, h, q).

The theorem is proved in Bak’s thesis (unpublished). Published proofs for the
special case G2n(A,�) which is defined below and is all we need in the current
paper, are found in Section 5.2 of the book [10] of Hahn and O’Meara or in a recent
paper of Bak and Vavilov [5].

We recall now the group G2n(A,�). Let V denote a free right A-module with
ordered basis e1, e2, . . . , en, e−n, . . . , e−1. If u ∈ V , let u1, . . . , un, u−n, . . . ,
u−1 ∈ A such that u = ∑n

i=−n eiui . Let f : V × V → A denote the sesquilinear
map defined by

f (u, v) = f





u1
...

un
u−n
...

u−1


,



v1
...

vn
v−n
...

v−1




= u1v−1 + · · · + unv−n. (2.1)
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It is easy to see that if h and q are the Hermitian and �-quadratic forms defined by
f then

h(u, v) = u1v−1 + · · · + unv−n + λu−nvn + · · · + λu−1v1

and

q(u) = u1u−1 + · · · + unu−n +�.

Using the basis above, we can identify G(V, h, q) with a subgroup of the general
linear group GL2n(A) of rank 2n. This subgroup will be denoted byG2n(A,�) and
is called the general quadratic group over (A,�) of rank n. Using the basis, we can
identify the relative subgroup G(V, h, q, (I, �)) ⊆ G(V, h, q) with a subgroup
denoted by G2n(I, �) of G2n(A,�).

In order to describe the matrices in G2n(A,�), we need some notation. Let
Mn(A) denote the ring of n× n matrices over A. If α ∈ Mn(A), let αij denote the
(i, j)th entry of α. For α ∈ Mn(A) define the conjugate transpose α∗ ∈ Mn(A) by
α∗ij = αji . Let

p =
 0 · · · 1
...
. . .

...

1 · · · 0


denote the matrix in Mn(A), which has 1’s along the second diagonal and zero
elsewhere. If α ∈ Mn(A), the matrix pαp amounts to rotating the matrix α by 180
degrees. Let

�n = {α ∈ Mn(A) |α = −λα∗ and αii ∈ �, for 1 � i� n}.

If (I, �) is a form ideal in (A,�), let

�n = {α ∈ Mn(A) |α = −λα∗, αij ∈ I for all i �= j, αii ∈ � for 1 � i� n}.

If

g =
(
a b

c d

)
∈ GL2n(A),

then it is straightforward to check that it preserves h if and only if(
a b

c d

)−1

=
(
pd∗p λpb∗p
λpc∗p pa∗p

)
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and it preserves q if and only if a∗pc and b∗pd ∈ �n. Using the above, one
establishes easily that

G2n(A,�) =
{(
a b

c d

)
∈ GL2n(A)

∣∣∣ d∗pa + λb∗pc
= p and a∗pc, b∗pd ∈ �n

}
. (2.2)

Similarly

G2n(I, �) =
{
g =

(
a b

c d

)
∈ G2n(A,�)

∣∣∣ g ∈ GL2n(I)

and a∗pc, b∗pd ∈ �n
}

where GL2n(I) = {σ ∈ GL2n(A) | σij = 0 mod I for all i �= j and σii = 1 mod I}.
Note that the description above of G2n(I, �) proves that its definition does not
depend on the choice of f .

Let k� n. Then there is a standard embedding of G2k(A,�) into G2n(A,�) as
follows. If

(
A B

C D

)
is an element of G2k(A,�) then using (2.2), it is easy to see

that the rule



1 · · · k −k · · · − 1

1
∣∣∣

... A

∣∣∣ B

k

∣∣∣
− − −

−k
∣∣∣

... C

∣∣∣ D

−1
∣∣∣


	→



1 · · · k · · · n −n −k · · · − 1

1
∣∣∣

... A

∣∣∣ B

k

∣∣∣
... 1...

∣∣∣
n

∣∣∣
− − − − −

−n
∣∣∣

...

∣∣∣ ...1
−k

∣∣∣
... C

∣∣∣ D

−1
∣∣∣


induces an injective homomorphism G2k(A,�) −→ G2n(A,�). We shall fre-
quently use this standard embedding to identify G2k(A,�) with its image in
G2n(A,�). Note that the above embedding depends on the choice of the basis.
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With the basis which is used in the book of Bak [1], the standard embedding has
the form



1 · · · k 1 · · · k
1

∣∣∣
... A

∣∣∣ B

k

∣∣∣
− − −

1
∣∣∣

... C

∣∣∣ D

k

∣∣∣


	→



1 · · · k · · · n 1 · · · k · · · n
1

∣∣∣
... A

∣∣∣ B

k

∣∣∣
... 1...

∣∣∣
n

∣∣∣
− − − − −

1
∣∣∣

... C

∣∣∣ D

k

∣∣∣
...

∣∣∣ 1...
n

∣∣∣


Next we recall the definition of the elementary quadratic subgroup. For i ∈

' = {1, . . . , n,−n, . . . ,−1}, let ε(i) denote the sign of i, i.e., ε(i) = 1 if i� 0
and ε(i) = −1 if i < 0. Let i, j ∈ ' such that i �= j . The elementary transvection
Tij (a) is defined as follows:

Tij (a) =
{
e + aeij − λ(ε(j)−ε(i))/2ae−j,−i , where a ∈ A, if i �= −j
e + aei,−i , where a ∈ λ−(ε(i)+1)/2�, if i = −j.

It is easy to check that Tij (a) ∈ G2n(A,�). The symbol Tij where i �= −j is called
a short root whereas Ti,−i is called a long root.

The subgroup generated by all elementary transvections is called the elementary
quadratic group and is denoted by E2n(A,�). This group is the quadratic version
of the elementary group in the theory of general linear group. Note that elementary
transvections corresponding to long roots are elementary matrices in E2n(A) and
elementary transvections corresponding to short roots are a product of two ele-
mentary matrices in E2n(A). Let (I, �) be a form ideal of (A,�). The subgroup
which is generated by all (I, �)-elementary transvections is denoted by F2n(I, �),
i.e.,

F2n(I, �) = 〈Tij (x), Ti,−i (y) | x ∈ I, y ∈ λ−(ε(i)+1)/2�〉.
The normal closure E2n(A,�)F2n(I, �) of F2n(I, �) in E2n(A,�) is denoted by
E2n(I, �) and is called the relative (or principal) elementary quadratic subgroup
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ofG2n(A,�) of level (I, �). In this note we sometimes do not distinguish between
short and long roots and simply write Tij (x), assuming that x ∈ λ−(ε(i)+1)/2�

whenever i = −j .
There are standard relations among the elementary transvections, which are

analogous to those for the elementary matrices in the general linear group. In
Section 4, we shall repeatedly use these relations. We list them now for future
reference.

(R1) Tij (a) = T−j,−i (λ(ε(j)−ε(i))/2a).
(R2) Tij (a)Tij (b) = Tij (a + b).
(R3) [Tij (a), Thk(b)] = 1 where h �= j,−i and k �= i,−j .
(R4) [Tij (a), Tjh(b)] = Tih(ab) where i, h �= ±j and i �= ±h.
(R5) [Tij (a), Tj,−i (b)] = Ti,−i (ab − λ−ε(i)ba) where i �= ±j .
(R6) [Ti,−i (a), T−i,j (b)] = Tij (ab)T−j,j (−λ(ε(j)−ε(−i))/2bab) where i �= ±j

We need the following theorem which determines the form of the generators of
E2n(I, �) (See [5] for the proof).

THEOREM 2.2. Let (I, �) be a form ideal and suppose n� 3. Then the group
E2n(A,�)F2n(I, �) is generated by all elements of the form Tji(a)Tij (x)Tji (−a),
where a ∈ A and x ∈ I.

Again note that we didn’t distinguish between the short and long roots. If in
the above theorem i = −j then a and x are in λ−(ε(j)+1)/2� and λ−(ε(i)+1)/2�,
respectively.

The above theorem is the quadratic version of an analogous result by A. Suslin
and L. Vaserstein for the general linear group. Using the latter result, it is easy to
show that En(A)En(IJ) ⊆ En(I+ J), where I and J are two sided ideals of A. We
need a quadratic version of this observation. For this purpose we recall the sum
and product of form ideals in a form ring. Let (I, �) and (J,,) be form ideals.
We write (I, �) ⊆ (J,,) if I ⊆ J and � ⊆ ,. It is clear if (I, �) ⊆ (J,,) then
G2n(I, �) ⊆ G2n(J,,), F2n(I, �) ⊆ F2n(J,,) and E2n(I, �) ⊆ E2n(J,,). The
sum and product of arbitrary form ideals (I, �) and (J,,) in (A,�) is defined by

(I, �)+ (J,,) = (I+ J, � +,),
(I, �)(J,,) = (IJ, �,),

where �, = �min(IJ) + 〈y�y | y ∈ J〉 + 〈x,x | x ∈ I〉. In the above definition,
〈y�y | y ∈ J〉 is the subgroup generated by all elements of the form yγ y where
γ ∈ � and y ∈ J. Now we are able to give the quadratic result.

THEOREM 2.3. Let (I, �) and (J,,) be form ideals of (A,�). Then

(1) G2(A,�)F2n

(
(I, �)(J,,)

)
⊆ F2n(I+ J, � +,), providing n� 2.

(2) E2n(A,�)F2n

(
(I, �)(J,,)

)
⊆ F2n(I+ J, � +,), providing n� 3.
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Remark. We can write the first statement of the above Theorem under a weaker
condition. Namely if (I, �) ⊆ (J,,) and � ⊆ 〈x,x | x ∈ I〉, then a modification
of the proof of (1) shows that G2(A,�)F2n(I, �) ⊆ F2n(J,,).

Proof. (1) First note that each element of G2(A,�) in G2n(A,�) has the
following form:



1 · · · n −n · · · −1

1 a
... b

... 1...

...

n 1
...

· · · · · · · · · ... · · · · · · · · ·
−n ... 1...
...

... 1

−1 c
... d


.

Let σ ∈ G2(A,�) and Tij (x) ∈ F2n((I, �)(J,,)). We shall show that σTij (x) ∈
F2n(I + J, � + ,). Suppose i �= −j , i.e. Tij is a short root. We shall prove a
stronger statement that for any form ideal (M,.) and element x ∈ M, σTij (x)
is in F2n(M,.). This will be required in the proof of the long root case later. If
i �= ±1 and j �= ±1, then clearly σ commutes with Tij (x) and we are done.
Suppose that j = 1. The argument for the case j = −1 is the same and will be
skipped. Furthermore the relation (R1) shows that the case i = ±1, follows from
the case j = ±1. Thus it suffices to treat just the case j = 1. Since Tij is a short
root, i �= ±1. Furthermore, since σ ∈ G2n(A,�), it follows by (2.2) that bd ∈ �.
Direct matrix calculation shows that

σTi1(x)σ
−1 = Ti,−1(λxb)Ti1(xd)Ti,−i (λx(bd)x). (2.3.1)

For example if ε(i)� 0, the calculation above takes the form

σTi1(x)σ
−1 =



1...

...−bx

...

xd 1
... λxb

. . . . . . . . . . . . . . .
... 1...
...
...−dx 1


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=



1...

...−bx

...

1
... λxb

. . . . . . . . . . . . . . .
... 1...
...
... 1





1...

...

...

xd 1
...

. . . . . . . . . . . . .
... 1...
...
...−dx 1





1...

...

...

1
... λx(bd)x

. . . . . . . . . . . . . . . .
... 1...
...
... 1



.

The above decomposition can be better understood if we write elementary trans-
vections Tij (x) as a special case of ESD-transvections and use the calculus of the
latter which is spelled out in [5, Section 6] to make the computation above. The
translation of elementary transvections into ESD-transvections is done in [5, 6.5].
For a short root Tij where j = 1 we get Tij (x) = Tei,e−1(λx, 0). Using the
conjugation property [5, 6.2] of ESD-transvections, we have

σTi1(x)σ
−1 = σTei,e−1(λx, 0)σ

−1 = Tσei ,σe−1(λx,−bd).
But σei = ei. Now a direct calculation shows that

Tσei,σe−1(λx,−bd) = Tei,e1b(λx, 0)Tei ,e−1d(λx,−bd),
which leads to the above decomposition (2.3.1) thanks to [5, 6.4].

Now suppose that i = −j , i.e. Tij is a long root. If i �= ±1 then σTi,−i (x)σ−1 =
Ti,−i (x). So assume that i = 1. The argument for i = −1 is the same. Let x =
λγ where γ ∈ �,. Therefore γ = α + β + δ for some α ∈ �min(IJ), β ∈
〈y�y | y ∈ J〉 and δ ∈ 〈z,z | z ∈ I〉. We shall show that σ Ti,−i (λα), σTi,−i (λβ)
and σTi,−i (λδ) are all in F2n(I+ J, � +,). For Ti,−i (λδ), it is enough by R(2) to
prove this when δ = zωz where z ∈ I and ω ∈ ,. The argument for Ti,−i (λβ) is
the same. So let δ = zωz. Using (R6) and the fact that n� 2, we can write

Ti,−i (λδ) = Ti,−i (λzωz) = Tk,−i(ωz)[Tk,−k(−ω), T−k,−i(z)]
where k �= ±i and k < 0. Therefore

σTi,−i (λδ) = σTk,−i(ωz)[σTk,−k(−ω), σT−k,−i (z)].
Since k �= ±1, σ commutes with Tk,−k(−ω). On the other hand, by the proof of
the short root case above, σTk,−i (ωz) and σT−k,−i (z) are in F2n(I + J, � + ,).
Therefore

σTi,−i (λδ) ∈ F2n(I+ J, � +,).
Now let α ∈ �min(IJ). So α = τ + υ for some

τ ∈ {x − λx | x ∈ IJ} and υ ∈ 〈xηx | x ∈ IJ, η ∈ �〉.
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Let τ = x1y1 − λy1x1, where x1 ∈ I, y1 ∈ J. Using R(5), we have Ti,−i (λτ) =
[Tij (−y1), Tj,−i (x1)], for any j �= ±i. Therefore

σTi,−i (λτ) = [σ Tij (−y1),
σ Tj,−i (x1)].

By the short root case, σTij (−y1) and σTj,−i (x1) are in F2n(I + J, � + ,). This
shows that σTi,−i (λτ) ⊆ F2n(I + J, � + ,). We are left with T−i,i (λυ). But it is
easy to see that υ can be written as the sum of elements from the sets

{x − λx | x ∈ IJ}, {y�y | y ∈ J} and {x,x | x ∈ I}.
Therefore the argument for T−i,i (λυ) reduces to the cases above and the first part
of the theorem is complete.

(2) By Theorem 2.2, E2n(A,�)F2n((I, �)(J,,)) is generated by elements of the
form Tij (a)Tji(x) where a ∈ A and x ∈ IJ, if i �= ±j , and by elements of the form
Ti,−i (a)T−i,i (x) where a ∈ λ−(ε(j)+1)/2� and x ∈ λ−(ε(i)+1)/2�,, if i = −j . Let’s
deal first with the short roots. We shall show that Tij (a)Tji(x) where i �= ±j , a ∈ A
and x ∈ IJ is in F2n(I + J, � + ,). Since x ∈ IJ, we can write x = ∑

l xlyl
where xl ∈ I, yl ∈ J. By R(2), it suffices to prove the theorem for x = x1y1 where
x1 ∈ I, y1 ∈ J. Since n� 3, there is an h �= ±i,±j . By (R4),

Tij (a)Tji(x1y1) = Tij (a)[Tjh(x1), Thi(y1)] = [Tij (a)Tjh(x1),
Tij (a)Thi(y1)].

Applying now (R4) to the left and right-hand entries of the last commutator, we
obtain that this commutator equals

[Tih(ax1)Tjh(x1), Thi(y1)Thj (−y1a)] ∈ E2n(I+ J, � +,),
since I and J are two sided ideals in A. Next we turn to the case of long roots. Sup-
pose i = −j . Therefore we are dealing with elements of the form Ti,−i (α)T−i,i (γ ),
where

α ∈ λ−(ε(i)+1)/2� and γ ∈ λ−(ε(−i)+1)/2�,.

Let γ = ν + β + δ for some

ν ∈ λ−(ε(−i)+1)/2�min(IJ),

β ∈ λ−(ε(−i)+1)/2〈y�y | y ∈ J〉

and

δ ∈ λ−(ε(−i)+1)/2〈x,x | x ∈ I〉.
We shall show that

Ti,−i (α)T−i,i (ν), Ti,−i (α)T−i,i (β) and Ti,−i (α)T−i,i (δ)
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are all in F2n(I + J, � + ,). Let µ = λ−(ε(−i)+1)/2. For T−i,i (δ), it is enough to
prove it when δ = µzωz, where z ∈ I and ω ∈ ,. The argument for T−i,i (β) is the
same. Let h �= ±i such that ε(h) = −ε(i). Then by (R6), we have

ρ = Ti,−i (α)T−i,i (µzωz) = Ti,−i (α)Thi(µωz)[Ti,−i (α)Th,−h(−µω), Ti,−i (α)T−h,i(z)].
Since h �= ±i, Ti,−i (α) commutes with Th,−h(−µω). Therefore we obtain

ρ = Ti,−i (α)Thi(µωz)Ti,−i(−α)[Th,−h(−µω), Ti,−i (α)T−h,i(z)]
= Thi(µωz) Thi(−µωz)Ti,−i(α)Thi(µωz)Ti,−i(−α)︸ ︷︷ ︸

R(6)

×

× [Th,−h(−µω), Ti,−i (α)T−h,i(z)]
= Thi(µωz)Th,−i(−µωzα)Th,−h(λ(ε(i)−ε(h))/2ωzαωz)×
× [Th,−h(−µω), Ti,−i (α)T−h,i(z)].

On the other hand,

[Th,−h(−µω), Ti,−i (α)T−h,i(z)]
= [Th,−h(−µω), Ti,−i (α)T−h,i(z)Ti,−i(−α)]
= [Th,−h(−µω), T−h,i(z) T−h,i(−z)Ti,−i(α)T−h,i(z)Ti,−i (−α)︸ ︷︷ ︸

R(6)

]

= [Th,−h(−µω), T−h,i(z)T−h,−i(−zα)T−h,h(zαz)].
Now a quick inspection shows that ρ ∈ F2n(I+ J, � +,).

Next, we consider the long root case Ti,−i (α)T−i,i (ν) where ν ∈ µ�min(IJ) and
µ = λ−(ε(−i)+1)/2. So ν = τ + υ for some

τ ∈ µ{x − λx | x ∈ IJ} and υ ∈ µ〈xηx | x ∈ IJ, η ∈ �〉.
Let τ = µ(x1y1 − λy1x1) where x1 ∈ I, y1 ∈ J. Depending on sign of i, two
cases may occur. Suppose first ε(i) = 1. Thus µ = 1. Using R(5), we have
T−i,i (τ ) = [T−i,j (x1), Tj,i(y1)], where j �= ±i. Therefore

Ti,−i (α)T−i,i (τ ) = [Ti,−i (α)T−i,j (x1)︸ ︷︷ ︸
R(6)

, Ti,−i (α)Tji(y1)︸ ︷︷ ︸
R(6)

]

= [Tij (αx1)T−j,j (−λ(ε(j)−ε(−i))/2x1αx1)T−i,j (x1),

Tji(y1)Tj,−i (−y1α)Tj,−j (λ(ε(i)−ε(j))/2y1αy1)].

But

Tij (αx1), T−j,j (−λ(ε(j)−ε(−i))/2x1αx1)

= T−j,j (−λ−(ε(−j)+1)/2x1αx1), T−i,j (x1), Tji(y1), Tj,−i (−y1α)

and

Tj,−j (λ(ε(i)−ε(j))/2y1αy1) = Tj,−j (λ−(ε(j)+1)/2y1αy1)

which appear in the above equation are in F2n(I+ J, � +,).
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Now consider the case ε(i) = −1. Therefore µ = λ. Thus τ = (−y1)x1 −
λ(x1)(−y1). Using R(5), we have

T−i,i (τ ) = [T−i,j (−y1), Tj,i(x1)],

where j �= ±i. Therefore
Ti,−i (α)T−i,i (τ ) = [Ti,−i (α)T−i,j (−y1)︸ ︷︷ ︸

R(6)

, Ti,−i (α)Tji(x1)︸ ︷︷ ︸
R(6)

]

and one completes the proof as in the case ε(i) = 1 above.
We are left with T−i,i (υ). But it is easy to see that elements of the form xηx

where η ∈ � can be written as a sum of elements from the sets {x − λx|x ∈
IJ}, {y�y | y ∈ J} and {x,x | x ∈ I}. Therefore the argument for T−i,i (υ) reduces
to the cases above and the proof is complete.

COROLLARY 2.4. Let (A,�) be a form ring and let s ∈ Center(A) such that
s = s and s� ⊆ �, e.g. s = t t where t ∈ Center(A). Then

(1) G2(A,�)F2n(s
3kA, s3k�) ⊆ F2n(s

kA, sk�), providing n� 2.
(2) E2n(A,�)F2n(s

3kA, s3k�) ⊆ F2n(s
kA, sk�), providing n� 3.

Proof. The corollary follows from Theorem 2.3, by letting (I, �) = (J,,) =
(sA, s�) and recognizing that (s3kA, s3k�) ⊆ (skA, sk�)(skA, sk�).
COROLLARY 2.5. If (A,�) is a form ring thenG2(A,�) normalizes E2n(A,�),
providing n� 2.

Proof. Let s = 1 in Theorem 2.4 (1).

The next result is due to Bak and if� = �max, independently also to Vaserstein.

THEOREM 2.6. Let (A,�) be a form ring such that A is semilocal. If n > 1 then

G2n(A,�) = G2(A,�)E2n(A,�) = E2n(A,�)G2(A,�),

E2n(A,�) is normal in G2n(A,�) and the quotient G2n(A,�)/E2n(A,�) is
abelian.

Proof. If σ is a 2n× 2n matrix with coefficients in A, let
t (σ1, . . . , σn, σ−n, . . . , σ−1)

denote the (n + 1)st column of σ , where σ1, . . . , σn, σ−n, . . . , σ−1 ∈ A and t
denoted the transpose operator taking row vectors to column vectors. Suppose
σ ∈ G2n(A,�). By [9, Section IV, (3.11)], there is an ε ∈ E2n(A,�) such that

t ((εσ )−n, . . . , (εσ )−1)

is a unimodular vector, i.e. there exist a−n, . . . , a−1 ∈ A such that
−1∑
i=−n

ai(εσ )i = 1.
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It follows from [8, Section V, (3.3)(1) and (3.4)(a)] that there is a product τ of
elements of the kind Tij (a) where i, j ∈ {−n, . . . ,−1} such that

((τεσ )−n, . . . , (τεσ )−1) = (1, 0, . . . , 0).
Now it is straightforward to find an element ρ ∈ E2n(A,�) such that

((ρεσ )1, . . . , (ρεσ )n, (ρεσ )−n, . . . , (ρεσ )−1) = (0, . . . , 0, 1, . . . , 0).
This says that the matrix ρτεσ fixes the basis element e−n. A standard argument
(see the Proof of [9, Section IV, (3.4)]) shows that there is an δ ∈ E2n(A,�)

such that δρτεσ fixes not only e−n, but also en. Thus δρτεσ leaves invariant the
hyperbolic plane H generated by en, e−n. Since δρτεσ preserves the Hermitian
form h, it follows that it leaves the orthogonal complement of H invariant. But
this is the subspace generated by e1, . . . , en−1, e−(n−1), . . . , e−1. Thus δρτεσ ∈
G2(n−1)(A,�). Thus σ ∈ E2n(A,�)G2(n−1)(A,�). Repeating the argument for
each m such that 2 �m� n, we get

σ ∈ E2n(A,�)G2(A,�) = (by (2.5))G2(A,�)E2n(A,�).

This shows that

G2n(A,�) = G2(A,�)E2n(A,�)

and E2n(A,�) is normal in G2n(A,�). If π denotes the permutation matrix

0 −1
...

1 0
...

1...

...

1
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
... 1...
... 1
... 0 1
... −1 0


then obviously π ∈ G2n(A,�) (because it satisfies the defining equations in (2.2)),
π normalizes E2n(A,�)(because conjugation by π leaves the set of elementary
transvections invariant), and

G2(A,�)E2n(A,�) = G2n(A,�) = πG2n(A,�) = πG2(A,�)E2n(A,�).

Since G2(A,�) and πG2(A,�) commute, it follows that G2n(A,�)/E2n(A,�)

is Abelian.

We close this section by recalling a lemma which will be used in Section 4.
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LEMMA 2.7. Let A be module finite over a Noetherian ring R. Then for any s in
R, there is a nonnegative integer k such that the map skA −→ 〈s〉−1A induced by
the canonical homomorphism A −→ 〈s〉−1A is injective.

The verification is easy and can be found in the proof of Lemma 4.10 in [3].
The above lemma shows that if A is a Noetherian ring, then there is an integer k,
such that the relative congruence subgroup G2n(s

kA, sk�) embeds in
G2n(〈s〉−1A, 〈s〉−1�). This result will be used in proving Theorem 4.6.

3. On Bak’s Dimension Theory

In this section we give a self-contained account of a portion of Bak’s dimension
theory and show how to apply it to general quadratic groups.

Recall that a relation � on a set is called a quasi-ordering, if it is reflexive and
transitive. If in addition, it is anti-symmetric, then it is called a partial ordering.
A quasi-ordering � is directed, if given elements a and b, there is an element c
such that a� c and b� c. Following Bak [6], we define a category with structure
as follows.

DEFINITION 3.1. A category with structure is a category C together with a class
S(C) of commutative squares in C called structure squares and a class of I(C)
of functors from directed quasi-ordered sets to C called infrastructure functors,
satisfying the following conditions.

(1) S(C) is closed under isomorphism of commutative squares.

(2) For each object A of C, the trivial square i.e.,

A

1
��

1 �� A

1
��

A
1 �� A

is in S(C),
(3) I(C) is closed under isomorphism of functors.

(4) For each object A of C, the trivial functor FA: {∗} −→ C, ∗ 	→ A, is in I(C),
where {∗} denotes the directed quasi-ordered set with precisely one element ∗.

(5) For each F : I −→ C in I(C), the direct limit lim−→I
F exists in C.

Next we define a category with dimension.

DEFINITION 3.2. Let (C,S(C), I(C)) be a category with structure. Let d:
Obj (C) −→ Z� 0 ∪ ∞ be a function which is constant on isomorphism classes
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of objects. Let A ∈ Obj (C) such that 0 < d(A) < ∞. A d-reduction of A is
a set

A

��

�� Bi

(i∈I )
��

Ci �� Di

of structure squares where I is a directed quasi-ordered set and B: I −→ C, i 	→
Bi , is an infrastructure functor such that the following holds.

(1) If i� j ∈ I then the triangle
A

�� ���
��

��
��

�

Bi �� Bj
commutes.

(2) d(lim−→I
B) = 0.

(3) d(Ci) < d(A) for all i ∈ I .

A function d is called a dimension function on (C,S(C), I(C)) if for any object
A of C, such that 0 < d(A) <∞, A has a d-reduction. In this case, the quadruple
(C,S(C), I(C), d) is called a category with dimension.

For the rest of this section (C,S(C), I(C), d) will denote a category with di-
mension and G, E : C −→ Group a pair of group valued functors on C such that
E ⊆ G.

DEFINITION-LEMMA 3.3. Let n� 0. Define the functor Gn : C −→ Group, by

Gn(A) =
⋂
A−→B
d(B)�n

Ker(G(A) −→ G(B)/E(B)).

In general Gn(A) is not a normal subgroup of G(A). Clearly E(A) ⊂ Gn(A) for any
object A of C and if d(A) is finite then Gn(A) = E(A) for all n� d(A), because
the identity morphism A → A is now one of those occurring in the definition of
Gn(A). The filtration

G(A) ⊇ G0(A) ⊇ G1(A) ⊇ · · ·
is called the dimension filtration on G with respect to E . For a fixed object A, a set
S of morphisms A→ B such that for any A→ B ∈ S , d(B)� n, and such that

Gn(A) =
⋂

A−→B∈S
Ker(G(A) −→ G(B)/E(B)),

is called a defining set for Gn(A). It is easy to check that defining sets exist,
although they are not as a rule unique. However, for any defining set S , the map

G(A)/Gn(A) −→
∏

A−→B∈S
G(B)/E(B) (3.3.1)



DIMENSION THEORY AND NONSTABLE K1 OF QUADRATIC MODULES 309

of coset spaces is injective. Clearly if d(A)� n, then Gn(A) = E(A), because one
can enlarge if necessary any defining set S for Gn(A) to a defining set S ′ by adding
the identity morphism id: A→ A.

DEFINITION 3.4. A pair G, E of group valued functors on C is called good if the
following holds.

(1) E and G preserve direct limits of infrastructure functors.
(2) For any A of C, E(A) is a perfect group.
(3) For any zero dimensional object A,K1(A) := G(A)/E(A) is an abelian group.
(4) For any structure square

A

��

�� B

��
C �� D

let
H = Ker(G(A)→ G(B)/E(B)) and L = Ker(G(A)→ G(C)/E(C)).

Then the mixed commutator [H,L] ⊆ E(A).

The following theorem plays a crucial role in this note and is a central result in
Bak’s dimension theory.

THEOREM 3.5. Let C = (C,S(C), I(C), d) be a category with dimension and
(G, E) be a good pair of group valued functors on C. Then the dimension filtration
G ⊇ G0 ⊇ G1 ⊇ · · · of G with respect to E is a normal filtration of G such
that the quotient functor G/G0 takes its values in abelian groups and the filtration
G0 ⊇ G1 ⊇ · · · is a descending central series such that if d(A) is finite then
Gn(A) = E(A) whenever n� d(A). In particular, if d(A) is finite, then E(A) is
normal in G(A).

Proof. If A is an object of C, let Sn(A) denote a set of defining morphisms for
Gn(A).

By Lemma 3.3, the map

G(A)/G0(A)→
∏

A−→B∈S0(A)

G(B)/E(B)

is injective. Since each G(B)/E(B) is Abelian by (3) of Definition 3.4, it follows
that G0(A) is normal in G(A) and the quotient G(A)/G0(A) is Abelian.

Let n� 0. We shall show that for any object A, [G0(A),Gn(A)] ⊆ Gn+1(A).
Since for any object B such that d(B)� n+ 1, we have that Gn+1(B) = E(B) and
since the map

G(A)0/Gn+1(A)→
∏

A−→B∈Sn+1(A)

G0(B)/E(B)
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is injective, we can reduce to the case d(A)� n + 1. Suppose d(A)� n + 1. Let
σ ∈ G0(A) and ρ ∈ Gn(A). Let

A

��

�� Bi

(i∈I )
��

Ci �� Di

be a d-reduction of A. Since d(lim−→I
Bi) = 0 and since G and E commute with lim−→I

,
there is an i ∈ I such that

σ ∈ Ker(G(A) −→ G(Bi)/E(Bi)).

Since

d(Ci) < n+ 1,Gn(Ci) = E(Ci).

Thus

ρ ∈ Ker(G(A)→ G(Ci)/E(Ci)).

Now by property (4) of Definition 3.4, [σ, ρ] ∈ E(A) = Gn+1(A).
We show finally that for any n, Gn is normal in G. The proof is by induction on

n. The case n = 0 has been done above. Suppose n > 0. By induction on n, we
can assume for all 0 �m < n that Gm is normal in G. Since the map

G(A)/Gn(A)→
∏

A−→B∈Sn(A)
G(B)/E(B)

is injective, it suffices to show that each E(B) above is normal in G(B). This allows
us to reduce to the case that d(A)� n and Gn(A) = E(A). We have shown already
that

[G0(A),Gn−1(A)] ⊆ Gn(A) = E(A).

Since E(A) is perfect by property (3) of Definition 3.4, and E(A) ⊆ Gn−1(A) ⊆
G0(A), it follows that

[G0(A),Gn−1(A)] = Gn(A).

But G0(A) and Gn−1(A) are normal in G(A), by the induction assumption. Thus
Gn(A) is normal in G(A).

Remark. Bak has also an alternative version of the theorem above in which a
good pair (G, E) is replaced by a natural transformation S → G of group valued
functors such that

(1) S and G preserve direct limits of infrastructure functors.
(2) S(A) is perfect for any A.
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(3) G(A)/image(S(A)→ G(A)) is Abelian for any zero-dimensional object A.
(4) Ker(S(A)→ G(A)) ⊆ Center(S(A)) for any finite-dimensional object A.
(5) The extension S → G satisfies excision on any structure square.

The conclusion of the alternative version is the same as that above. The alternative
approach is used in [11], where it is applied to general linear groups and in [7]
where it is applied to net general linear groups.

There are many ways to make the category of form rings into a category with
dimension such that Gn,En is a good pair of group valued functors. We describe
next a way based on quasi-finite localization-completion squares and the Bass–
Serre dimension.

Let AR denote a pair consisting of an associative ring A with identity and a
commutative ring R ⊆ Center(A). Thus AR is an algebra over R. A morphism
AR → A′R′ of algebras is a ring homomorphism f : A→ A′ such that f (R) ⊆ R′.
Next we recall the Bass–Serre dimension of AR.

Let X be a topological space. The dimension of X is the length n of the longest
chain X0 � X1 � · · · � Xn of nonempty closed irreducible subsets Xi of X, [8,
Section III]. Define δ(X) to be the smallest nonnegative integer d such that X is a
finite union of irreducible Noetherian subspaces of dimension � d. If there is no
such d, then by definition δ(X) = ∞. Let R be a commutative ring. Let Spec(R)
denote the topological space consisting of the set of all prime ideals of R, under
the Zariski topology and let Max(R) denote the subspace consisting of all maximal
ideals of R. Then the Bass–Serre dimension of R is δ(Max(R)) and is denoted by
δ(R). Define the Bass–Serre dimension δ(AR) of AR by

δ(AR) =
{
δ(R) if A is quasi finite over R,
∞ otherwise.

Recall that anR-algebraA is called quasi-finite overR if there is a direct system
of finite R-subalgebras Ai of A such that lim−→I

Ai = A.
A form algebra over a commutative ring R is a form ring (AR,�) where the

involution leaves R invariant. A morphism (AR,�)→ (A′R′,�′) of form algebras
is a morphism of form rings which defines an algebra morphism AR → A′

R′ . A
form algebra (AR,�) is called module finite, if A is module finite over R and is
called quasi-finite, if AR is quasi-finite. If (AR,�) is a form algebra, let R0 denote
the subring of R generated by all aa such that a ∈ R. Define the Bass–Serre
dimension of (AR,�) by

δ(AR,�) =
{
δ(R0) if (AR,�) is quasi-finite,
∞ otherwise.

The next task is to put structure on the category Form algebras, which makes
it a category with dimension under Bass–Serre dimension.

Let Mod(R) denote the category of all modules over the commutative ring R
and Noeth(R) ⊆Mod(R) the full subcategory of all Noetherian modules over R.
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If s ∈ R and M ∈ Mod(R), let M̂s = lim←−i� 0
M/Msi denote the completion of

M at s. Let 〈s〉−1M denote the module of 〈s〉-fractions ofM where 〈s〉 denotes the
multiplicative set {1, s, s2, . . .} generated by s. The square

M

��

�� 〈s〉−1M

��
M̂(s)

�� 〈s〉−1M̂(s)

is called the localization-completion square ofM at s. Whereas the functor M 	→
M̂(s) is exact on Noeth(R) (in particular ifN ⊆ M, there is a canonical embedding
N̂(s) ⊆ M̂(s)) and whereas the localization-completion square above is a pullback
square if M ∈ Noeth(R), these facts fail to hold over Mod(R). To rectify this
problem, Bak [3] has defined for any R-module M, its finite completion at s by
M̃(s) = lim−→J

(M̂j )(s) where {Rj |j ∈ J } is any directed system of subrings Rj ⊆ R
such that each Rj is finitely generated as a Z-algebra, contains s, and lim−→J

Rj = R
and {Mj |j ∈ J } is any directed system of Abelian subgroups Mj ⊆ M such that
each Mj is a finitely generated Rj -module and lim−→J

Mj = M. It is easy to check

that M̃(s) does not depend on the choice of the directed system above. Clearly
M̃(s) = M̂(s) if M ∈ Noeth(R) and R is finitely generated as a Z-algebra. The
square

M

��

�� 〈s〉−1M

��
M̃(s)

�� 〈s〉−1M̃(s)

is called the localization-finite-completion square of M at s. The exactness of
finite completion on Mod(R) and the pullback property for localization-finite-
completion squares on Mod(R) follow from the analogous properties, respec-
tively, of ordinary completion and of ordinary localization-completion squares on
Noeth(R).

Let M ∈Mod(R). Whereas ordinary completion M̂(s) does not depend on R,
finite completion M̃(s) does. If confusion can arise, we shall write (M̃(s))R̃(s)) in

place of M̃(s).

DEFINITION-LEMMA 3.6 (Bak). Let AR be an R-algebra. Let s ∈ R and let
{Rα |α ∈ J } and {Aα |α ∈ J } be directed systems in R and A, respectively, used
to construct (Ã(s))R̃(s) . Let x, y ∈ Ã(s). Choose α, β ∈ J and elements x′ ∈ (Âα)(s)
and y′ ∈ (Âβ)(s) such that x′ and y′ represent x and y, respectively. Neither
Aα nor Aβ is necessarily closed under multiplication in A. However, since Aα
is module finite over Rα and Aβ is module finite over Rβ , there is a γ ∈ J such



DIMENSION THEORY AND NONSTABLE K1 OF QUADRATIC MODULES 313

that α� γ, β� γ , and AαAβ ⊆ Aγ . Let
∏
i� 0 xi ∈

∏
i� 0Aα represent x′ and∏

i� 0 yi ∈
∏
i� 0Aβ represent y′. Define x◦y to be the class in Ã(s) of the element

of (Âγ )(s) defined by
∏
i� 0 xiyi ∈

∏
i� 0Aγ . Then the product x◦y is independent

of all the choices made and makes Ã(s) into an R̃(s)-algebra.
Proof. Straightforward.

The result above paves the way for defining finite completions of form algebras.
Let (AR,�) be a form algebra and let s ∈ R0. Define the finite completion of
(AR,�) at s by

(AR,�)̃ (s) = (AR,�)̃ (R̃0)(s)
=
(
(Ã(s))R̃0(s)

, (�̃(s))R̃0(s)

)
.

Define the ordinary completion of (AR,�) at s by (AR,�)̂ (s) = (Â(s), �̂(s)).
LEMMA 3.7. Let (AR,�) be a module finite form algebra such that R is finitely
generated as a Z-algebra. If s ∈ R0, then (AR,�)̃ (s) = (AR,�)̂ (s).

Proof. It suffices to show that R is finitely generated as an R0-module and
that R0 is finitely generated as a Z-algebra. Let a1, . . . , an ∈ R such that a1, . . . ,

an, a1, . . . , an generate R as a Z-algebra. Clearly each ai and ai satisfies the monic
polynomial X2 + (ai + ai)X + aiai whose coefficients lie in R0. Thus R is fi-
nitely generated as an R0-module. It is an easy exercise to show that R0 is gen-
erated as a Z-algebra by all elements aiai such that 1 � i� n and all elements
(x1 . . . xk)(y1 . . . yl) + (y1 . . . yl)(x1 . . . xk) where {x1, . . . , xk} and {y1, . . . , yl}
range over all disjoint, possibly empty subsets of {a1, . . . , an}.

The following corollary is an easy consequence of the lemma above and its
proof.

COROLLARY 3.8. Let (AR,�) be a quasi-finite form algebra. Then there is a
directed system of module finite form subalgebras ((Aα)Rα ,�α) ⊆ (AR,�), (α ∈
J ) such that each Rα is finitely generated as a Z-algebra and

(AR,�) = lim−→
J

((Aα)Rα ,�α).

Furthermore, if s ∈ R0, we can assume that s ∈ (Rα)0, for all α ∈ J . Thus

(AR,�)̃ (s) = lim−→
J

(Aα,�α)̂ (s) = lim−→
J

( ˆ(Aα)(s)R̂α(s) , (�̂α)(s)).

In particular (AR,�)̃ (s) is quasi-finite.
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REDUCTION LEMMA 3.9. Let (AR,�) be a form algebra such that 0 <
δ(AR,�) <∞. Then there is a multiplicative subset S ⊆ R0 such that

δ((S−1AR)S−1R, S
−1�) = 0

and for all s ∈ S, δ((AR,�)̃(s)) < δ(AR,�).
Proof. Let X1 ∪ · · · ∪ Xr be a decomposition of Max(R0) into irreducible

Noetherian subspaces such that δ(Xi)� δ(AR,�) for all 1 � i� r and δ(Xi0) =
δ(AR,�) for some i0. For each 1 � i� r, let Mi ∈ Xi . Let

S = R0 −M1 ∪ · · · ∪Mr .

Since (S−1AS−1R, S
−1�) is obviously quasi-finite and S−1R0 is semilocal, it fol-

lows that

δ(S−1AS−1R, S
−1�) = δ(S−1R0) = 0.

By the corollary above, (AR,�)̃(s) is quasi-finite and by [3,4.17], δ(R̃0(s)) < δ(R0).
Thus

δ(AR,�)̃(s) = δ(R̃0(s)) < δ(R0) = δ(AR,�).

We can now make the category C = Form algebras into a category with
dimension. As structure squares, we take all localization-finite-completion squares

(AR,�)

��

�� (〈s〉−1A〈s〉−1R, 〈s〉−1�)

��
(AR,�)̃(s) �� 〈s〉−1(AR,�)̃(s)

where s ∈ R0. If S ⊆ R0 is a multiplicative set, give S a quasi-ordering by defining
s� t if and only if there is a u ∈ S such that su = t . As infrastructure functors, we
take all functors of the kind

F : S → C, s 	→ (〈s〉−1A〈s〉−1R, 〈s〉−1�).

Clearly lim−→S
F = (S−1AS−1R, S

−1�). From the Reduction Lemma above, it fol-
lows immediately that (C,S(C), I(C), δ) is a category with dimension.

MAIN THEOREM 3.10 Let n� 3. Let G2n denote the general quadratic group
functor on C = Form algebras and let E2n denote its elementary subgroup. Let
G2n ⊇ G0

2n ⊇ G1
2n ⊇ · · · denote the dimension filtration on G2n with respect to

E2n. Then this filtration is normal, the quotient functorG2n/G
0
2n is Abelian, and the

filtration G0
2n ⊇ G1

2n ⊇ · · · is a descending central series such thatGi2n(AR,�) =
E2n(AR,�) whenever i� δ(AR,�).
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Proof. It suffices to show by Theorem 3.5 that the pair (G2n, E2n) is good on
(C,S(C), I(C), δ). Property (1) for being good is obvious. Property (2) follows
from R(1)–R(6) in Section 2, because n� 3. We shall prove property (3) next.
Property (4) is the subject of the next section.

Suppose δ(AR,�) = 0. By definition δ(R0) = 0. Thus R0 is semilocal. Since
(AR,�) is quasi-finite, it follows that it is a direct limit lim−→J

((Aj )Rj ,�j ) of a
directed system of form subalgebras ((Aj)Rj ,�j ) ⊆ (AR,�) such that each Aj is
module finite overRj ,R0 ⊆ Rj andRj is finitely generated as anR0-module. It fol-
lows (cf. proof of Lemma 3.7) that Aj is finitely generated as an R0-module. Thus
Aj is semilocal, by [8,III(2.5), 2.11]. It follows by Theorem 2.6 that E2n(Aj ,�j) is
normal in G2n(Aj ,�j ) and the quotient G2n(Aj ,�j )/E2n(Aj ,�j ) is
Abelian. Taking direct limits, we obtain that the same is true for G2n(A,�) and
E2n(A,�).

4. Computation

The goal of this section is to complete the proof of Theorem 3.10 by showing that
(G2n, E2n) satisfies property (4) in Definition 3.4 of a good pair of group valued
functors on a category with dimension. This is achieved in Theorem 4.6 below.
Throughout the section it will be assumed that n� 3. We follow closely Bak’s
method in section 4 of [3], with an obvious complication due to the existence of
long and short roots in elementary quadratic groups. In passing, we also prove that
E2n(A,�) is a normal subgroup of G2n(A,�).

The following notation will be used. Suppose (I, �) ⊆ (A,�) is a form ideal
and s ∈ R0. Let (1/s)I (resp. (1/s)�) denote the additive subgroup of 〈s〉−1A

(resp.〈s〉−1�) consisting of all elements (1/s)a such that a ∈ I (resp. a ∈ �).
For any natural number N , let EN((1/s)I, (1/s)�) denote the subset of G2n

(〈s〉−1A, 〈s〉−1�) consisting of all products of N elementary transvections Tij (a)
such that a ∈ (1/s)I if Tij is a short root and a ∈ λ−(ε(i)+1)/2(1/s)� if Tij is a long
root. If t ∈ R0, we let EN(tI, t�) denote the subset of EN(1/s)I, (1/s)�) con-
sisting all products of N elementary transvections Tij (a) such that a ∈ Im(tI →
〈s〉−1I) if Tij is short and such that a ∈ λ−(ε(i)+1)/2Im(t� → 〈s〉−1�) if Tij is
long. Note that if the canonical map tI → 〈s〉−1A is injective then EN(tI, t�) is
identified under the injective map G2n(tI, t�) → G2n(〈s〉−1A, 〈s〉−1�) with its
preimage in G2n(tI, t�) consisting of all products of N elementary transvections
Tij (a) such that a ∈ tI if Tij is short and a ∈ λ−(ε(i)+1)/2t� if Tij is long. We also
use the notation E((1/s)(I), (1/s)(�)) for

⋃
N E

N((1/s)(I), (1/s)(�)).

LEMMA 4.1. Let s, t ∈ R0. If K,L and m are given, there are k and M, e.g.
k = (m+ 1)4K + 4K−1 + · · · + 4 andM = 14KL, such that

EK((t/s)A,(t/s)�)EL(sktA, skt�) ⊆ EM(smtA, smt�).
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Proof. Once the lemma is proved for K = 1, L = 1, then by an easy induction
procedure we can establish the lemma for any pair of K and L. Therefore we shall
first show that

E1((t/s)A,(t/s)�)E1(s(m+1)4tA, s(m+1)4t�) ⊆ E14(smtA, smt�).

Let ρ = Thk(a)Tij (b). We must show that ρ ∈ E14(smtA, smt�). The proof breaks
into 4 cases depending on the length of the roots Thk and Tij . It will be seen that
the most complicated situations are when we have either two short roots such that
Thk = T−i,−j and ρ = T−i,−j (a)Tij (b) or two long roots such that Th,−h = T−i,i and
ρ = T−i,i (a)Ti,−i (b).

Case I. Thk and Tij are short roots, namely h �= ±k and i �= ±j . This case is
handled by dividing further into four subcases:

(1) h �= j, k �= i
(2) h = j, k �= i
(3) h �= j, k = i
(4) h = j, k = i.
We shall prove (1) and leave it to the reader to reduce cases (2)–(4) to case (1). Our
proof of (1) breaks further into four subcases:

(i) h �= −i, k �= −j ,
(ii) h = −i, k �= −j ,

(iii) h �= −i, k = −j ,
(iv) h = −i, k = −j .

Thus consider ρ = Thk(a)Tij (b) where h �= ±k, i �= ±j , h �= j, k �= i and
a ∈ (t/s)A, b ∈ s(m+1)4tA.

(i) In this case Thk(a) commutes with Tij (b). Therefore ρ= Tij (b) and we are
done.

(ii) In this case

ρ = Thk(a)T−h,j (b)Thk(−a).
Two cases can occur. If k �= j use (R1) to write

T−h,j (b) = T−j,h(λ(ε(j)−ε(−h))/2b).
By definition, b = s(m+1)4tc for some c ∈ A. Since s, t ∈ R0

λ(ε(j)−ε(−h))/2b = λ(ε(j)−ε(−h))/2s(m+1)4tc ∈ s(m+1)4tA.

To simplify notation, we denote λ(ε(j)−ε(−h))/2b by b. This done, we have

ρ = Thk(a)T−j,h(b)Thk(−a)
= T−j,h(b) T−j,h(−b)Thk(a)T−j,h(b)Thk(−a)︸ ︷︷ ︸

R(4)
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= T−j,h(b)T−j,k(−ba)(but a = ta′/s, b = s(m+1)4tb′))
= T−j,h(s(m+1)4tb′)T−j,k(s(m+1)4−1t2b′a′) ∈ E2(smtA, smt�).

On the other hand, if k = j then

ρ = Thk(a)T−k,h(b)Thk(−a)
= T−k,h(b) T−k,h(−b)Thk(a)T−k,h(b)Thk(−a)︸ ︷︷ ︸

R(5)

= T−k,h(b)T−k,k(−ba + λε(k)ab)
= T−k,h(s(m+1)4)tb′)T−k,k(s(m+1)4−1t2(−b′a′ + λε(k)a′b′)) ∈ E2 ×
× (smtA, smt�)

for some a′, b′ ∈ A.
(iii) The argument is similar to that in the previous case and is omitted.
(iv) In this case ρ = Thk(a)T−h,−k(b)Thk(−a). By (R1) we can rewrite ρ as Thk(a)

Tkh(b)Thk(−a), where a = ta′/s, b = s(m+1)4tb′. Choose i �= ±h,±k and set
x = s(m+1)2 and y = s(m+1)2tb′. Thus b = xy. Now the computation goes as
follow,

ρ = Thk(a)Tkh(b)Thk(−a)
= Thk(a) [Tki(x), Tih(y)] Thk(−a)
= Thk(a)Tki(x)Thk(−a)Tki(−x)︸ ︷︷ ︸

R(3)

×

×Tki(x)Thk(a)Tih(y)Tki(−x)Tih(−y)Thk(−a)
= Thi(ax)Tki (x)Tih(y) Tih(−y)Thk(a)Tih(y)Thk(−a)︸ ︷︷ ︸

R(3)

×

× Thk(a)Tki(−x)Tih(−y)Thk(−a)
= Thi(ax)Tki (x) Tih(y)Tik(−ya)︸ ︷︷ ︸

commutes

Thk(a)Tki(−x)Thk(−a)Tki(x)︸ ︷︷ ︸
R(3)

×

× Tki(−x)Thk(a)Tih(−y)Thk(−a)
= Thi(ax)Tki (x)Tik(−ya)Tih(y)Thi (−ax)Tki(−x)Tih(−y)×
× Tih(y)Thk(a)Tih(−y)Thk(−a)︸ ︷︷ ︸

R(3)

= Thi(ax) Tki (x)Tik(−ya)Tki(−x)︸ ︷︷ ︸
T1

Tki(x)Tih(y)Thi(−ax)Tki (−x)︸ ︷︷ ︸
T2

×

× Tih(−y)Tik(ya).
Clearly −ya = −s(m+1)2−1t2b′a′. Let

c = −smt and d = sm+1tb′a′.



318 ROOZBEH HAZRAT

Therefore −ya = cd. Thus,

T1 = Tki(x) [Tih(c), Thk(d)] Tki(−x) = [Tkh(xc)Tih(c), Thk(d)Tki(−dx)] ,
and

T2 = Tki(x)Tih(y)Thi(−ax)Tki(−x) = Tkh(xy)Tih(y)Thi (−ax).
A quick inspection shows that ax, xc, c, d, dx, xy, ya ∈ smtA. Therefore,

ρ = Thi(ax) T1︸︷︷︸
8terms

T2︸︷︷︸
3terms

Tih(−y)Tik(ya)︸ ︷︷ ︸
2terms

∈ E14(smtA, smt�).

Case II. Thk is a long root and Tij a short one. Thus k = −h and
a ∈ λ−(ε(h)+1)/2(t/s)� whereas i �= ±j and b ∈ s(m+1)4tA. This case is handled by
dividing further into three subcases:

(1) j �= h, i �= −h,
(2) j = h, i �= −h,
(3) j �= h, i = −h.

(1) By R(3), Th,−h(a) commutes with Tij (b). Therefore ρ = Tij (b) and we are
done.

(2) We have

ρ = Th,−h(a)Tih(b)Th,−h(−a)
= Tih(b) Tih(−b)Th,−h(a)Tih(b)Th,−h(−a)︸ ︷︷ ︸

R(6)

= Tih(b)Ti,−h(−ba)Ti,−i (λ(ε(h)−ε(i))/2bab) ∈ E3(smtA, smt�).

(3) This case is similar to the above argument in (2).

Case III. Thk and Tij are long roots. Thus h = −k, i = −j and

a ∈ λ−(ε(h)+1)
2
t

s
�, b ∈ λ−(ε(i)+1)

2 s(m+1)4t�.

Suppose h �= −i. Then Ti,−i commutes with Th,−h and we are done. The only case
which remains is when h = −i, i.e. ρ = Th,−h(a)T−h,h(b)Th,−h(−a) where

a ∈ λ−(ε(h)+1)
2
t

s
� and b ∈ λ−(ε(−h)+1)

2 s(m+1)4t�.

Choose p �= ±h such that p < 0. Write b as a product b = µcdc where

µ = λ−(ε(−h)+1)/2, c = s(m+1) and d = s(m+1)2tb′

where b′ ∈ �. By R(6), we can write

T−h,h(µcdc) = Tph(−µcd)[Tp,−p(d), T−p,h(c)].
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Thus

ρ = Th,−h(a)Tph(−µcd)[Tp,−p(d), T−p,h(c)]Th,−h(−a)
= Th,−h(a)Tph(−µcd)Th,−h(−a)Tph(µcd)︸ ︷︷ ︸

R(6)

Tph(−µcd)Th,−h(a)×

× [Tp,−p(d), T−p,h(c)]Th,−h(−a)
= Th,−p(λ(ε(h)−ε(p))/2aµcd)Tp,−p(cdacd)Tph(−µcd)︸ ︷︷ ︸

T1

Th,−h(a)Tp,−p(d)︸ ︷︷ ︸
commutes

×

× T−p,h(c)× Tp,−p(−d)T−p,h(−c)Th,−h(−a)
= T1Tp,−p(d) Th,−h(a)T−p,h(c)Th,−h(−a)T−p,h(−c)︸ ︷︷ ︸

R(6)

T−p,h(c)×

× Th,−h(a)Tp,−p(−d), T−p,h(−c)Th,−h(−a)
= T1 Tp,−p(d)Thp(−λ(ε(h)+1)/2ac)T−p,p(λcac)︸ ︷︷ ︸

T2

T−p,h(c)×

× Th,−h(a)Tp,−p(−d)︸ ︷︷ ︸
commutes

T−p,h(−c)Th,−h(−a)

= T1T2T−p,h(c)Tp,−p(−d)T−p,h(−c)×
× T−p,h(c)Th,−h(a)T−p,h(−c)Th,−h(−a)︸ ︷︷ ︸

R(6)

= T1T2Tp,−p(−d) Tp,−p(d)T−p,h(c)Tp,−p(−d)T−p,h(−c)︸ ︷︷ ︸
R(6)

×

×T−p,−h(ca)T−p,p(λcac)︸ ︷︷ ︸
T3

= T1︸︷︷︸
3

T2︸︷︷︸
3

Tp,−p(−d)Tph(dc)T−h,h(−λ−(ε(−h)+1)/2cdc) T3︸︷︷︸
2

∈

E11(smtA, smt�).

Case IV. Thk is a short root and Tij is a long one. All the possibilities which
may occur here reduce to one of the cases above.

Therefore we have shown that

E1((t/s)A,(t/s)�)E1(s(m+1)4tA, s(m+1)4t�) ⊆ E14(smtA, smt�).

Now suppose that K > 0 and L > 0. Since

EK((t/s)A,(t/s)�)EL(s(m+1)4tA, s(m+1)4t�)

is the set of all products of L or fewer elements of

EK((t/s)A,(t/s)�)E1(s(m+1)4tA, s(m+1)4t�),
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we will be done if we can prove the assertion of the lemma for arbitrary K and
L = 1. We proceed by induction on K. The case K = 1 is proved above. Let
K > 1. We shall show that

EK((t/s)A,(t/s)�)E1(s(m+1)4K−1+4K−2+···+1)4tA, s(m+1)4K−1+4K−2+···+1)4t�)

⊆ EK−1((t/s)A,(t/s)�)E14(s(m+1)4K−1+4K−2+···+4)tA, s(m+1)4K−1+4K−2+···+4)t�).

To prove this, it suffices to show that E
1((t/s)A,(t/s)�)E1(s(m

′+1)4tA, s(m
′+1)4t�) ⊆

E(sm
′
tA, sm

′
t�), where m′ = (m + 1)4K−1 + 4K−2 + · · · + 4. But this is just

a special case of the first step of the induction which we have already proved.
Therefore the proof is complete.

If U and V are subsets of a group, let ]U,V [ denote the set of all commutators
[u, v] such that u ∈ U and v ∈ V .

LEMMA 4.2. Let s, t ∈ R0. If K � 1 and l� 0, let EK(t l/sA, t l/s�) denote
the subset of G2n(〈st〉−1A, 〈st〉−1�) consisting all products of K or fewer ele-
mentary transvections Tij (a) such that a ∈ t l/sA(⊆ 〈st〉−1A) if Tij is short
and a ∈ λ−(ε(i)+1)/2t l/s�(⊆ 〈st〉−1�) if Tij is long. If L� 1 and k� 0, define
EL(sk/tA, sk/t�) similarly. If M � 1 and p, q� 0, let EM(sptqA, sptq�) denote
the subset of G2n(〈st〉−1A, 〈st〉−1�) consisting of all products of M or fewer ele-
mentary transvections Tij (a) such that a ∈ sptqA(⊆ 〈st〉−1A) if Tij is short and
a ∈ λ−(ε(i)+1)/2sptq�(⊆ 〈st〉−1�) if Tij is long. If K,L, p and q are given, there
are k, l andM, e.g.

k = (p+ 1)4K+2 + 4K+1 + · · · + 4,

l = (q+ 1)4L+2 + 4L+1 + · · · + 4, and M = 14K+L+3KL,

such that]
EK

(
t l

s
A,
t l

s
�

)
, EL

(
sk

tA
,
sk

t�

)[
⊆ EM(sptqA, sptq�).

Proof. If U is a subset of a group and N a nonnegative integer, let ProdN(U)
denote the set of all products of N or fewer elements of U . Using commutator
formulas, it is easy to see that]

ProdK(U1),ProdL(U2)
[ ⊆ ProdKL

(
ProdK−1(U1)ProdL−1(U2)]U1, U2[

)
. (4.2.1)

Let

U1 = E1

(
t l

s
A,
t l

s
�

)
and U2 = E1

(
sk

t
A,
sk

t�

)
.

Since

EK
(
t l

s
A,
t l

s
�

)
= ProdK(U1) and EL

(
sk

tA
,
sk

t�

)
= ProdL(U2),
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it follows from (4.2.1) that]
EK

(
t l

s
A,
t l

s
�

)
, EL

(
sk

tA
,
sk

t�

)[
⊆ ProdKL

(
ProdK−1(U1)ProdL−1(U2)]U1, U2[

)
.

By Lemma 4.1, it suffices to show that]
E1

(
t l

s
A,
t l

s
�

)
, E1

(
sk

tA
,
sk

t�

)[
⊆ E145

(sp
′
tq
′
A, sp

′
tq
′
�), (4.2.2)

where

p
′ = (p+ 1)4K−1 + 4K−2 + · · · + 4 and

q′ = (q+ 1)4L−1 + 4L−2 + · · · + 4.

Let ρ = [Thk((t l/s)a), Tij ((sk/t)b)]. The proof breaks into 4 cases depending on
the length of the roots Thk and Tij .

Case I. Thk and Tij are short roots, namely h �= ±k and i �= ±j . This case is
handled by dividing further into four subcases:

(1) h �= j, k �= i,
(2) h = j, k �= i,
(3) h �= j, k = i,
(4) h = j, k = i.
We shall prove (1) and leave it to the reader to reduce cases (2)–(4) to case (1). Our
proof of (1) breaks further into four subcases:

(i) h �= −i, k �= −j ,
(ii) h = −i, k �= −j ,

(iii) h �= −i, k = −j ,
(iv) h = −i, k = −j .

(i) By R(1), Thk((t l/s)a) commutes with Tij ((sk/t)b) and therefore ρ = 1. Thus
we are done.

(ii) In this case ρ = [Thk((t l/s)a), T−hj ((sk/t)b)]. Two cases can occur. If k �= j
then use R(1) to write

Thk((t
l/s)a) = T−k,−h(λ(ε(k)−ε(h))/2(t l/s)a).

Set a′ = λ(ε(k)−ε(h))/2a. Then

ρ = [T−k,−h((t l/s)a′), T−hj ((sk/t)b)]
= (

by R(4)
)
T−k,j (t l−1sk−1a′b).
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If k = j then using R(5) we obtain

ρ = [T−k,−h((t l/s)a′), T−hk((sk/t)b)]

= T−k,k(t l−1sk−1a′b − λε(k)t l−1sk−1ba′).

(iii) The argument here is similar to that in the previous case.

(iv) In this case ρ = [Thk((t l/s)a), T−h,−k((sk/t)b)]. Choose p �= ±h,±k. Write
T−h,−k((sk/t)b) = Tkh((sk/t)b′) where b′ = λ(ε(−k)−ε(−h))/2b. Then

ρ = [Thk((t
l/s)a), Tkh((s

k/t)b′)]

= [Thk((t
l/s)a), [Tkp((s

k/2/t)b′), Tph(sk/2)]].

Using the commutator formula [x, [y, z]] = [x, y]y [x, z]yz[x, y−1]yzy
−1

[x, z−1],
we have

ρ = [
Thk((t

l/s)a), [Tkp((s
k/2/t)b′), Tph(sk/2)]

]
= [Thk((t

l/s)a), Tkp((s
k/2/t)b′)]×

× Tkp((sk/2/t)b′)[Thk((t l/s)a), Tph(sk/2)]×
× Tkp((sk/2/t)b′)Tph(sk/2)[Thk((t l/s)a), Tkp(−(sk/2/t)b′)]×
× Tkp((sk/2/t)b′)Tph(sk/2)Tkp(−(sk/2/t)b′)[Thk((t l/s)a), Tph(−sk/2)].

Applying R(4) repeatedly, we obtain

ρ = Thp(t l−1sk/2−1ab′)× (∈ E(sp′ tq′A, sp′ tq′�))×
× Tkp((sk/2/t)b′)Tpk(t lsk/2−1a′)×
× (by Lemma 4.1 ∈ E14(sp

′
tq
′
A, sp

′
tq
′
�))×

× Tkp((sk/2/t)b′)Tph(sk/2)Thp(−t l−1sk/2−1ab′)×
× (by (4.1) ∈ E142

(sp
′
tq
′
A, sp

′
tq
′
�))×

× Tkp((sk/2/t)b′)Tph(sk/2)Tkp(−(sk/2/t)b′)Tpk(−t lsk/2−1a′)×
× (by (4.1) ∈ E143

(sp
′
tq
′
A, sp

′
tq
′
�)).

Therefore ρ ∈ E144
(sp

′
tq
′
A, sp

′
tq
′
�).

Case II. Thk is long and Tij is short. Thus ρ = [Th,−h((t l/s)a), Tij ((sk/t)b)]
where i �= ±j , a ∈ λ−(ε(h)+1)/2� and b ∈ A. This case is handled by dividing
further into 3 possible subcases: (1) j �= h, i �= −h (2) j = h, i �= −h (3)
j �= h, i = −h.
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(1) In this case ρ = 1 and we are done.
(2) In this case

ρ = [Th,−h((t l/s)a), Tih((sk/t)b)︸ ︷︷ ︸
R(1)

]

= [Th,−h((t l/s)a), T−h,−i ((sk/t)b′)](where b′ = λ(ε(h)−ε(i))/2b)
= (by R(6) )Th,−i (t l−1sk−1ab)Ti,−i (−µ1s

2k−1t l−2b′ab′)
∈ E2(sp

′
tq
′
A, sp

′
tq
′
�),

where µ1 = λ(ε(−i)−ε(−h))/2.
(3) Here the argument is the same as in the previous case.

Case III. Thk and Tij are long roots. Thus ρ = [Th,−h((t l/s)a), Ti,−i ((sk/t)b)].
If h �= −i then ρ = 1 and we are done. The only case which remains is when
h = −i. Then

ρ = [Th,−h((t l/s)a), T−h,h((sk/t)b)],

where a ∈ λ−(ε(h)+1)/2� and b ∈ λ−(ε(−h)+1)/2�. Choose p �= ±h. By R(6), we
can decompose

T−h,h((sk/t)b) = Tph(−(sk/2/t)b(sk/4))[Tp,−p(µ(sk/2/t)b), T−p,h(sk/4)],
where µ = λ(−ε(h)−ε(p))/2. Therefore

ρ = [Th,−h((t l/s)a), Tph(−(sk/2/t)b(sk/4))[Tp,−p(µ(sk/2/t)b), T−p,h(sk/4)]].
Now using the commutator formula

[x,µ[y, z]] = [x,µ]µ[x, y]µy [x, z]µyz[x, y−1]µyzy
−1

[x, z−1],

we have

ρ = Th,−p(t l−1s3k/4−1µ1ab)Tp,−p(µ1t
l−2s6k/4−1bab)×

× Tph((s3k/4/t)b)Tp,−p((sk/2/t)b)
(
Th,p(t

lsk/4−1µ2a)T−p,p(µ2s
k/2−1t la)

)
×

× Tph((s3k/4/t)b)Tp,−p((sk/2/t)b)T−p,h(sk/4)Tp,−p(−(sk/2/t)b)
(
Th,p(t

lsk/4−1µ2a)×
× T−p,p(−µ2s

k/2−1t la)
)

where µ1 = λ(ε(h)−ε(p))/2 and µ2 = λ(ε(h)−ε(−p))/2.
Now the same argument as in the case II, shows that ρ ∈ E145

(sp
′
tq
′
A, sp

′
tq
′
�).

Case IV. Thk is short and Tij is long. This case is handled in the same spirit as
the others above.

LEMMA 4.3. Let (AR,�) be a quasi-finite form algebra. Let (smA, sm�) be
the subgroup of (〈s〉−1A, 〈s〉−1�). Let ′′G′′(skA, sk�) denote the image of
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G2n(s
kA, sk�) in G2n(〈s〉−1A, 〈s〉−1�). Given K and m, there is a k, e.g, k =

9((m+ 1)4K+3 + 4K+2 + · · · + 4), such that[
EK

(
1

s
A,

1

s
�

)
,′′G′′(skA, sk�)

]
⊆ E(smA, sm�).

Proof. Since (AR,�) is quasi-finite, the proof reduces to the case A is module
finite over R and R is finitely generated as a Z-algebra. This implies (cf. proof
of (3.7)) that A is module finite over R0 and R0 is also finitely generated as a
Z-algebra. In particular A is a Noetherian R0-module. We shall show that[

E1

(
1

s
A,

1

s
�

)
,′′G′′(skA, sk�)

]
⊆ E(sm′A, sm′�)

where m′ = (m+ 1)4K−1 + 4K−2 + · · · + 4. The conclusion of the lemma follows
from this result, the commutator formulas C(1) and C(2) of the introduction, and
Lemma 4.1.

Let Tij (a/s) ∈ E1( 1
s
A, 1

s
�) and ′′σ ′′ ∈′′ G′′(skA, sk�). We do not treat the

short and long roots separately. We use the standard localization-patching method
to prove our result. We shall show that for any maximal ideal M of R0, there is an
element tM ∈ R0 −M and a nonnegative integer lM such that for any a ∈ A,[

Tij

(
t
lM
M

s
a

)
,′′ σ ′′

]
∈ E(s(m′+1)4A, s(m

′+1)4�). (4.3.1)

Suppose this is done. Since the set
{
t
lM
M
|M ∈ Max(R0)

}
is not contained in

any maximal ideal of R0, there is a finite set
{
t
lM1
M1
, . . . , t

lMr
Mr

}
such that the ideal〈

t
lM1
M1
, . . . , t

lMr
Mr

〉
is the whole ring R0. Choose x1, . . . , xr ∈ R0 such that x1t

lM1
M1
+

· · · + xr t lMrMr
= 1. Then

[
Tij

(a
s

)
,′′ σ ′′

]
=

Tij
 t lM1

M1
x1a

s

 · · · Tij
(
t
lMr
Mr
xra

s

)
,′′ σ ′′


∈ (by (4.3.1) and C(2))
E1((1/s)A,(1/s)�)E(s(m

′+1)4A, s(m
′+1)4�)

⊆ (by Lemma 4.1) ⊆ E(sm′A, sm′�).
This finishes the proof.

It remains to prove (4.3.1). Let M be a maximal ideal of R0. Then AM is a
semilocal ring. Recall the definition of F2n given prior to Theorem 2.2. By Theorem
2.6 (cf. also [10, 9.1.4]) and Corollary 2.4 we have

G2n(s
kAM, s

k�M) ⊆ F2n(s
k/3AM, s

k/3�M)G2(s
kAM, s

k�M). (4.3.2)
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Therefore the image of σ over AM can be decomposed as a product of elements
of G2(s

kAM, s
k�M) and F2n(s

k/3AM, s
k/3�M). Thus we can find an element

t ∈ R0 − M such that over (〈t〉−1A, 〈t〉−1�), σ can be factored as ξδ, where
δ ∈ G2(s

k〈t〉−1A, sk〈t〉−1�) and ξ ∈ F2n(s
k/3〈t〉−1A, sk/3〈t〉−1�). By Lemma

2.7, there is a q such that the canonical homomorphism

G2n

(
tq〈s〉−1A, tq〈s〉−1�

)
inj.−→G2n

(
〈st〉−1A, 〈st〉−1�

)
(4.3.3)

is injective. Let l > q. Since Tij (t la/s) ∈ G2n

(
tq〈s〉−1A, tq〈s〉−1�

)
, we have by

Theorem 2.1 that

ρ = [Tij (t
la/s),′′ σ ′′] ∈ G2n

(
tq〈s〉−1A, tq〈s〉−1�

)
.

Let ρ denote the image of ρ in G2n

(
〈st〉−1A, 〈st〉−1�

)
. If we can show that

ρ ∈ E(sptqA, sptq�)
where p = (m′ +1)4 then because of the injectivity of the map in (4.3.3) we obtain
that ρ ∈ E(spA, sp�).

Let Tij (t la/s), σ , δ and ξ denote respectively the images of Tij (t la/s), σ, δ and

ξ in G2n(〈st〉−1A, 〈st〉−1�). Then

ρ =
[
Tij

(
t l

s
a

)
, σ

]
=
[
Tij

(
t l

s
a

)
, ξδ

]
= (by C(1))

=
[
Tij

(
t l

s
a

)
, ξ

]
ξ

[
Tij

(
t l

s
a

)
, δ

]
.

If {±i,±j}∩{±1} = ∅ then [Tij ((t l/s)a), δ] = 1. If {±i,±j}∩{±1} �= ∅ then we
choose k /∈ {±i,±j} and change the embedding ofG2 inG2n to that corresponding
to {±k}, without sacrificing the validity of Corollary 2.4, Theorem 2.6 and (4.3.2).
This done, we obtain again that [Tij ((t l/s)a), δ] = 1. Thus, in either case, we

achieve that ρ = [Tij ((t l/s)a), ξ ].
Since

ξ ∈ E
(
sk/3

t
A
sk/3

t
�

)
,

k

3
> (p+ 1)43 + 42 + 4 and K = 1,

it follows from Lemma 4.2 that there is a l such that [T ij (t
la/s), ξ ] ∈

E(sptqA, sptq�). This completes the proof.

If s = 1 then the above lemma implies the result of Bak and Vavilov [4, 5], that
E2n(A,�) is a normal subgroup of G2n(A,�) when n� 3.

THEOREM 4.4. Let (AR,�) be a quasi-finite form algebra. Then E2n(A,�) is a
normal subgroup of G2n(A,�).
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DEFINITION 4.5. Let (AR,�) be a quasi-finite form algebra. Let s ∈ R0. Define

G(s−1, A)

= Ker(G2n(A,�) −→ G2n(〈s〉−1A, 〈s〉−1�)/E2n(〈s〉−1A, 〈s〉−1�)),

and

G(ŝ, A) = Ker(G2n(A,�) −→ G2n(AR,�)̃(s)/E2n(AR,�)̃(s)).

THEOREM 4.6. Let (AR,�) be a quasi-finite form algebra. Then

[G(s−1, A),G(ŝ, A)] ⊆ E2n(A,�).

Proof. As in Lemma 4.3, the proof reduces to the case A is module finite over
R0 and R0 is Noetherian. We first show that

E2n(〈s〉−1A, 〈s〉−1�) =
⋃
K� 0

EK
(

1

s
A,

1

s
�

)
. (4.6.1)

Let m > 1 and Tij (a/sm) ∈ E2n(〈s〉−1A, 〈s〉−1�). Suppose first that Tij is a short
root, namely i �= ±j . Choose h �= ±i,±j . By R(4), we have that

Tij

( a
sm

)
=
[
Tih

( a

sm−1

)
, Thj

(
1

s

)]
.

By induction on m, we conclude that there is a K such that

Tij

( a
sm

)
∈ EK

(
1

s
A,

1

s
�

)
.

Suppose now that Tij = Ti,−i is a long root. If m is odd, decompose

a

sm
= 1

sm−1/2

a

s

1

sm−1/2

and if m is even then decompose

a

sm
= 1

sm/2

a

1

1

sm/2
.

Suppose m is odd. Then by R(6), we have

Ti,−i
( a
sm

)
= Tji

( a

sm+1/2

) [
Tj,−j

(−a
s

)
, T−j,i

(
1

sm−1/2

)]
,
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where j �= ±i. Suppose m is even. Then by R(6), we have

Ti,−i
( a
sm

)
= Tji

( a
sm/2

) [
Tj,−j

(−a
1

)
, T−j,i

(
1

sm/2

)]
.

Since the short roots are in⋃
K� 0

EK((1/s)A, (1/s)�),

we conclude that there is a K such that Ti,−i (a/sm) ∈ EK((1/s)A, (1/s)�). This
completes the proof of (4.6.1).

By Lemma 2.7 there is an m such that the canonical homomorphism,

ψ : G2n(s
mA, sm�) −→ G2n(〈s〉−1A, 〈s〉−1�)

is injective. Since A is module finite over R0 and R0 is Noetherian, the Artin–Rees
Lemma [1,10.10] tells us that given an integer n� 0, there is an integer l� 0 such
that sl+nA ∩� ⊆ sn�.

Let σ ∈ G(s−1, A) and ρ ∈ G(ŝ, A). We must show that [σ, ρ] ∈ E2n(A,�).
Choose K such that ′′σ ′′ ∈ EK((1/s)A, (1/s)�). Let k = 9((m+1)4K+3+4K+2+
· · ·+4) (see Lemma 4.3) and choose p = k+ l, using the Artin–Rees Lemma. Then

G2n(s
pA, spA ∩�) ⊆ G2n(s

kA, sk�). (4.6.2)

Let

θ : G2n(A,�) −→ G2n

(
A

spA
,

�

spA ∩�
)

denote the canonical map. Thus Kerθ = G2n(s
pA, spA ∩�). Since

θ(ρ) ∈ E2n

(
A

spA
,

�

spA ∩�
)
,

there is an element ξ−1 ∈ E2n(A,�) such that θ(ξ−1) = θ(ρ). This and (4.6.2) im-
ply that ρξ ∈ G2n(s

kA, sk�). By Theorem 4.4, E2n(A,�) is a normal subgroup of
G2n(A,�). Thus by C(1), [σ, ρ] ∈ E2n(A,�) if and only if [σ, ρξ ] ∈ E2n(A,�).
Because G2n(s

mA, sm�) is normal in G2n(A,�), it follows that [σ, ρξ ] ∈
G2n(s

mA, sm�). Since the image ′′σ ′′ of σ is in EK((1/s)A, (1/s)�) and the
image ′′ρξ ′′ of ρξ is in ′′G′′2n(s

kA, sk�), it follows from Lemma 4.3 that

[′′σ ′′,′′ ρξ ′′] ∈ E(smA, sm�).
Since ψ is injective and takes F2n(s

mA, sm�) bijectively onto E(smA, sm�), it
follows thats

[σ, ρξ ] ∈ F2n(s
mA, sm�) ⊆ E2n(A,�),

and the proof is complete.
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