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EQUIVARIANT SURGERY WITH
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ABSTRACT. Let G be a finite group. Let f : X — Y be a k-connected, degree 1, G-framed
map of simply connected, closed, oriented, smooth manifolds X and Y of dimension 2k = 6.
Under the assumption that the dimension of the singular set of the action of G on X is at
most k, we construct an abelian group W(G,Y) and an element o(f) € W(G,Y), called the
surgery obstruction of f such that the vanishing of o(f) in W(G,Y) guarantees that f can
converted by G-surgery to a homotopy equivalence.
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1. Introduction

Let G be a finite group and X a smooth G-manifold. In the current article, the term
G-equivariant surgery or simply G-surgery will be used in a restricted sense. Namely, it
will refer to G-surgery on that part of X where each nontrivial element of G acts without
fixed points. Thus, G-surgery on X will not change the G-singular set

Sing(G,X)= | J X,
ge€G\{1}
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where X9 = {z € X | gz = z}.

Equivariant surgery theory in the sense above has been developed by several authors,
beginning in the early early 70-ies. For references, see [18], [11], and [13]. C. T. C. Wall’s
nonsimply connected surgery for compact manifolds X can be viewed as G-surgery on the
universal covering space X of X where G is the fundamental group of X. Except for [7],
equivariant surgery theory has proceeded under the gap hypothesis: 2 dim Sing(G, X) <
dim X. Under this hypothesis, the surgery obstruction group is either an L-group of Wall
or a quotient of such involving form parameters, cf. [13], [14]. However, it turns out that
there are interesting geometric problems for G-manifolds X, which require using G-surgery,
where 2dim Sing(G, X) = dim X. In order to handle such problems, we develop in this
paper an equivariant surgery obstruction theory under the assumptions that dim X = 2k >
6 and dim Sing(G, X) =< k.

Applications of our G-surgery will appear in subsequent papers. They include the
following. Buchdahl, Kwasik, and Schultz [6] proved that if a standard n-sphere S™ admits
a one fixed point, smooth (or locally linear) G-action for some finite group G then n = 6.
We shall prove a converse to this result, namely that the alternating group As on 5 letters
has a one fixed point, smooth action on each S™ for n = 6 ([3]). Another application is
the following. Recall that an Oliver group is a finite group GG which does not possess a
series of subgroups P <1 H < G such that P and G/H are of prime power order and H/P
is cyclic. According to [16], if a finite group G acts smoothly on a standard sphere, with
precisely one fixed point then G is Oliver. The converse of this result, namely that each
Oliver group has a one fixed point, smooth action on some standard sphere, is proved for
odd order abelian groups in [17], for nontrivial perfect groups in [10], and in full generality
in [9].

The equivariant surgery obstruction theory which is presented in the current article is
sufficient for the applications in [3], [9], and [10] above, but is not best possible, because
extra assumptions will be imposed on middle dimensional fixed point sets. The advantage
of making these assumptions is that new constructions needed for surgery with middle
dimensional fixed point sets can be introduced, while at the same the details of the proofs
can be considerably simplified over the general situation. The general situation will be
treated in a paper under preparation and will show that vanishing of the surgery obstruc-
tion invariant of a G-framed map is equivalent to the map being G-framed cobordant
(relatively to the G-singular set) to a homotopy equivalence.

We describe now our main result in the current article. Let X and Y be oriented,
smooth G-manifolds. Let T'(X) denote the tangent bundle of X. Recall that a G-framed
map f = (f,b) : X — Y is a pair consisting of a smooth map f : X — Y and a real
G-vector bundle isomorphism b : T'(X) & f*n — f*(£ ®n) covering the identity map on
X, for some real G-vector bundles £ and  on Y. A G-framed map f = (f,b) is said to
be of degree 1 (resp. k-connected) if f is of degree 1 (resp. k-connected). As usual, Z will
denote the ring of integers, Z, the localization of Z at a prime number p, and Q the ring
of rational numbers. We regard the set
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G(2)={geG|g*=1and g#1}

as a G-set by letting G act by conjugation on the elements of G(2).

Theorem 1.1. Let G be a finite group and Y a closed, 1-connected, oriented, smooth
G-manifold of even dimension n = 2k 2 6. Suppose that (1.1.1)—(1.1.3) below hold.

(1.1.1) dim Y9 < k for any g € G\ {1}. (This is equivalent to dim Sing(G,Y) < k.)

(1.1.2) If dim Y = k for some subgroup H < G then |H| = 2 and YH is connected and
oriented such that each g : Y7 — y9Hg™! (9 € G) is orientation preserving.

(1.1.3) dim(YH# N YE) <k — 2 whenever dimY ¥ =k and dimY®X =k -1 (H, K £ Q).

Let R be one of Z, Ly (p a prime), or Q. Then there is an abelian group W(G,Y; R)
having the properties (DP) and (SP) below.

(DP) W(G,Y;R) is determined solely by the data (R, G, Q, S, \,w$), where @ = Q(G,Y) =
{g€G?2) | dmY9=k—-1}, S=5(G,Y)={g€ G?2)| dimY9I =k}, A = (—1)*, and

w§ : G — {£1} is the orientation homomorphism associated to Y .

(SP) Letf =(f: X =Y b:T(X)® f'n — f*$ D n) be a degree 1, k-connected,
G-framed map where X also satisfies (1.1.1)—(1.1.3). Suppose that Q(G,X) = Q(G,Y),
S(G,X) = S5(G,Y), and Ki(f; R) = Ker[f, : H(X; R) — Hr(Y,R)] is stably free over
R[G]. Then there is an element o(f) € W(G,Y; R) depending on f, such that if o(f) =0
then f can be converted by G-surgery to a degree 1, k-connected, G-framed map f' = (f' -
X' =Y, bV :T(X"®f"n— f°¢) with the property that f' is an R-homology equivalence.

Theorem 1.1 will be deduced in the main body of the paper from a slight generalization
Theorem 7.3 of it.

Remark 1.2. Let
= X=>Y b:T(X)® f'n— ff{an)

be as in Theorem 1.1. Let Xy be a G-simplicial subcomplex of X with respect to some
equivariant smooth triangulation of X such that dim Xy < k—1. Suppose o(f) = 0. Then
in the proof of Theorem 7.3, the G-surgery used to convert f to an R-homology equivalence
will be along embeddings h : S¢ — X such that £ < k. Since dim S* + dim Xy < dim X,
we can modify these embeddings so that h(S*) N X = (). Thus, the G-surgery required in

Theorem 1.1 (SP) and also in Theorem 7.3 can be performed in the free part of X \ Xo.

A special case of equivariant surgery theory on manifolds having middle-dimensional
singular sets was treated by K. H. Dovermann [7], namely the case |G| = 2. His surgery
obstruction was expressed in terms of several invariants in classical surgery theory. The
approach in the current paper is very different from that in [7], in that we construct a new
surgery group over a ring with form parameters, housing a single invariant to detect the
obstruction to performing G-surgery.
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We describe now this surgery invariant. Recall that the usual surgery invariant, under
the gap hypothesis, is obtained by equipping Ky (f;Z) with the restriction By of the
equivariant intersection form on Hp(X;Z) and then showing that the self-intersection
form on X defines a quadratic form gy on Kj(F';Z), whose associated Hermitian form is
By. If the triple (K% (f;Z), By, qs) has (stably) a Z[G]-free Lagrangian L then one can
realize geometrically any Z[G]-basis for L by equivariantly embedded, disjoint k-spheres
and then remove these by performing G-surgery. Thus, the class of (K(f;Z), By,qf) in
the Grothendieck group of all such algebraically defined triples modulo all triples having
a Z|G]-free Lagrangian is a sufficient invariant for performing equivariant surgery. We
want to modify this procedure so that it works under the hypothesis dim Sing(G, X) =
k. It turns out that Kj(f;Z) is still a finitely generated, projective Z[G]-module, that
By is still a nonsingular Hermitian form, but that it is not necessarily even. The first
ingredient we develop is a new notion of quadratic form ¢ whose associated Hermitian
form B is not necessarily even. This involves two parameters instead of one as above
and we call a triple (M, B, q) a doubly parametrized quadratic module. In the geometric
situation, we construct a quadratic form gy in the new sense above, on Kj(f;Z), which
incorporates selfintersection information needed later and whose associated Hermitian form
is the intersection form By above. The notion of Lagrangian L for (M, B, q) is the usual
one, but it is not necessary that a Lagrangian in the generality we are working has a
direct sum complement which is a Lagrangian. We are still not finished building our
surgery invariant. The subset S(G, X) of G(2) is G-invariant under the action of G via
conjugation. We replace now the triples (M, B, q) above by quadruples M = (M, B, q, @)
where a : S(G,X) — K is a G-map and define a Lagrangian L for (M, B, q,«) to be
one for (M, B, q) such that Im(ar) C L. The G-map « is called the positioning data of
(M, B, g, «). In the geometric situation, oy is the G-map which assigns to each s € S(G, X)
the image in K (f;Z) of the orientation class of X*. ;From the geometric standpoint, our
main result is the following: If L is a Z|G]-free Lagrangian for (Ky(f;Z), By, qf, ) then
any Z|G]-basis of L can be realized geometrically by equivariantly embedded, disjoint k-
spheres which do not meet Sing(G, X). This being the case, we can perform G-surgery
on the embedded spheres and convert f to a homology equivalence and therefore, to
a homotopy equivalence. One would like now to form the Grothendieck group of all
algebraically defined quadruples (M, B, ¢, &) modulo the subgroup of all quadruples having
a Z[G]-free Lagrangian and claim that the class of (K(f;Z), By, qf, ) in this group is a
sufficient obstruction to performing equivariant surgery. But, this doesn’t work, because
stabilization with respect to this group is too strong. It turns out that the quadruples
(Kr(f;Z), By, qg, ) vanish under a certain invariant V. This is a crucial observation.
The right group W(G,Y') for housing (K(f;Z), By, qf,ay) is the Grothendieck group
of all algebraically defined quadruples M = (M, B, q,«) with trivial Vs modulo the
subgroup generated by all such quadruples having a Lagrangian. A few words concerning
V are in order. ;jFrom the geometric point of view, the definition of V is motivated by the
obstruction that if z € K (f;Z) is realized by an immersion h : S¥ — X and if s € S(G, X)
then the intersection number of h and sh is congruent mod 2 to that of X* and sh. The
observation shows that if we define for an arbitrary algebraic object M = (M, B, q, a),
Vm: M — Map(S(G, X),Z/2Z) by Va(z)(s) = [e(B(a(s) —x,sz))] (x € M and s € 9),
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where ¢ : Z|G| — Z is the map defined by S(Z agg) = a1 (ag € Z), then for any geometric
geG

object My = (Ky(f;Z), By, qf,5), Vi, = 0. In other words, V vanishes on all geometric
objects. Now our result that the family of all metabolic planes with trivial V-invariant is
cofinal in the category of all algebraic objects with trivial V-invariant and our result that
any metabolic plane with trivial V-invariant can be added to a geometric object M s by
performing G-surgery on f shows that the group W(G,Y'; Z) is the correct one for housing
our G-surgery invariant.

The rest of the article is organized as follows. In Section 2, we recall certain foundations
of equivariant surgery including the equivariant intersection form and equivariant selfinter-
section form. We construct a doubly parametrized selfintersection form which is used later
to define ¢¢. In Section 3, we prove the geometric result that a k-dimensional immersion A
into a 2k-dimensional G-manifold X, which does not meet the G-singular set Sing(G, X)
and vanishes under our doubly parametrized selfintersection form, is regularly homotopic
to an equivariant embedding A, i.e. an embedding A’ such that Imh’ N gImh’ = () for all
g € G\{1}. Section 4 is purely algebraic. It defines doubly parametrized quadratic modules
with positioning data and the invariant V of such modules. Various Grothendieck-Witt
groups relevant to studying surgery groups are constructed. One of these groups, namely
that defined in (4.4), is the surgery group. Section 5 studies special metabolic planes
whose V-invariant is trivial. The main result is Theorem 5.6: A doubly parametrized
quadratic module which has a free Lagrangian and trivial V-invariant, decomposes as an
orthogonal sum of special metabolic planes with trivial V-invariant. A corollary of this
result is that the family of metabolic planes with trivial V-invariant is cofinal in the cat-
egory of all doubly parametrized quadratic modules with trivial V-invariant. Section 6
is devoted to the proof of Theorem 5.6. Section 7 begins by constructing the geometric
module My = (Ki(f;Z), Bf,qs,¢), where f = (f,b), and showing that its V-invariant
is 0. Let o(f) denote the class of My in the surgery group W(G,Y;Z). The main result
of the paper is Theorem 7.3 asserting that if o(f) = 0 then f is G-framed cobordant to
f' = (f',V) such that f': X’ — Y is a homology equivalence. Theorem 7.3 is proved in
Section 8 on the basis of Theorem 8.1: Any metabolic plane with trivial V-invariant can
be added to My by performing G-surgery on f; i.e., given a metabolic plane M such that
Var = 0, there is a G-framed map f” = (f”,b") obtained from f by G-surgery such that
Mg = My ® M. Theorem 8.1 is proved in Section 9.

2. Geometric preliminaries

In this section, we develop notation to be used in the following sections.
Let X be a G-space. For a point x € X and for a subgroups H of G, let H, denote the
isotropy subgroup at x in the H-space resf[X . Let

X" =Fix(H,X)={zc X |G, 2 H}
Fixg(>H,X)={r e X |G, 2 H},
Fixg(=H,X)={x€ X | G, = H}
Free(H,X)={z € X | H, = {1}}, and
Sing(H,X) = {z € X | H, # {1}}.
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If g€ G, let X9 = X9 Free(g, X) = Free({g), X), etc. For a subspace Z € X, define

p$(Z)= () Ga-

rEZ

Let Mnf"(G) denote the family of all paracompact, 1-connected (i.e. connected and
simply connected), oriented, smooth G-manifolds of dimension n. Let Mnf_ (G) denote
the family of all compact G-manifolds in Mnf"(G).

For X € Mnf"(G), the orientation homomorphism w§ : G — {£1} is defined by
w%(g) = 1if g: X — X is orientation preserving and w$(g) = —1 if otherwise. For any
commutative ring R with the unity, let R[G] denote the group ring of G with coefficients
in R. For any set U, the set Map(U, R) consisting of all maps U — R is regarded as an
R-module in the canonical way. As R-modules, R[G] = Map(G, R). For a subset S of G,
let R[S] denote the R-submodule of R[G] generated by S; thus R[S] = Map(S, R). We

shall always give R[G] the antiinvolution a — @ defined by w = w§; thus

Z reg = Z row(g)g~t (ry € R).

geG geG

Let H be a subgroup G, which will be indicated by H < G. Since X has an equivariant
smooth triangulation (cf. [8]), the H-fixed-point set X is an Ng(H)-simplicial complex
of dimension < n where Ng(H) ={g€ G | gHg ! = H}.

Let mo(X ) denote the set of all connected components v of X7, The underlying space
of ~ will be denoted by X, (or Xf when we want to emphasize the group H). For a
nonnegative integer £, let mo(X 1, ¢) denote the subset of mo(X ) consisting of all v such
that dim X, = £. Set

(G, X) = [] m(x"), and
(G, X,0) = [] m(x",0).

For v € IT = II(G, X) such that v € mo(X ), define p(v) = pn(y) :== H (Il = II(G, X)).
One should note that if H = ppi(y) then H < p§(X,), but H is not necessarily equal to

1

p$(X,). For g € G and v € TI(G, X), let gy be the connected component ' € mo(X9H9 )
such that ng{fl = ng. The assignment g — g7 defines an action of G on II(G, X).
Obviously, II(G, X, ¢) is G-invariant. Let ® : II(G, X) — II(G, X ) denote the map v +—
such that pr(8) = p§(X,) and X5 = X, as subsets of X. The map ® is a G-map. The
property pr(®(vy)) = p%(X¢(7)) should be kept in mind. Generally speaking, the subsets

below are more useful than II(G, X) and II(G, X, ¢) for handling problems arising from
Sing(G, X ). Define

O(G, X) = Im(®) and O(G, X, ) = O(G, X) NG, X, ¢).

Let M'n,fgéc (G) denote the family of all X € Mnf?*(Q) satisfying the following hy-
potheses:
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2.1.1) dim Sing(G, X) < k (namely, dim X9 < k for all g € G\ {1}).
2.1.2) |mo(XH k)| £ 1 for any H < G.

(
(
(2.1.3) If v € ©(G, X, k) then |pri(7) N G(2)| = 1.
(
(

~— N N~

214)If v € O(G, X, k) and 0 € O(G, X,k — 1) then dim(X, N X;) = k — 2.

2.1.5) All submanifolds X!’ (y € ©(G, X, k)) are oriented in such a way that each g € G
acts as an orientation preserving diffeomorphism X, — X .

Set Mnf2k (G) = Mnf2l(G) N Mnf2¥(G).

Cp7sg
Lemma 2.2. Let X € Mnfgg(G) where k 2 2. Then for every v € O(G, X, k),
dimFiXG(>pH(’7),X,y) <k-2.

In particular, Fixg(=p(7), X,) is connected and open dense in X..

Proof. Let v € ©(G, X, k). If X, 2 X; for some § € II(G, X) then by (2.1.4), dim X5 <
k — 2. Thus
dim Fixg(>pn(v), Xy) S k—-2. QE.D.

Let Y be a closed, connected, oriented, smooth manifold of dimension k. Let X €
Mnf"(G) where n = 2k and let A = (—1)*. Let Map(Y, X) denote the set of all continuous
maps Y — X. Let Immer(Y, X) denote the set of all smooth immersions ¥ — X and let
Immer’ (Y, X) denote the subset of Immer(Y, X) consisting of all immersions Y — X with
trivial normal bundle. Let Int(X) denote the interior of X. For f1, fo € Map(Y, Int(X)),
let intsec(f1, f2) denote the geometric intersection number of f; and fs. This number is
determined as follows. Approximate f; and fo by f’; and f’5, € Immer(Y,Int(X)) such
that Imf', NImf’y = {ar, -, am}, f'7 () = {b;}, f'5 " (a;) = {c;}, and each q; is a
transversal-intersection point of f’; and f’,. For each point a;, define intsec(f’;, f'5;a;) =
1 (resp. —1) if the ordered direct sum df’;(Tp,(Y)) ® df’s(Te,(Y)) has the same (resp.

m

opposite) orientation as Ty, (X). Then intsec(f1, f2) = > intsec(f’;, f's;a;). The G-
=1

intersection number intsecg (f1, f2) of f1 and fo is defined b_y

intseca(f1, f2) = Z intsec(f1,9 ' f2)g € Z[G].

geG

intseci(f1, f2) is well-defined and invariant under homotopies of f; and fo in Int(X).
If dim X > dim Sing(H, X ) + 2 then Free(H, X) is 1-connected. Hence if

f € Immer (Y, Int(Free(H, X))), the composition 7y o f determines the

selfintersection number selfintsecy (f) € Z[H]/min*(Z[H]) (cf. [19, Part T §5]), where
7« Int(Free(H, X)) — Int(Free(H, X))/H is the canonical projection, and min*(Z[H]) =
{xr—AZ | x € Z[H]}. The number selfintsecy (f) is invariant under regular homotopies of f
in Int(Free(H, X)). Let T € G be a subset closed under taking inverses. For a commutative
ring R with 1, we define a coefficient quasibundle B (R) over T' as follows. For g € G set
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R, = R/(1—Xw(g))Rif g =1, and R, = R otherwise. Define Br(R) = ][ R,. The map
geT

pB : Br(R) — T such that pg(R,) = {g} is called the projection. A map s : T — Br(R) is

called a section if pgos = idy. Define I’ (T’; R) to be the set of all sections s : T'— Br(R)

such that s(¢g~!) = Aw(g)s(g). Define

QG, X)={9g€G2)| dimXJ =k -1},
S(G,X)={g€ G2) | dim X7 = k}.
It is easy to show that w(g)(= w$(g)) = (=1)**1 (resp. (—1)%) for all g € Q(G, X) (resp.

) =
S(G, X)). Thus, Q(G,X) E{g € G(2) | g = —(-1)*g} and S(G,X) E{g € G(2) | g =
(—1)*g}. Letting Q = Q(G, X), S = S(G, X) and defining

AG,Q;R) = (x — \T | = € AYr + R[Q)],

we see that there is a canonical identification R[G\ S]/A(G, Q; R) =T (G \ (QUS); R).
Thus we can regard selfintsecy (f) € TNV (H; Z) for f € Immer(Y, Int(Free(H, X))). If H,
K £ G and f € Immer(Y, Int(Free(H, X))) N Immer(Y, Int(Free(K, X))) then it follows
that

(2.3) selfintsecy (f)(g) = selfintseck (f)(g) € Z, for any g € HN K.

Furthermore if f € Immer’ (Y, Int(Free(H, X))) then

P —~——

(2.4) intsecy (f, f) = selfintsecy (f) + Aselfintsecy (f) in Z[H]

—~——

where selfintsecy (f) is a lifting of selfintsecy (f) € Z[H]/min*(Z[H]) (cf. [19, Part I
Theorem 5.2 (iii)]).
The following lemma is well-known.

Lemma 2.5. Let k be an integer =2 3, n = 2k, X € Mnf"(G) such that dim X >
dim Sing(G, X )+2. LetY be a closed, connected, oriented, k-dimensional smooth manifold.
Let f € Immer(Y, Int(Free(G, X))). If intseca(f, f) = 0 € Z[G] and selfintsecq(f) = 0 €
Z[G]/min*(Z[G]) then f is regularly homotopic in Int(Free(G, X)) to a smooth embedding
Y — Int(Free(G, X)) such that Im(f") N gIm(f") =0 for all g € G\ {1}.

Lemma 2.6. If X € Mnfzg(G) then there is a canonical bijection
S(G,X) — O(G, X, k); s+ ~(s) such that pr(vy(s)) > s.

Proof. This follows from (2.1.2)—(2.1.3). Q.E.D.

G acts on S(G, X) by conjugation and the bijection above is a G-map. In this paper
we identify S(G, X) with ©(G, X, k) via this bijection, whenever X € Mnfgg(G).
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Definition 2.7. Let X € Mnf[(G) (n = 2k = 6) and let Y be as above. Then for
f € Immer(Y, Int(X)) define

px(f) €T (G(p),Z) (where G(p) = G\ (Q(G,X) U S(G, X)))
by

selfintsec ) (f)(9) (9 € ({1} UG(2)) N G(w))

px(f)(g) = { intsec(f, g~ L) (ge G\ ({1}UG(2))),

where ]/C\g € Immer(Y, Int(Free(g, X))) is an approximation regularly homotopic to f. We
can regard
nx(f) € ZIG\ S|/MG, Q; Z) = Z|G| (MG, Q; Z) + Z[S])
in a canonical way, where Q = Q(G, X), S = S(G, X) and
A(G,Q;Z) = min(Z[G]) + { ) _ agg | a4 € Z}.

geQ

The well-definedness of px(f) is easily checked because dim X9 < k — 2 for all g €
{1} UG(2) N G(w).

Theorem 2.8. Let k be an integer 2 3, n = 2k, X € Mnf_,(G), and X=X\ <Uv X7>

where v runs over ©(G, X, k). Let Y be a closed, connected, oriented, k-dimensional,

A~

smooth manifold. If f € Immer(Y,Int(X)) satisfies intsecq(f, f) = 0 and pg(f) =0 €
Z|G\ S]/A(G,Q;Z) then f is reqularly homotopic in X to a smooth embedding f':Y —

Int(Free(G, X)) such that Im(f") N gIm(f’) = 0 for all g € G\ {1}, where Q = Q(G, X)
and S = S(G, X).
The result above is proved below.

3. Regular homotopies of immersions to embeddings

The present section is devoted to the proof of Theorem 2.8.
Let k be an integer 2 3, n = 2k, and X € Mnf,(G).

Lemma 3.1. Ify € O(G, X,k — 1) then Fixq(=H, X)) (where H = p(v)) is open dense
n X,.

Proof. The conclusion follows from the observation dim Fixg(>H, X,,) = k —2. Q.E.D.
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Lemma 3.2. Ify€ O(G, X,k —1) then |pn(y)NG(2)| £ 1

Proof. Set H = pn(y). By Lemma 3.1, we can take a point z in Int(Fixg(= H, X5)).
By definition, G, = H. Let T,(X) be the tangential H-representation at z in X. Then
T.(X) is the direct sum T, (X ) ® v, (X, X) of H-representations. Set V = v, (XX X).
By (2.1.1) and (2.1.4), H acts freely on V \ {0} and dimgr V' = k + 1. In particular,
L = HNG(2) acts freely on V' \ {0}. Thus each g € L acts on V like scalar multiplication
by —1. Since V is a faithful H-representation, we get |L| < 1. Q.E.D.

For the remainder of the current section, let Y be a closed, connected, oriented, k-
dimensional, smooth manifold, and set X = X \ (U, X,) where v runs over ©(G, X, k).

Lemma 3.3. Let f: Y — Int(Free(G, X)) be a smooth immersion. Ifr e (Z/27)|Q(G, X)]
then there exists a regular homotopy fr : f ~ f1 (fo = f) in Int(X) such that Im(f1) C
Int(Free(G, X)) and selfintsecq(f1) = selfintsecg (f) + 7 in Z[G]/min*(Z[G]) (A = (—1)%).

We shall assume for the moment that the lemma has been proved and deduce Theorem
2.8 from the lemma.

Proof that Lemma 3.3 = Theorem 2.8. Let f : Y — Int()A( ) be an immersion sat-
isfying the hypotheses in Theorem 2.8. Since dim Sing(G,)? ) S k—1, f is regularly
homotopic to an immersion in Int(Free(G, X)) = Int(Free(G, X )). Thus we suppose
Im(f) C Int(Free(G, X)). Since intsecg(f, f) = 0 and p(f) = 0, we get selfintseca(f) €
(Z/27)|Q(G, X)]. By Lemma 3.3, f is regularly homotopic to f” in X such that Im(f") C
Int(Free(X)) and selfintsecq(f”) = 0 in Z[G]/min*(Z[G]). As the intersection form is in-
variant under homotopies, intsecq (f”, f”) = intsecg (f, f) = 0. By Lemma 2.5, f” is regu-
larly homotopic in Int(Free(G, X)) to a smooth embedding f’ such that Im(f")NgIm(f") =
) for all g € G\ {1}. Q.E.D.

Proof of Lemma 3.3. It suffices to prove the lemma in the case 7 =g (g € Q(G, X)).

Set H = (g). Since dim X = k — 1, there is a connected component X é{ of dimension
k—1. Let 6 = ®(8) € (G, X,k —1). Set K = pn(d) (= pg’;(Xé{)) Fix a point
z € Int(Fixg(= K, XX)). Let v = v(XK, X) be the Ng(K)-normal bundle of X in X.
This normal bundle is often identified with an Ng(K)-tubular neighborhood of X . Let
D,.(v) (resp. S,(v)) be the radius 7 closed-disk (resp. sphere) bundle over XX associated
with v. Regard each S(v) C D, (v) as a submanifold of v C X. Thus D, = D,.(v|,) (resp.
Sy = Sr(v],)) is a (k + 1)-dimensional closed disk (resp. k-dimensional sphere) centered
at z. Take r > 0 so small that

(3.4) D,NaD, #0 (a€G) = a € K,

and that GD, N GIm(f) = (. Then K acts freely on D, \ {z}. Let b’ : D' = D, —
X be the canonical inclusion (hence a smooth embedding). Set h = h/|gpr+1 : S* —
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Int(Free(G, X)). We regard selfintsecg(h) € TV%(G;7Z). Clearly selfintsecg(h)(1) = 0 in
Z/(1 — X\)Z. Since h bounds a disk,

(3.5) intsecg(h, h) = 0.

By (3.4), selfintsecg(h)(a) = 0 for all a € G\ K. Set J = {a € G | a = —\a}. By
(3.5), selfintsecg(h)(a) = 0 for all @ € G\ J. Since K N G(2) = g, selfintseci(h)(a) is
possibly nontrivial only when a = g. Note that selfintsecq (h)(g) = selfintsec gy (h)(g). It is
elementary to check that selfintsec gy (h)(g) = 1 in Z/2Z. Thus, we get selfintsecg(h) = g
in Z[G]/min*(Z[G]). Take a (k+1)-dimensional connecting band (I x D*) from Im(f) to
S, in Int(Free(G, X)) as follows. Let B = I x D* (I = [0,1]). Take a smooth embedding
¥ : B — (Int(X) \ Int(D,(v))) such that Im(¢)) Nalm(y)) # 0 (a € G) = a = 1, such
that ¥~ (Im(f)) = {0} x D*¥ and ¥~1(S,) = {1} x D*, and such that f~!(Im(¢)) = DF.
Set U = f~*(Im(y)) and V = h=1(Im(¢))) (& D¥). Construct the connected sum Y’ of
Y = Domain(f) with S¥ = Domain(h) by

V' ={Y\Int(U)}U (I x Sy u{SF\Int(V)}.

Since SF = S*, Y is diffeomorphic to Y. Define f; : Y’ — Int(Free(G, X)) by gluing
fIy\me(v)s Ylrxse-1, and hgr\ie(v). By construction, f is regularly homotopic to f; in

Int(X). In addition, one has that selfintsecc(f1) = selfintsec(f) + g in Z[G] /min* (Z[G)).
Q.E.D.

4. Doubly parametrized quadratic modules

Let R denote a commutative ring with the unity, such that a = a? mod 2R for all
a € R. For applications in surgery, the ring Z of integers and the ring ¢ ~'Z of U-fractions
of Z, where U is a multiplicative set in Z, will be of primary interest. Let A =1 or —1 and
let w: G — {£1} be a homomorphism. In the following, the ring A = R[G] is equipped
with the antiinvolution — defined by (3_,c5a99)” =2  cq agw(g)gt (ag € R). Let

G2)={9eG|g*=1,and g #1}.

G acts on G(2) by conjugation f — gfg~! (g € G(2), g € G). Let Q and S be conjugation-
invariant subsets of G(2) satisfying

(QC) QE{9€G(?2) | g=—Ag}, and

(SC) SC{geC@) |g=Ag}.

We define three R-submodules A,, A, and A of A as follows:
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Aq = AQ(Gv S) = R[G\ S]?
As = As(G, S) := R[S], and
A = A(G,Q; R) := min*(R[G]) + R[Q] (the form parameter generated by Q),

where min*(R[G]) is the minimal form parameter of R[G], i.e.

min*(R[G]) = (x — AT | z € A)g.

Clearly A,(G,S) = Map(G \ S,R) and A4(G,S) = Map(S,R) as R-modules. In the
following, let

A=(R,G,Q,5 \w).

Definition 4.1. A map B : M x M — A (where M is a finitely generated A-module) is
called a A-Hermitian form on M if (4.1.1)—(4.1.3) are satisfied:

(4.1.1) B is biadditive,
(4.1.2) B(ax,by) = bB(z,y)a,

(4.1.3) B(z,y) = AB(y, ),
forall z,y € M, a,be A. Amap q: M — A,/A is called an A-quadratic form (or simply
quadratic form) on M with respect to B if (4.1.4)—(4.1.6) are fulfilled:

(4.1.4) q(gz) = gq(x)g and q(rz) = r?q(z) in A,/A = A/(A + As),
(4.1.5) q(z +y) —q(z) —q(y) = B(z,y) in Ag/A = A/(A+ A;), and

(4.1.6) g(x) + M\g(x) = B(z,z) in Ay, = A/A, where ¢(z) is a lifting of ¢(x),

for all x,y € M, r € R, and g € G. A triple M = (M, B, q) consisting of a finitely
generated A-module M, a A-Hermitian form B on M and an A-quadratic form ¢ on M
with respect to B, is called a doubly parametrized A-quadratic module (or simply quadratic
module).

Let ((proj)) be the category of all finitely generated projective A-modules, ((s-free)) the
category of all finitely generated stably free A-modules, and ((free)) the category of all
finitely generated free A-modules. Let C be one of ((proj)), ((s-free)), and ((free)). If M,
M' € C (more precisely Obj(C)) then Mor(M, M’) is the set of all A-linear isomorphisms
M — M’'. Let Q(A)c be the category of all quadratic modules M = (M, B, q) such
that M € C, and B is nonsingular. If M = (M, B,q), M' = (M',¥,q') € Q(A)c then
Mor(M,M’) is the set of all A-linear isomorphisms f : M — M’ such that B(z,y) =
B'(f(x), f(y)) and q(z) = ¢'(f(x)) (Vz,y € M).

Let O be a finite G-set. A G-map «a: © — M (where M is a G-module) will be called
a positioning map. Let

Q(A7 @)C
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be the category of all M = (M, B, q, &) such that (M, B,q) € Q(A)c and o : © — M is
a G-map. If M = (M,B,q,a), M' = (M',B',¢',a/) € Q(A,O)c then Mor(M, M) is the
set of all morphisms f : (M, B,q) — (M', B’,q') such that a(z) = o/(f(x)) (Vx € ©). For
M = (M, B, q,a), an A-direct summand L of M is called a C-Lagrangian of M if L € C,
B(L,L) =0, ¢(L) =0, L =L+, and a(©) C L, where

Lt ={xe M| B(z,y)=0 (Vy € L)}.

If M has a C-Lagrangian then M is called a C-null module. Define KQy(A,O)c to be
the Grothendieck group of the category Q(A,©)c with respect to orthogonal sum. If
C 2 D 2 ((free)), define

WQo(A,O)cp =KQo(A, O)c/(D-null modules in Q(A, ©)p).

In the remainder of this paper we treat only the case that © = S and the action of
G on S is via conjugation. To M = (M, B,q,a) € Q(A,S)c, we associate a function
V =Vun: M — Map(S, R/2R) defined by

(4.2) V(z)(s) = [e(B(a(s) — z,sx))], (ze€ M,sebl).

where € : A — R is the ring homomorphism Z agg — a1 (ay € R).
geG

Lemma 4.3. Let M = (M, B,q,a) € Q(A, S)c. Then for each a, b € R, x, y € M, and
s € S, one has the formula

Vum(ax +by)(s) = aVa(x)(s) + bV (y)(s) in R/2R.

Since the proof follows by straightforward calculation from Definition (4.2), we omit it
(note that a? = a mod 2R for a € R).
A quadratic module M with positioning map is called a special quadratic module if

Vm = 0. Let SQ(A,S)c be the full subcategory of Q(A, S)c consisting of all special
quadratic modules. Define SKQo(A, S)¢ to be the Grothendieck group of the category
SQ(A, S)c with respect to orthogonal sum. If C 2 D 2 ((free)), define

SWQo(A,S)e,p =SKQo(A, S)c/(D-null modules in SQ(A, S)p ).

Now let n = 2k be an even integer > 6, and A = (—1)*. Set

(44) Wn(A7 S)C = SWQO(A7 S)C,((free))-

Let NSQ(A, S)c denote the full subcategory of SQ(A, S)c¢ consisting of all C-null mod-

ules.
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Proposition 4.5. NSQ(A, S)(trce)) i5 a cofinal subcategory of SQ(A, S)c. That is, each
M < SQ(A, S)c is a direct summand of some N € NSQ(A, S) ((ree))-

Proof. Let M = (M, B, q,«). Since B is nonsingular, M is a selfdual A-module, namely
M = M# := Homy (M, A). Since M is a finitely generated projective A-module, M is a
direct summand of A™ for large m. Say A™ = M &M'. Let H(M') = (M’@M’#, B',¢',0)
be the hyperbolic module: B'((x, f), (2, f")) = f(a') + Af'(z) € A for z, 2/ € M’ and f,
fre M* ¢ ((x,f) = [f(@) € AJ(A+ Ay); and 0 : S — M’ & M'? is the trivial map.
Then M & M & H(M') has the underlying A-module M & M#* & M’ @ M’#, namely A%™.
It is easy to check that H(M) € NSQ(A, S)c. This allows us to assume that M is a free
A-module.

Now let M’ be a copy of M and v : M — M’ an A-isomorphism. Define B’ : M’ x M’ —
A ¢ M — Ay/A, and o : S — M’ as follows: B'(¢(x),¢¥(y)) = —B(z,y), ¢ (¢(x)) =
—q(z), and o/ (s) = ¥(a(s)), for z, y € M and s € S. Set M' = (M’, B’,¢', a'). Obviously
M c SQ(A, S)((tree))- Now consider N = M ®M'. Then L = {(z,¥(z)) | * € M} is a
((free))-Lagrangian of N. More precisely, one has that

(B® B)((z,¢(x)), (z,9(x))) = Bz, z) + B'(¢(x),1)(x)) = 0,
(¢®q')(z,¥(2) = q(z) + ¢ (¢¥(2)) =0, and
(@ ®a’)(s) = (als),a'(s)) = (a(s), P(a(s))) € L.

Moreover L = M is an A-free, direct summand of M & M’ (M & 0 is a complementary
summand to L). Q.E.D.

It is easy to see that the canonical homomorphism W, (A,S) ((free)) — Wi (A, S)((s—free))
is an isomorphism and that the canonical homomorphism W, (A, S)((s—tree)) = Wn (A4, S)((proj))
is injective. We could define W,,(A, ©)¢ for more general ©, but we omit such general-
izations for simplicity. For suitable @, S, A\, and w, the group W,, (A, S)¢c will be called a
G-surgery obstruction group.

5. Metabolic planes for special quadratic modules

We construct specific quadratic modules with positioning map whose V-invariant is
trivial, called special metabolic planes and use them to decompose ((free))-null modules
with trivial V.

Definition 5.1. Let 8 = (¢,r) be a pair of elements ¢, r € Map(S, R) such that
(BC) ¢(s) = r(s) mod 2R for any s € S.
Let x and y be distinct letters. The special metabolic plane

M(w,y7ﬁ) = (M(ac,y), Bra(bac)

associated to § with metabolic basis {x,y} is defined as follows. Let M = M (x,y) be the
free R[G]-module with basis {z,y}, i.e. M(z,y) = (z, y)r|q)- Let B, : M x M — R|G]
be the unique map satisfying Relations (4.1.1)—(4.1.3) and
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(5.1.1) B.(z,z) =0, B.(y,x) =1, and B, (y,y) = %:Sr(g)g.

Define ¢ : M — R[G \ S]/A(G,Q; R) to be the unique map satisfying Relations (4.1.4)—
(4.1.5) and

(5.1.2) g(x) = 0 and q(y) = 0.

Clearly, for a, b € R[G],
g(az +by) = B(by,ax) = ab € R[G \ S]/A(G, Q; R) = R[G]/(A(G, Q; R) + R[S)).

Thus, (4.1.6) is satisfied. Let G act as usual on S by conjugation (hence g -s = gsg~1!),
and define a map a. : S — M by

(5.1.3) ac(s) = 3 clg-s)g™ ',
geG

Clearly «. is a G-map (a positioning map).

Proposition 5.2. Let M(z,y,3) be a special metabolic plane as in Definition 5.1. Then
M(ZE’, Y, ﬂ) belongs to SQ(A7 S)((free)) .

Proof. By Lemma 4.3, it suffices to prove that Vas(, . g)(az)(s) = 0 and Vag(g 4.5 (ay)(s) =
0 for every a € G and s € S.

The second equality holds because

VM (a.y,8)(ay)(s) = [e(Br(ac(s) — ay, say))]
= [e(Br()_ elgsg™ g ", say))] - [e(By(ay, say))]

geG
= [e(\ ) wlg)elgsg™")sag)] — [e(D_ r(h)saha)]
geG hesS

= [Aw(sa)c(a™'sa)] — [w(a)r(a”'sa)] =0 € R/2R.

The first equality is straightforward to check. Q.E.D.

Lemma 5.3. Let 8 = (c,r) and ' = (¢',r") satisfy Condition (BC). If there ezists an
a € R* := Unit(R) such that ac(s) = c'(s) and a*r(s) = r'(s) for any s € S then
M (x,y, 3) is isomorphic to M (x',y', 5').

Proof. Let f : M(x,y) — M(x',y") denote the R[G]-linear map determined by the equa-
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tions f(x) = az’ and f(y) = a~'y’. Then

flac(s)) = F(O_ clgsg™ g 'x)

- 'S
=q 2 E r'(s)s
seS

= Zr(s)s = B, (y,y).

seS

Using this, the reader can easily check that f is an isomorphism. Q.E.D.

Proposition 5.4. Suppose R is the ring U~ 7 of U-fractions of Z where U is a multiplica-
tive set in Z. Let B = (c,r) be a pair of elements ¢, r € Map(S, R) satisfying Condition
(BC). Then there exists a pair 3’ = (¢',7') of elements ¢’, v’ € Map(S,Z) satisfying (BC)
such that M (x,y, 3) is isomorphic to M(z',y’, ).

Proof. Since S is finite, there is an integer a € U such that ac, ar € Map(S,Z). Set
B" = (ac,a®r). Then by Lemma 5.3, M (z,y,3) = M(z',y’, 3'). Q.E.D.

Lemma 5.5. Let = (¢,r) and ' = (', ") satisfy the Condition (BC). If c¢(s) = c/(s)
and r(s) = r'(s) mod 2R for any s € S then M(x,y, ) is isomorphic to M(z',y’,3).
Thus the isomorphism class of M (x,y, (¢, 7)) depends only on c.

Proof. By hypothesis, there exists an a € R[S] such that a + Aa = )_ (r'(s) — r(s))s. Let
sesS

f:M(z,y) — M(2',y’") be an R[G]-linear map such that f(z) = 2’ and f(y) =y’ — ax’.

Then

By (f(y), f(y)) = By (y' — az’,y' — aa’)
=B (y,y) = B (y,ax") — By (az',y') + By (az’, ax’)

< 1"’ )—a—)\a+0
sesS

7 ( Yy Y)-
es

V)

Using this, the reader can check easily that f is an isomorphism. Q.E.D.
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Theorem 5.6. If M = (M, B,q,«) is a ((free))-null, special quadratic module with La-
grangian L then there exist pairs 3; = (¢, 1), where ¢;, r; € Map(S, R) satisfying (BC) (i =
1, ---, m =rankpgg L) such that M is isomorphic to M(x1,y1, 51) ®- - S M (T, Ym, Bm)-

The result above is proved in the next section.

Corollary 5.7. Suppose R is a ring of fractions of Z. If M = (M, B, q, ) is a ((free))-
null, special quadratic module with Lagrangian L then there exist pairs 3; = (c;,r;) where
ci, i € Map(S,Z) satisfying (BC) (i =1, ---, m = rankg(g L) such that M is isomorphic
to M(z1,y1, 1) @ -+ ® M(Ty, Y Bim)-

Proof. The result follows immediately from Proposition 5.4 and Theorem 5.6. Q.E.D.

Corollary 5.8. The family of special metabolic planes is cofinal in the category of special
quadratic modules.

Proof. The result follows immediately from Proposition 4.5 and Theorem 5.6. Q.E.D.

Corollary 5.9. Suppose R is a ring of fractions of Z. Then the family of special meta-
bolic planes M (x,y, (¢,r)) such that ¢, r € Map(S,Z) is cofinal in the category of special
quadratic modules.

Proof. The result follows immediately from Proposition 5.4 and Corollary 5.8. Q.E.D.
6. Decomposition of ((free))-null modules

This section is devoted to the proof of Theorem 5.6.
Let M = (M, B, q,«) be a ((free))-null module with Lagrangian L. Let {z1, -,z }
(m = rank 4 L) be an arbitrary basis of L. Since L is a Lagrangian, the sequence

0— L — M 5 Homy(L,A) — 0,

is split-exact over A where 7(y) € Homu (L, A) (y € M) is given by 7(y)(x) = B(y,x)
(x € L). Thus there exist elements y; (i =1, --- , m) in M such that B(y;,z;) = d;;. By
the split-exact sequence above, {z;,y; | 1 =i < m} is a basis of M.

Lemma 6.1 (Orthonormalization of Gram-Schmidt-Wall). Suppose that for some integer
k,
B(yi,y;) =0 (foralli<j < k), and

q(y;) =0 (foralli S k).
Set
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(6.1.1) Yir1 = Yr+1 — | a(Wrs1)Trr1 + Z B(Yi, yr+1)2i |
i<k

where q(yp+1) € A is a lifting of ¢(yr+1) € Aq/A = A/(A+ As). Then it follows that
B(Yhy175) = Oky1,5 Jor all j, B(y;,yjq,) = 0 for all j < k+1, and q(y;1,) = 0.

Since the proof is a straightforward calculation, we omit it.
Inductive use of Lemma 6.1 on k& produces the next corollary.

Corollary 6.2. For an arbitrary basis {z1, -+ ,xm} of L, there exist elements y1, ---,
Ym € M such that B(y;,x;) = 0;; (for alli, j), B(yi,y;) =0 (for all i # j), and q(y;) =0
(for all 7).

Theorem 6.3. Let M = (M, B, q, ) be a ((free))-null module with Lagrangian L = (x) 4.
Let y € M be an element such that B(y,z) =1 and q(y) = 0. Then M is isomorphic to
the special metabolic plane M (x,y, ) associated to 3 = (ca, 1), where ¢y, r € Map(S, R)
are determined by the equations

a(s) = Z calgsg g™ 'z (Vs€S), and B(y,y) = Zr(s)s.

geG ses

For the moment, assume that Theorem 6.3 has been proved.

Proof that Theorem 6.3 = Theorem 5.6. We shall prove that M is isomorphic to an
orthogonal sum of special metabolic planes associated to certain (3; = (¢;, r;) where

(6.4) ¢;, r; € Map(S, R).

Let {x1, -+ ,xmn} be a basis of L and let {y1, - ,ym} be as in Corollary 6.2. Set M; =
(i,yi)a, Bi = By, : M; x M; — A, and ¢; = q|m, : M; — Ay/A. Let p; : M — M, be
the projection with respect to the basis {z;,y; | 1 =i < m}. Set oy = pjoa: S — M,.
It is easy to check that M; = (M;, By, qi, ;) € SQ(A, S)((tree)) With ((free))-Lagrangian
L; = (x;)a. Now use Theorem 6.3 to deduce that each M; is isomorphic to a special
metabolic plane. Thus M = M, & --- & M, is isomorphic to a orthogonal sum of special
metabolic planes. Q.E.D.

The rest of this section is devoted to the proof of Theorem 6.3.
Let M = (M, B,q,«) and x, y be as in Theorem 6.3. For every s € S, «a(s) has the
form

(6.5) a(s) = aals,9)g 'z,

geG
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where a,(s,g) € R. As usual G acts on S by conjugation. The isotropy subgroup G4 (at
s in the G-space S) is {h € G | hsh™! = s}. We define X, € A by

Sa, = Y h

heGs

Since « is a G-map, «(s) is Gg-invariant. Thus «a(s) has the form

(6.6) a(s) = Z Ao(s, 95 N2q. g ',
9Gs€G /G5

where G (s, gsg™1) = aq(s, g).

Lemma 6.7. In the above situation, Ga (s, gsg™) = ao(fsf~1, gsg™t) for any f € G.

Proof. Let h € G. Then

ho(s)= Y dals.gs9 YT, '
gGéeG/Gé

= Y Gals,gsg VS, h T (gh ) e
9Gs€G /G5

= > Gal(s,gsg"3q,, . (gh ) e
9G.€G /G,

= > Ua(s,gsg " )Zq, ., (gh™")a
(gh=1G),,,—1€G/G,, -1

~ — —1 -1
= Z aa(s7g/(h’8h’ 1)9/ )ZGhshflg/ L.
9'Ghan-1€G/G) -1

On the other hand,

a(hsh™) = Z Qo (hsh™1, g’(hsh_l)g’_l)ZGhSwlg’_lx.
9'G ., -1€G/G 1

Since ha(s) = a(hsh™1), we get
o (s, g’(hsh_l)g’_l) = Qo (hsh™!, g’(hsh_l)g’_l)

for all g’. Substitute now in the equation above f~!, g and fsf~! for h, ¢’, and s,
respectively. Then we obtain that @, (fsf~!, gsg~!) = an(s,g9sg71). Q.E.D.
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Lemma 6.8. Ifc, : S — R is defined by c,(s) = aa(s,s) then

a(s) =Y calgsg g .

geG

Proof. This is shown by straightforward calculation:

a(s) = Z Aa(s,95g N2q.9 '
9G.€G /G
_ ~ -1 —1 —1
= > Galgsg Tt gsg HSa.g e
9G€G /Gy
= > calgsg HEa.9
9G.€G /G
= Z ca(gsg g 'z, QE.D.
geG

Lemma 6.9. Ifr : G — R is defined by B(y,y) = deg r(g)g then r(g) = 0 for all
geG\S.

Proof. The conclusion follows immediately from the hypothesis ¢(y) = 0 and the property
(4.1.6). Q.E.D.

Putting Lemmas 6.8 and 6.9 together, we get M = M (z,y, 3). This completes the proof
of Theorem 6.3.

7. G-Surgery theorem

Throughout this section let n = 2k be an even integer = 6, let X and Y be closed
manifolds in Mnfl .. (G), let A = (—=1)* and w = w§, and let R be a ring of fractions of
Z.

A pair (f,b) is called a G-framed map if f : X — Y isa G-map and b: T(X) ® f*n —
f*(£ ®n) is a G-vector bundle isomorphism (covering the identity map on X) for real
G-vector bundles n and £ over Y. A G-framed map (f,b) is said to be of degree 1 (resp.
k-connected) if f is of degree 1 (resp. k-connected).

If V' is a real G-module, let ex (V) denote the product bundle X x V' — X with fiber
V. Let R be the 1-dimensional, trivial, real G-module.

In the sequel we always assume

n
Cp,sSg

(HC) the bundle 7 is sufficiently large; more precisely, n 2 ey (R"*!) where n = dim X.

Proposition 10.1 in the appendix demonstrates one advantage of this assumption.
Let I =[0,1] and let py : I XY — Y be the canonical projection. For a closed subset
Z € X, a cobordism (F,B) : (f,b) ~ (f',b) relative to Z is defined in the usual way:
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F:W — (IxY) (I=]0,1])is a G-map such that OW = (- X)UX’, F(-X) € ({0} xY),
FX') € {1} xY), Fl-x = f, Flx» = f', (where (I x Z) € W in a canonical way,
and F|rxz =idr X f|z); B: T(W) @ (py o F)*n — (py o F)*(ey (R) @ £ @ n) is a real
G-vector bundle isomorphism such that B|_x = id._ (r) ® b and Blx: = id. ,w) ®V,
(T(W)|1xz = e1(R) x T(X)|z in a canonical way, and B|rxz = id.,®) X b|z).

Our first goal is to define a quadruple My = (K(f; R), By, qf, af) for any k-connected,
degree 1, G-framed map f = (f,b). Let f = (f,b) be a degree 1, G-framed map and let A
=(R,G,Q,S,\,w,S), where Q = Q(G,X) and S = S(G, X). Let

pdualy : H*(X;R) — H.(X; R)
denote the Poincaré duality homomorphism, and let
ppairy : Hp(X; R) x Hi(X,R) - R
denote the Poincaré pairing. For each integer ¢, define

Ki(f; R) = Ker|[f. : H/(X;R) — Hy(Y;R)], and
KY(f; R) = Coker[f* : H(Y; R) — HY(X;R)].

Suppose that f is k-connected.

This assumption implies by [5, 1.2.8] that Ki(f; R) = R ®z Ki(f;Z) = K*(f; R) =
Homy(Ky(f;7Z), R) as R-modules and that these modules are finitely generated, free R-
modules. The A-Hermitian module (Hy(X; R), ppair) over R can be decomposed into
the orthogonal sum (K(f; R),ppair|) @ (pdual(Im(f*)), ppair|). It is well-known that
(Kk(f; R), ppair|) is nonsingular ([5, 1.2.9]). Let 7 : Hi(X; R) — Ky (f; R) be the canon-
ical projection, namely

mp(z) = x — pdualy o f* o pdualy’ o fi(z).

We treat first the case to R = Z and define By, qf, and oy for K;(f;Z). This done,
we extend By, ¢f, and ay to Ki(f; R) in the usual way, using the fact that Ki(f; R) =

For the moment we forget the G-action on X and apply the ordinary surgery theory of
C. T. C. Wall. Since f: X — Y is k-connected, the canonical map 7p41(f) — Ki(X;2Z)
is surjective. Thus each element x € Kj(X;Z) can be represented by a continuous map
h'y : S*¥ — X such that f o h/, is null homotopic in Y. This A, can be approximated
by an immersion. Since f o h’, is null homotopic, h,*(T(X) @ f*n) = (fo hL)*(E @ n) is
a trivial bundle. Thus, it follows from Hirsch’s immersion classification theorem that the
map h', is homotopic to an immersion h, with trivial normal bundle in X. Moreover the
regular homotopy class of h, in X is uniquely determined by x (providing, of course, f
and b are fixed).

It is well known that ppair(z,y) = Zintsec(hy, hy) (Vz, y € Ki(f;Z)). The sign + is
determined by the definitions of ppair and intsec. We shall adopt definitions such that
ppair(z,y) = (—1)¥intsec(hy, hy). (The sign will not be essential in our arguments. A
reader preferring definitions of ppair and intsec such that ppair(x,y) = intsec(hy, hy) can
easily modify the arguments.)
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Reimpose now the G-action on X. Define By : Ky (f;Z) x Ky(f;Z) — Z[G] by

By(z,y) = Y intsec(hy, g~ 'hy)g | = (=1)* ) _ ppair(z, g~ "y)g
geG geG

Then (Ky(f;Z), Bf) is a nonsingular A-Hermitian module over Z[G] by [5, 1.2.9] and [1,
(1.2.4)].
Define qf : Ki(f;Z) — Z[G \ S]/A(G, X;Z) by

q5(z) = px (ha).

By Hypothesis (2.1.5), each X, (v € ©(G, X, k)) has the orientation class ori(X,) €
Hyi(X,;Z). Let j, : Xy — X be the canonical inclusion. Adopting the identification in
Lemma 2.6, define ay : S = O(G, X, k) — Ki(f;Z) by

ap(s) =ap(v(s)) = 75 0 jys), (011(Xy(s))-

By (2.1.5), a is a G-map.
This completes the definition of the quadruple

Mf = (Kk(f;R)vaa(Jﬁaf)

for R =7.

We consider next the case of a general R. There is a canonical homomorphism ¢ :
Ki(f;Z) — Ki(f;R) and the induced R-homomorphism R ® ¢ : R ® Ki(f;Z) —
Ky (f; R) is an isomorphism by the universal coefficient theorem [5, 1.2.8]. Thus we
can extend By above to a pairing By : Ki(f; R) x Ki(f; R) — R[G] by using the rule
By(rz,r'y) = rr'By(z,y) (r, 7 € R, z,y € Ki(f; R)), qf above to a map g5 : K (f; R) —
R|G],/A(G, X; R) by using the rule g7 (rz) = r?qs(z) (r € R, z € Ki(f; R)), and oy above
to a function ay : § — Ki(f; R) by composing it with . It is straightforward to check
that By is a nonsingular form over R[G], that oy is a G-map, and that By and gy satisfy
(4.1.1)(4.1.6).

Lemma 7.1. Let X and Y be closed G-manifolds in Mnf, .. (G) (n = 2k = 6) and let
f=(f,b) be a k-connected, degree 1, G-framed map. Let A = (R, G, Q, S, \,w) where Q =
Q(G,X),S=5(G,X),\=(-1)F, andw = w¥. LetC = ((proj)), ((s — free)), or ((free)).
Suppose Ki(f;R) € C. Then the quadruple My = (Ki(f;R), By, qf, af) belongs to

SQ(A, S)c.

Proof. Set V = Va,. It suffices to show that V(x)(s) = 0 for each x € Ky(f; R) and
seS=5G,X).

Let jy(s) @ Xy(s) — X be the canonical inclusion and let h, : S¥ — X be an immersion
with trivial normal bundle, representing x. Without loss of generality, we may suppose
that hg, sh,, and j, () transversally intersect one another (cf. Lemma 9.1). If z € X is an
intersection point of h, and sh, then so is sz € X. Thus intsec(hy, shy) = intsec(hz, j(s))
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mod 2. It is obvious that intsec(hy, j(s)) = intsec(shy, jy(s)) mod 2. Thus for R = Z we

obtain using (4.2) that
V(z)(s) = [e(Bs(af(s) =z, s7))]

= [e(By(ag(s), s2))] — [e(By(x, sz))]

= [intsec(j(s), she)| — [intsec(hy, she)]

—0 inZ/2Z

Consider now the general case. Clearly for each © € K (f; R), there are elements a € R
and y € K(f;Z) such that z = ay. By Lemma 4.3 , V(ay) = aV(y) and by the case R = Z
above, V(y) = 0. Q.E.D.

Definition 7.2. In the situation of Lemma 7.1, define o(f) to be the element in W,,(4, S)¢
determined by the quadruple M.

Theorem 7.3. Let X and Y be closed G-manifolds in Mnf, . (G) (n = 2k = 6) and
letf=(f: X—=>Y,0:TX)® f*n— f*({Dn)) be a k-connected, degree 1 G-framed
map. Suppose that Ki(f;R) belongs to C. If o(f) = 0 in W, (A, S)c then f can be
converted by G-surgery of isotropy type {1} to a k-connected, degree 1, G-framed map
=X =Y, bV:T(X)®f n— " (dn)) (thus f ~ f rel. Sing(G, X)) such that

f': X" =Y is an R-homology equivalence.

This will be proved in the next section.
Concerning the assumption in Theorem 7.3 that K (f; R) belongs to C, the following
is known.

Remark 7.4. Let f: X — Y be a k-connected, degree 1 G-map. Then the following are
true.

(7.4.1) If f7: XP — Y% is an R, -homology equivalence for any p-subgroup P # {1}
of G (where p ranges over the set of all primes dividing |G|) then Ky (f; R) is a projective
R[G]-module.

(7.4.2) If fH . XH — YH is an R-homology equivalence for any hyperelementary subgroup
H # {1} of G then Ki(f; R) is a stably free R[G]-module.

Proof of Theorem 1.1. Since Y is l-connected and f : X — Y is k-connected, X
is 1-connected. Condition (2.1.1) follows from (1.1.1); Conditions (2.1.2), (2.1.3) and
(2.1.5) follow from (1.1.2);Condition (2.1.4) follows from (1.1.3). Thus X and Y be-
long to Mnf, . (G) (see §4). Since f has degree 1, it follows that w§ = w{. Set
W(G,Y;R) = Wp(A,S)(s—free)) (cf. (4.4)) for A = (R,G,Q, S, N\, w§). Theorem 1.1
follows now from Theorem 7.3. Q.E.D.

8. Algebraic triviality and geometric deformation

This section is devoted to the proof of Theorem 7.3.
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Throughout the section, X and Y are closed G-manifolds in Mnf_, .. (G) (n = 2k = 6),
and f = (f,b) is a k-connected, degree 1, G-framed map consisting of f : X — Y and
b:T(X)D f*n — f*(E@n). Weset A = (—1)k w=wvw¥{, Q=0Q(G,X), S=S(G,X),

and A= (R,G,Q,S,\,w).

Theorem 8.1. Let Ki(f;R) € C and let 8 = (¢,r), (r, ¢ € Map(S,Z)) be a pair such
that c(s) = r(s) mod 2Z for all s € S = S(G,X). Then f = (f,b) can be converted by
G-surgery of isotropy type ({1}) to a k-connected, degree 1, G-framed map f = (f',V)
(ff X' =Y andV : T(X")® f"'n — f"(E®n)) such that Ki(f';R) € C and My =
Mf@M(%ZJ,ﬁ).

This will be proved in §9.

Proof of Theorem 7.3. In outline, the proof proceeds as follows. First, we show using
Theorems 5.6 and 8.1 that o(f) =0 (f = (f, b)) implies My has a free Lagrangian L after
suitable G-surgery on f. Second, we show using Theorem 2.8 that the elements xq, -- -,
z,, of an R[G]-basis of L can be represented by smooth embeddings h1, - -+, hy, : S¥ — X
with trivial normal bundles such that gIm(h;) N ¢g’'Im(h;) = 0 unless i = j and g = ¢’ € G.
Third, we perform G-surgery along the h;’s and fourth, check that the resulting f' = (f, )
has the desired properties.

We shall prove first the case R = Z and then show how this proof can be modified in
the case of a general R. The case R = 7Z is divided into 4 steps corresponding to the 4
steps in the outline above.

Step 1. We reduce the proof to the case that M is a ((free))-null module. Suppose
o(f) = 0. By definition, there exist M € SQ(A, S)c and N € SQ(A, S)((tree)) such that
N is a ((free))-null module and

Mf@M%N@M.

Since NSQ(A, S) ((free)) is cofinal in SQ(A, S)c (Proposition 4.5), we may assume that M
is a ((free))-null module. Thus N @& M is a ((free))-null module. By Theorem 5.6, M is
isomorphic to a orthogonal sum of special metabolic planes. Thus by applying Theorem
8.1, we may continue the proof under the hypothesis that M s is a ((free))-null module.

Let L C Ki(f; R) be a ((free))-Lagrangian of M ¢ and let {x1,- - -,z } be an R[G]-basis
of L.

Step 2. We find nice embeddings S¥ — Free(G, X) representing the z;’s. For each i
(1 £ i < m), there is a smooth immersion h; : S¥ — X with trivial normal bundle,
representing x;. Since by Lemmas 2.2 and 2.6 dim Fixg (> pr(v(s)), Xqy(s)) = k — 2 for
all s € S(G,X), we may assume that Im(h;) N Fixg(> pr(v(s)), X)) = 0 for all i
(1=i=m)and s € S(G,X). Let jy) : X5y — X be the canonical inclusion. Since L
is a Lagrangian, L O Im(ay). Thus Bf(a¢(s), z;) = 0. By definition,

(82) Cl/f(S) = 7Tf(]'y(s)*(OI‘I(‘XP'y(S)»)
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Since Ki(f; R) is orthogonal to pdual(Im(f*)) under ppair, it follows that
ppair(y, ) = ppair(ms(y),z) (Vy € Hy(X; R) and Vo € Ki(f; R)).

Since ppair is equal to intsec up to sign, the equality (8.2) implies intsecg (j(s), ki) = 0.
By Lemma 2.2, Fixg(= pn(7(s)), X, (s)) is connected whenever s € S(G,X). Thus if a,
b € Im(h;) N X, (s have opposite intersection numbers, we can take a path from a to
b in Im(h;) and another in Fixg(= pr(v(s)), Xy(s)). Apply now Theorem 6.6 of [12] (a
procedure for cancelling intersection points with opposite intersection numbers) to deduce
that h; is regularly homotopic to an immersion h’; such that Im(h';) N X5 = 0 for all
s € S(G,X). Replace h; by hl, 1 =i < m. Then for all i and j,

(8.3) intsecg (hi, hj) =0, and

where X = X \ (U’Y Xf) (v runs over O(G, X, k)). By [12, Theorem 6.6], the vanishing

property (8.3) for i # j allows us to assume that gIm(h;) N g'Im(h;) = 0 (i # j) for all
g, g € G. Next apply Theorem 2.8 for f = h;. This allows to assume that each h; is a
smooth embedding such that Im(h;) N gIm(h;) = @ for all g € G\ {1}. Thus each z; is
represented by a embedding h; with trivial normal bundle such that gIm(h;)Ng'Im(h;) =0
unless ¢ = j and g = ¢’. In particular, Im(h;) C Free(G, X).

Step 3. We construct f' = (f’,¥’). There will be no essential differences here from the
corresponding step in Wall’s ordinary surgery theory. Perform G-surgery on f along the
embeddings hy, -+, hy. Let F =id; x f: I x X — I xY and let B = id., (&) ® (pkb):
TIxX)®(fopx)*n — (fopx)*(ey (R)®EDBn) where we identify T(I x X) = erxx (R) @
piT(X) and px : I x X — X is the canonical projection. The embeddings h; : S¥ —
X = {1} x X can be extended to framed embeddings H; : S¥ x D* — {1} x X such that
gIm(H)ﬂg’Im( ;) =0 unless i = j and g = ¢’. Define ind“H; : G x S¥ x D* — {1} x X
by ind®H;(g,s,d) = gH;(s,d) (g € G, s € S*, and d € DF). Construct the attaching
space

W =W(Hy, -, Hp)
= (I X X) Uina6 g1, u--inacar,, { (G x DM D¥); U+ U (G x DM x DF),,,}.

Define X’ by 0W = ({0} x X) ] X’. Since each f o h; is null homotopic, there is a map
d; : D**' — Y such that d;(z) = f o hy(x) for all z € S¥. The G-map F: I x X - I xY
is extensible to a G-map F’' : W — I x Y such that F'((G x D1 x D*);) c {1} x Y
and F'(1,2,0) = (1,d;(x)) for (1,z,0) € {1} x D**! x {0} C (G x D**! x DF),. If we
choose appropriate H;’s then the bundle isomorphism B is extensible to B’ : T(W) @
(py o F')*n — (py o F')*(ey (R) @ £ @ ). Let f' = F'[x, : X' = {1} xY =Y and let
V' = Blx iexR)®T(X)® f"n— f(ey(R) ® & dn). Since n satisfies (HC) in §7,
b is G-regularly homotopic to id. () ® ', where id. () : ex/(R) — ey (R) is the
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canonical isomorphism and b’ : T(X')® f'*n — f'*(€®n) (cf. §10). We have just obtained
a G-framed map (f',0').

Step 4. We prove that the f’ obtained in Step 3 is a k-connected, degree 1, R-homology
equivalence. These properties are independent of the G-action on X and Y in the fol-
lowing sense. We obtained the G-manifold X’ and the G-map f’ by G-surgery. But
forgetting G-actions, these are obtained by ordinary surgery on res?l}X along the basis

{eig | g€ G, 1=i< m} (where e; ;, = gx;) of the Lagrangian res?l}L for

res{yy (Kx(f; R), By, qf)-

It is obvious that f” has degree 1. Furthermore the basis {e; ;, | 1 £ i < m, g € G} possesses
complementary basis elements f; ;, such that

(resyy By)(figs €irg') = 0ig). (7.9 € R,
(8.5) (ves{iy By)(fig: firg) =0, and
(resfiyar) (fig) =0 € R/(1 = AR,

where (res?l}Bf)(x,y) =coBy(z,y) (z, y € Ki(f,R)) (cf. (4.2)). Thus, the arguments
in [19, pp.51-52] imply that f’ is a k-connected, R-homology equivalence. Thus we have
proved Theorem 7.3 in the case R = Z.

The case of a general R is proved as above, except one has to take a little extra care at
the three places.

The first is in Step 1. Here we should replace the application of Theorem 5.6 by one of
Corollary 5.7.

The second is just after Step 1. There we used an arbitrary basis {x1,- - , z,,}. However
in the general case, we should choose the basis such that each z; € K (f; R) = RQKk(f;7Z)
lies in the image of Ky (f;Z) under the canonical homomorphism. Furthermore if 2 € R*
then we can and should assume that each z; = 2v; for some v; in the image of Ky (f;Z).
This will guarantee that if X and h; are as in Step 2 then p¢(h;) = 0.

The third is in Step 4. In the general case, the complementary basis elements f; ;, should
be taken so that they also lie in the image of K (f;Z) and (8.5) should be replaced by

(fig»€ig) are integers invertible in R,
(figr€irg) =0 if (i,9) # (i, 9),
(fig, firg') =0 if (i,9) # (', g'), and

With these modifications, Step 1 — Step 4 will prove Theorem 7.3 in the general case.
Q.E.D.

9. Special metabolic stabilization in G-surgery
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This section is devoted to the proof of Theorem 8.1.
If M is an oriented smooth manifold of dimension mi + mso, if M; and Ms are oriented
submanifolds of M of dimension m and ms, respectively, and if M; and M, transversally

intersect at only finitely many points of Int(M ), let M7 - My denote the intersection number
of M 1 and M- 2.

Lemma 9.1. Let (s) be a group of order 2 and let R (resp. Ry) be the 1-dimensional,
real {s)-module with trivial (resp. nontrivial) (s)-action. Let M = R¥ @ R with standard
orientation. Let

My = {(z1, -, 2p, 91, ys) ERFORE | 2y, - p €R; yy =21, -+, Yo = a1 )

Then My - sMy = X (where A = (—1)%).

Proof. It is clear that

SMIZ{(:BD"'7xk7_y17"'7_yk)| L1y =y Tk ER’ Y1 = 21, 7yk:$k}

Thus the matrix corresponding to the standard ordered basis of My & sM; is

10 --- 0 1 0 - 0
01 --- 0 0 1 - 0
0 0 1 0 0 1
P= 1 0 0 -1 0 0
0 1 0 0 -1 0
00 --- 1 0 0 - -1

Since det(P) = 2*(—1)*, we obtain M; - sM; = \.

Let f = (f,b), where f: X =Y, b:T(X)® f*(n) — f*(£Dn), and let § = (¢, 7) be as
in Theorem 8.1. In particular, ¢: S — Z and r : S — Z satisfy the property c(g) = r(g)
mod 27Z for all g € S = S(G, X). It is helpful to prove first a special case of Theorem 8.1
in order to grasp an outline of the proof.

Special Case. Here we assume that s € S such that Y c¢(g)g = s. Let v € O(G, X, k)
geSs
such that pri(y) o s (cf. Lemma 2.6). Take a point a € X, such that G, = pri(y). The
canonical inclusion X, — X is denoted by j,. Let v = v(X,, X) be the normal bundle of
X, and regard it as an Ng(pr(y))-tubular neighborhood of X.. Note that pr(y) = G5
(the centralizer of s). Take a neighborhood E (=2 R¥) of a in Fixg(= pn(y), X,) such
that ENgE # ) = g € pn(v). Then v|g is a pr(y)-neighborhood of a in X, which is
pr1(y)-diffeomorphic to E x V', where V' = v|, is a k-dimensional real pr(y)-representation
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space. Note that res’zs(;)v =~ RE. Regard the point a as the origin 0 in £ x V. Let
A : E — V be an R-linear map such that Ker(A) = {0}. Then the graph Graph(A) of
A is a k-dimensional linear subspace of E x V. We choose A so that Graph(A) is M; in
Lemma 9.1 when the group action is restricted to (s). We orient Graph(A) so that the
ordered direct sum 7,(X,) ®T,(Graph(A)) has the same orientation as 7, (X). Let § > 0
be a small real number and let Ds(Graph(A)) be the closed disk of Graph(A) with radius
d centered at the origin (i.e. a). Take an orientation preserving (linear) diffeomorphism
h'y : D¥ — Dgs(Graph(A)) such that h,(0) = a. Fix a small real number §’ such that
0 < &' < §. There is a ¢’-approximation hp : D¥ — v|g of b’y such that hp is also a
smooth embedding, hp(x) = b’y (z) if ||z]| £ 1/2, and h := hp|ge—1 : S¥71 = 9DF — X
satisfies the condition that if gh(x) = g’h(2’) (g, ¢’ € G and =, 2’ € S*¥~1) then g = ¢’ and
x=2a'. Set D =Im(hp). Then it follows that

(9.2) the intersection number X, - D = 1.

Since h extends to hp, the normal bundle of A is trivial. There is an orientation-preserving,
smooth embedding H : S¥~! x D¥+1 — Free(G, X) such that h = H|gi-1, (o, and such
that if gH(z) = ¢/H(z') (g9, ¢ € G and z, 2’ € S*~1 x D¥*1) then g = ¢/ and = = 2'.
Thus,

ind®H : G x §¥71 x D! = Free(G, X), (g,2)+— gH(z) (g€ G, z € S*~1 x DFFY)

is a smooth embedding.
Perform G-surgery on X along h as follows. Let I = [0,1] and W = I x X. Regard
ind® H as a map to {1} x X. Construct the attaching space

W' =W U, gep (G x DF x DFF1),

Define X’ by OW' = ({0} x X) U X’ (disjoint union). Then the map F =id; x f: W =
I'xX — IxY is extensible to a G-map F' : W’ — I xY such that F'(X’) € {1} xY and
F'(9,p,0) = ghp(p(p)) for g € G, p € D*¥ and 0 the origin of D**!, where ¢ : D¥ — DF
is the usual orientation reversing diffeomorphism from the upper hemisphere to the lower
hemisphere. Define f' : X’ — Y by f' = F/|x» — ({1} xY) =Y. In addition, B =
ide,(r) X b is extensible to a G-vector bundle isomorphism B’ : T(W') @ (py o F')*n —
(b © F')*(ey(R) & € & 7). Define b : ex/(R) & T(X') & £y — ["(ey(R) & € 1) by
b" = B'|xs. Since n is large (i.e. satisfies (HC) in §7), b is G-regularly homotopic to
ide ., (r) © b where b/ : T(X') @ f"n — (€ ®n) (cf. Proposition 10.1). Let f' = (f', ).

We shall show that f satisfies the conclusion of Theorem 8.1.

If we forget the G-actions on X and X’ then

(9.3) X' = [{X#{g1} x S* x SF)}#-- J#Hg1¢ )} ¥ S* x §*)  (iterated connected sum),

where {g1, -+, 9|/} = G and g1 = 1. Clearly, X’ is 1-connected and f’ is of degree 1.
Our next goal is to obtain elements z and y of Kj(f’;Z) such that By (x,z) = 0,

qs/(x) = 0, By(y,xz) = 1, and ¢ (y) = 0. This will be done by the procedure. First

we define an element —x € K} (f’;Z) such that By (—x,—z) = 0 and gg (—x) = 0. The



EQUIVARIANT SURGERY WITH MIDDLE-DIMENSIONAL SINGULAR SETS. I 29

element x we are seeking is then defined to be —(—z). Next we define an element —\z €
Ky (f';Z) such that By/(—Az,z) = —X and qp/(—Az)(g) = 0forall g € {1}UG(2)\ (QUS).
Set z = —A(—Az). Then By/(z,2) = 1 and g4/ (2)(g) = O for all g € {1}UG(2)\ (QUS). By
the orthonormalization procedure in Lemma 6.1, there is an element v € Z|G\ ({1} UG(2))]
such that gs/(z +vx) = 0. Now we define y = z 4+ vx. It follows that By (y,z) = 1 and
that the elements x and y have the properties sought above. To define the elements —z
and —\z in Ky(f';Z), we construct first embeddings j_,, j_x. : S* — X’ and then set —x
(resp. —Az) to be the image under the homomorphism (j_;). : Hp(S*;Z) — Hp(X';Z)
(resp. (j_xz)x : Hx(S*;Z) — Hp(X';7Z)) of the orientation class of S*¥. Fix a point
pt € S¥~1 and define j_, : S¥ = OD**! — X' by j_.(2) = H(pt,2) (2 € S*). The map
j_o will be regarded as the meridian {1} x {pt} x S* in (9.3). Clearly intsecg(j_,js) = 0
(V6 € ©(G, X", k) = O(G, X, k)) (equivalently By (z,a5/(g)) =0 (Vg € 5)). As j_, is an
embedding with trivial normal bundle such that Im(j_,) N gIm(j_,) = @ whenever g €
G\ {1}, it follows that intsecq(j_z,j—z) = 0 (equivalently By (x,x) = 0), and gf/(x) = 0.
By choosing Im(H ) sufficiently thin, we may suppose that D’ = D\ H(S*~! xInt(D**1)) is
diffeomorphic to the closed disk of dimension k. Define k_ : D* — W and k. : Di — W
by

k_:DF =DF 2 X — (1} x X — W, and

ky: DY = D* x {0} — {1} x D¥ x DFt! — W".

Define j' : S* = D* UD{“F — W’ by gluing k_ and k. Pushing j' into X’ within the handle
{1} x D* x D¥*1 we obtain an isotopy from j’ to a smooth embedding j_», : S¥ — X'
We may assume that Im(j_».) = D’U({1} x D* x {pt'}) for some pt’ € S*. The embedding
j—xz will be regarded as the longitude {1} x S* x {pt'} in (9.3). Clearly B/ (2, (g)) =0
(Vg € S\ {s}), and (g (2))(g) =0 (Vg € {1} UG(2) \ (QU S)). Moreover

ori (T(1 pt prry ({1} X S* X {pt'}) & T(1 prprry ({1} x {pt} x %))
ori (T(Lpt,pt/)(a({l} x Sk x D’f+1)))
ori (T(l,pt,pt’)({]-} x SF x Sk))
(—1)kori (T(1,pt,per) ({1} x S* x ODk+1))
=(-1DF =)

intsec(j_nz,Jj—z) =

and by construction intsec(j_x., g 'j_z) =0 for all g # 1. Thus By/(z,z) = 1.

Let the elements z, y, z € K (f’;Z) be determined by the procedures above. Obviously
(r, 2)ziq) = (T, Y)zic)- We claim that Kp(f'; R) = Ki(f; R) ® (v, z)g[g)- This can be
shown by the following standard argument.

We identify X with {0} x X. Then K;(F’, f;Z) = K;,(F', F;Z) = H;(W',W;Z) = Z|G]
(resp. 0) if i = k (resp. i # k). Since we can regard the element z to be in Hy (W', W;Z),
we may identify K;(F’, f;Z) with (z)z(g). Consider the Mayer-Vietoris exact sequence

(k1)4

o Ko (F' f32) — Ki(f;2) 205 K (pryz) T

O K(F L 52) —

If i # k then K;(f;Z) =0 and K;(F’, f;Z) = 0 and so K;(F';Z) = 0. Since we can regard
z € Ki(F';7Z), there is a Z|G]-splitting o1 : Ki(F', f;7Z) — Ky (F';Z) for 71 = (1)) such
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that o1(z) = z. Thus Ki(f;Z) © (2)zq) g Ky (F';Z) where ¢ : (2)zjq) — Ki(F';Z) is
the canonical inclusion. Since W =25 W' U (G x D**1 x D) (the dual-handle attachment)
~q W/U(G x Dk x{0}), it follows that K;(F’, f'; Z) = H;(Gx D**'x D¥ G x Sk x D*; 7)
= 7|G] (resp. 0) if i = k+1 (resp. i # k+1). (This can be shown also using the universal
coefficient theorem and the Poincaré-Lefschetz duality, cf. [5, 1.2.8].) Now consider the
Mayer-Vietoris exact sequence

(k2)i

(02)i+1 Ki(f’;Z) Ki(F/;Z) N Ki(F/,f/;Z> — .

c— K (F, 1 Z)
If i # k then K;1(F', f';Z) = 0 and K;(F';Z) = 0 and so K;(f';Z) = 0. Hence f’ is
k-connected. Consider the short exact sequence

0 — Kpni1 (F', f:2) 2 Ki(f;Z) 22 Ki(F';Z) — 0

obtained from the long exact sequence above, where 0 = (02)r+1 and ko = (k2)i. Note
that Ox(Kpy1(F', f';Z)) = (x)zc). Since Ky (F'; R) = R® Ky (F';Z) is a projective R[G]-
module, there is an R[G]-splitting oo : Ki(F'; R) — Ki(f'; R) for k2 (more precisely
for R ® k2) such that o3(z) = 2. Putting all this together, we get an R[G]-isomorphism
w: Kp(f; R) @ (x, 2) gie) — Ki(f'; R) such that w(u, v1z,v22) = 02(k1(u)) + v12 + vz for
u € Ki(f; R), v1, v2 € R[G].

Let

M" =z, y)rie) = (2, 2)rie) C Ki(f'; R),
My =M"" = {u; € Ki(f';R) | By/(ug,uy) =0 for all uy € M”}, and
M; =Im(os 0 k1 : Ki(f; R) — Ki(f'; R)).

Let p” : Ki(f'; R) — M" be the projection associated to the decomposition Ky(f’; R) =
My & M" and let p; : Ki(f'; R) — M; (i = 0, 1) be the projections associated to the
decompositions Ki(f'; R) = M; & M"” (i = 0, 1) respectively. By construction, M; C
<£L'>R[G}J_. Thus

(9.4) M + () pie) = (@) rig)- and gp(z) = 0.

Thus the isomorphism class of (M, By/|a,,qf |ar,) is independent of the choice of os.
For each element a of K(f;R), take an smooth immersion h, : S¥ — X with trivial
normal bundle, representing a. Take hq so that Im(hg) N Im(ind® H) = . Then h, can
be regarded as an immersion to X’. Let o’ € Ki(f’; R) be the element represented by h,.
Clearly it follows that op 0 k1(a) = a’ mod (z)g(q. For a, b € Ki(f; R), one can compute
By:(020k1(a),020k1(b)) (vesp. qf(o20k1(a))) by using (9.4) and counting the equivariant
intersection number of h, and hy, (resp. the equivariant selfintersection number of h,). This
makes it clear that o o k1 is an isomorphism (K (f; R), Bf,qf) = (Mv, By|ay, qf7 | oty )-
The map po|as, : M1 — My is determined by the formula

po(u) =u— By (y,u)xr (for u e Myp).
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Again by (9.4), po|a, is an isomorphism (M, By |ar,, qf|ar,) = (Mo, By v, a5 |0, )- Thus
Poo 020k : Kin(f; R) — Mo is an isomorphism (K (f; R), By, q5) = (Mo, By'|asy, g [asy )

Set o' = p” oays, and let g € S. Obviously, o (g9) = po(ays(g9)) + a”(g). (From
the equation Byf(a,af(g)) = By (a',ap(g)), it follows that o9 o k1(af(g)) = p1(ays(g)).
Note that po(p1(uw)) = po(u) for all u € Ky (f’; R). Thus poopioays = pooay:. Since po|ar, :
(M, Byl | ar) = (Mo, Byr|agy, dp|ag, ), we obtain pooozory : (Ki(f; R), By, qf, ovp) =
(Mo, Byr|aos qf | a1o5 Po © tpr).

Let B" = By/|ymv, " = qpt |y By Theorem 6.3, (M, B”,q",a") = M (x,y, 3") where
G = (") (", " € Map(S,Z)) is determined by the equations

o’ (t) = Z ' (gtg gt (Vt € S) and By(y,y) = Zr”(t)t.

geG tes

Next we compute that ¢ = ¢ and calculate r”.

Since By (z,a4(s)) =0, a”(s) = ux for some u € Z[G]. Since By (z,x) = 1, we obtain
a"(s) = By/(z,a"(s))x = By(z, ap:(s))x. Furthermore intsec(j, j—xz) = —1 (pu(y) 3 s),
because D = Im(hp) is identified with the lower hemisphere of Domain(j_»,) by an orien-
tation reversing diffeomorphism. If g € G then intsec(j,, g~ j_x.) = w(g)intsec(gjy, j—rz)
and this is trivial if g ¢ G5. Thus intsecg(jy,j-rz) = — >, cq, w(g)g. This implies

Byp(ag(s), —Az) = = > cq. w(g)g. Hence

(9.5) Bz ap(s) =Y 9= > ¢ "' (=%a,

geGs geGs

Thus

(9.6) a’(s) = Z g tw.

geGs

Furthermore ift € S and t # s then " (t) = 0, since for v’ # v and g € G, intsec(j/, gj—»r.) =
0. Clearly ¢”’(s) =1 and ¢’(t) = 0 if t # s. Thus ¢’ = ¢ holds.

Since Im(j_.)NgIm(j_»,) = 0 whenever g2 = 1 and g # s, 1, it is clear that By(z, z) =
0in Z[{1}UG(2)\{s}] = Z|G]/Z|G\({1}UG(2)\{s})]. By Lemma 9.1, we may suppose that
intsec(j_xz, Sj—xz) = A. Then By/(2z,2) = As in Z[{1} UG(2)] = Z|G]/Z|G \ ({1} UG(2))].
;From the equations gs/(y) =0 and y = z + vz (v € Z[G \ ({1} UG(2))]), it follows that

(9.7) By, y) = As

Thus r”’(s) = A and 7”(t) = 0 for ¢t # s. This completes the calculation of r”.

Since ¢’(g) = ¢(g) (and 7’(g) = r(g) mod 2Z for all g € ), it follows from Lemma 5.5
that M (z,y, ") = M(z,y, ) and hence (M"  B" ¢", ") = M(z,y, ().

Consequently Mg = M ¢ ® M(x,y, 3), and we have proved Theorem 8.1 in the special
case cited above.

General Case. Let S = {s € S | c(s) > 0}, S- = {s € S| ¢(s) < 0} and set
S' =S5, US_. Let I' = {(s,i) | s€ 8, 1=i=]c(s)] }. For each s € S/, take |c(s)]
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distinet points z(s, 1), -, z(s, [c(s)|) of X, (5 (v(s) € ©(G, X, k) and pri(y(s)) > s) such
that G, = pu(y(s)). Furthermore we can choose these points so that if (s,i) #
(s',i') then Gz(s,i) N Gz(s',i’) = 0. Take neighborhoods E(s;) (= RF) of z(s,i) in
X (s), respectively. Then each v(X, (), X)|g,, is a neighborhood of z(s,4) which is
diffeomorphic to E(s ;) X V(s,), where Vi, iy = v(X,(s), X)|a(s,i)- We may assume that
GU(X5(s), X) B .y N GV(X 51y X)|E ) = 0 whenever (s, i) # (s',i') and that if
V(X’Y(S)’ X)‘E(s,i) ﬂgV(X’Y(S)7X)|E(S,i) # 0 then g€ pH(’V(S))‘ Let A(s,i) : E(s,i) - ‘/(s,i) be
R-linear maps such that Ker(A( ;) = {0}. The graphs Graph(A(,;)) are k-dimensional
linear subspaces of E(; ;) x V(s ), respectively. For each (s,i) € Sy (resp. S_), we orient
Graph (A, ;) so that the ordered direct sum Ty, ;) (X5 (s)) B Ty(s,i) (Graph(A s 4))) has the
same orientation (resp. opposite orientation) as T, ;) (X). Take orientation preserving
(linear) diffeomorphisms th(s,i) : D¥ — Ds(Graph(A(s,;))) such that h’D@m (0) = x(s,1).
For each (s, ), there is a ¢’-approximation hp,, , : DF — V(X5 sy, X)|E,, of h’D@m such
| < 1/2, and that
hisiy == hp, ;|sk-1 Skl _ X satisfies the property that if ghs,iy(x) = g'hes iy (2') (9,
g € Gand z, 2/ € S"71) then g = ¢’ and © = &/. Set Dy, = Im(hp,, ). Instead of
(9.2), we have now

that hp,, ., is also a smooth embedding, that hp,, , () = th(S )(x) if ||z

(9.2) the intersection number X, - D(,,) = sign(c(s)).

Let ord : I' — {1,---,|I'|} be a bijection. For each i = 1, --- | |I'| — 1, take a k-
dimensional band B; = I x D*~! (in general position in Free(G, X) \ (U, Int(Dorg-1(1))))
connecting 9Dy, q-1(;y With Dgq-1¢;41)- This done, we obtain an embedded k-dimensional
closed disk

D = Dgrq-11) UB1UDgrq-1(2) U+ - - U Bjrj—1 U Dyrg—1 (1))

in X. The bands B; should be taken so that 0D is the oriented connected sum of the
oriented 9D, )’s. Let hp : (D¥ =) D — X be the canonical inclusion and set h =
hplop : (S¥71 =) 0D — Free(G, X). Without loss of generality, we may assume that
if gh(x) = g'h(2') (9, ¢ € G and z, 2’ € S*71) then g = ¢’ and © = 2’. There is
a smooth embedding H : S*~! x D¥1 — Free(G, X) such that h(x) = H(z,0) for all
2 € S*1 and such that the induced G-map ind®H : G x S¥=1 x DF+1 — Free(G, X)
is an embedding. Construct the following spaces and maps as in Special Case: W' =
W Ugey (Gx DF x DY X' F F' f X' — Y, and b : T(X')® f"np — " (@ n).
Then set f' = (f',b'). As in Special Case, Kp(f'; R) = Ki(f; R) @ (, z) rjq]- Moreover,
—x and —\z have geometric realizations by embeddings j_., j_x» : S¥ — X', respectively,
and By(z,2) =0, By/(z,2) =1, g5 (x) = 0, (¢4 (2))(9) = 0 (Vg € {1}UG(2)\(QUS)), and
there is an element v € Z[G\ ({1}UG(2))] such that y = z+wvx satisfies ¢/ (y) = 0. For each
s € 5, let jys) @ Xy) — X be the canonical inclusion. Then intsec(j(s),j-xz) = —c(s)
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and hence
intsecG(jv(sﬁj—/\z) = Z intsec(jv(sﬁg_lj—)\z)g
geG
=) w(g)intsec(gjs(s), j-rz)g
geqG
= Z g)intsec(jg(s), J—rz)9g
geG
= Z 1ntsec j,y(gsg—l) j /\z)g
geqG
= w(g) (—clgsg)g) -
geG
Thus

Byi(z,a4:(s)) = ABp (g (5), 2)
= _Bf’(af’(s)» —Az)

==Y w(g) (—c(gsg—)g)

geG

=) clgsg g™

geG

The equality (9.5) is replaced by the equality

Byi(z,ap(s) = > clgsg g™

geG

(= Y cgsg HZq,, 97"

g
9G.€G/Gs

(9.5')

Let M" = (z, y)riq) (= (%, 2)Rrjg)) and My = M"*. Let py : Ki(f'; R) — M, and
p" : Ki(f'; R) — M" denote the projections associated to the decomposition Ky(f’; R) =
My & M". Let o = p”" oayp, B" = By/|yn, and ¢" = qp|yr. By Theorem 6.3,
(M",B",q",a") =2 M(x,y,5"”) where 5" = (",r") ( ", r"" € Map(S,Z)) is determined
by the equation

a’(s) = Z ' (gsg g 'z (Vs€S), and By (y,y) = Zr”(s)s.

geG seS

As in Special Case, we compute that ¢’ = ¢. Since o’(s) = By (2, ap/(s))z, it follows
that

(9.6") o’(s) =) clgsg")g 'x

and hence that ¢’ = c.
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Next we calculate r”. By Lemma 9.1, we may assume that intsec(j_x., sj—x2)) = Alc(s)|
for all s € S. Since (g/(2))(g) = 0 for any g € {1} UG(2) \ (Q U 5), it follows that
By (2,2) = S\l in ZI{1} U G(2)] = ZIGY/ZIG\ ({1} U GE)L As gp:(y) = 0 and

se

y = z+ vz for some v € Z[G \ ({1} U G(2))], we have
(9.7) By/(y,y) = Y _Ale(s)]s.

seS
Thus for all s € S, r”(s) = A|e(s)| and 77(s) = r(s) mod 2Z.
Since ¢’ = ¢ (and " =r mod 2), Lemma 5.5 implies M (x,y, ") = M(x,y, ).
By the same arguments as in Special Case, we can check

(Kk(f,R)7Bf,Qf,Oéf) = (M07Bf’|M07Qf/‘Mo7p0 o Oéf/)
and conclude My = My & M(x,y, 5). Q.E.D.

10. Appendix
We have invoked Assumption (HC) (see §7) in order to apply the next proposition.

Proposition 10.1. Let M be an n-dimensional, G-CW-complex and let n and n’ be real
G-vector bundles with G-invariant Riemannian metrics over M. If n 2 ep(R™1) then
any G-vector bundle isomorphism b : ey (R)@n — ey (R) @1’ (@ denotes orthogonal sum)
is G-regularly homotopic to a G-vector bundle isomorphism id.,, ) ®b" where b’ : n —n'.

Proof. It is well-known that b is G-regularly homotopic to a metric preserving isomorphism.
(This follows from the fact that if ( , ) and (, )’ are G-invariant Riemannian metrics on
the same underlying G-vector bundle £ then (1 —¢)(, ) +¢(, )’ (t € I) is a G-invariant
Riemannian metric on £, and from the equivariant covering homotopy property.) Thus we
may assume that b is metric preserving.

We shall prove Proposition 10.1 by double induction on n and the number of isotropy
types of n-dimensional cells. Suppose M = M’ U UW(G /H x D7) where DI} = D", and
invoke the induction hypothesis that b|y; has the form id. g @ b", where b : njy —
n'|ar. Under this hypothesis, we shall find b’ as in the conclusion of the proposition. For
fixed v, set £ = H/H xInt(DY). Then b(en(R)|5 ) = em(R)|5 g, but it is not necessary
that

Let b7 : ey (R)®nH — e (R)®n' ™ be the restriction of b to the H-fixed point set. Then
b|yru is decomposed into b|yu = b2 by (Ng(H)-orthogonal sum). We deform b keeping
blar and by fixed. The obstruction o to deforming b to satisfy (10.2) lies in m,_1(S™1),
where m = fiber-dim(nf) 4 1. Since fiber-dim(nf) > fiber-dim(n%) = n, the obstruction
group 7,_1(S™™1) is trivial. Hence the obstruction o vanishes. If (10.2) is satisfied for all
v then b(ep(R)) = epr(R). Since b is metric preserving, we have b(n) & n’. Moreover, we
can arrange b so that b|.,, &) = id.,, (&), since fiber-dim(e (R) @ e (R"11)) 2 2. Q.E.D.
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