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ABSTRACT This article introduces an analog of the maximal ideal spectrum of a commu-
tative ring, for arbitrary associative rings with identity element. A given ring can have
many spectra. Using all of the spectra, we define the local stable rank of a ring and the
local A-stable rank of a ring with A-involution. Upper bounds for both notions of local
rank are established in terms of the Gabriel-Rentschler J. Krull dimension at each quo-
tient of the ring modulo a primitive ideal. This upper bound shows that the local rank
of a commutative or module finite ring is 1.

Let R be a ring with A-involution, of local A-stable rank m. The main result is that
the elementary subgroup of the automorphism group of an arbitrary A-Hermitian form
of hyperbolic Witt index > m + 2 is normal. In particular, the elementary subgroup
EHy,(R,aq,- - ,a,) of the general Hermitian group GHs, (R, a1, - , a,) is normal when-
ever n —r > m + 2. As a corollary, the analogous linear result is deduced for the
automorphism group of an arbitrary module of unimodular index > m + 2 over a ring of
local stable rank m. This extends theorems of Suslin and Tulenbaev for the general linear
group of free modules of finite rank over commutative and module finite rings.



1 Introduction

We explain first the ring theoretic concepts required in formulating our results.

Throughout the article, R denotes an associative ring with identity element or such a ring
with additional structures.

A A-involution on R is an additive, bijective map R — R,a + a, such that ab =
ba and Aa\ = a for all a,b € R. Setting a = 1, it follows that A = A1, If A € center (A)
then @ = a and the map a + a is an involution in the usual sense.

The concept of a multiplicative spectrum for associative rings is designed to provide an
environment for carrying out local-global arguments that had been restricted to either
commutative rings or rings which are module finite over their centers where localization
can be carried out effectively with respect to commutative multiplicative sets. The prob-
lem for general rings is that one cannot carry out localization effectively by restricting to
commutative multiplicative sets and one cannot form a ring of fractions at an arbitrary
multiplicative set, but only at ones that are denominator sets (cf. [S] IT Prop. 1.4). This
means that the natural interplay in the commutative situation between maximal ideals
m of R and multiplicative sets of R, consisting of all elements which become a unit in
R/m, is lost in the general situation, because such multiplicative sets in general are not
denominator sets. The idea of a multiplicative spectrum for an associative ring is to re-
place the set of maximal ideals of a commutative ring by a set of denominator sets, which
satisfies two simple properties supporting local-global procedures.

Recall that a right denominator set in R is a multiplicative set S € R satisfying the
following properties.

D1. (Ore condition) If s € S and a € R then sb = at for some t € S and b € R.

D2. If s € S and a € R such that sa = 0 then at =0 for some ¢t € S.

The ring of right S-fractions (cf. [S] II §1) of R will be denoted by R[S™']. The notion of
a left denominator set is defined similarly. A right multiplicative spectrum on R
is a set Y of right denominator sets satisfying the following properties.

MS1. (Local condition) For each S € Y, the canonical homomorphism R — R[S™']/J(0)
is surjective where J(0) denotes the Jacobson radical of R[S !].

MS2. (Global condition) Any subset of R which meets each S € ) nontrivially generates
a right ideal of R, which is all of R.



The notion of a left multiplicative spectrum on R is defined similarly. A multi-
plicative spectrum on R is a right multiplicative spectrum which is simultaneously a
left multiplicative spectrum. The set of all multiplicative spectra on R will be denoted
by MS(R). A A-multiplicative spectrum on a ring R with A-involution is a right mult-
plicative spectrum ) such that each S € )_ is involution invariant. Because f the last
condition, it follows that a A-multiplicative spectrum is a multiplicative spectrum. The
set of all A-multiplicative spectra on R will be denoted by AMS(R).

Next we several concepts of stable rank for rings and rings with A-involution and then use
them to define their local versions.

If T'C R is asubset, let Jy(T) denote the intersection of R and all maximal left ideals of

R, which contain T'. Let R™ denote the direct sum of n copies of R. If (ay,--- ,a,) € R",
let Jy(ai,---,a,) = Je{ai,---,a,}. One says that a vector (aj,---,a,) in the right
R-module R™ can be shortened, if there are elements x1,---,z,_1 € R such that

Jo(ar + T1ap, - -+ 01 + Tp_10,) = Jy(ay,---,a,). The right absolute stable rank
asr(R) [KMV] is the smallest natural number m such that every vector of length m + 1
can be shortened. If no such number exists then by definition asr(R) = co. A vector
(a1,---,a,) € R" is called right unimodular, if J,(a;,---,a,) = R, i.e. the left ideal
of R generated by {ai,---,a,} is all of R. The right stable rank sr(R) is the smallest
natural number m such that every right unimodular vector of length m + 1 can be short-
ened. If no such number exists then by definition sr(R) = co. By [MR] 11.3.4, the right
stable rank and left stable rank of R are equal. Obviously sr(R) < asr(R).

Suppose R has a A-involution. In order to have the correct local notion of stable rank for
rings with A-involution, we need to use form parameters in defining the absolute notion.
Let min*(R) = {a—a\|a € R} and max*(R) = {a € R|a = —a\}. A A-form parameter
is an additive subgroup A of R such that

FP1. min*(R) € A € max*(R),
FP2. aAa € A for all a € R.

If « = (a;;) is an m x n matrix with coefficients in R, let @ = (aj,) denote the
n X m matrix such that aj, = @G»4. the matrix @ is called the conjugate trans-
pose of a. The operation of conjugate transpose defines a A-involution on the ring
M, (R) of all n x n matrices with coefficients in R. Let M,,(A) = {y € M, (R) | v =
—)\y, diagonal coefficients of y lie in A}. The right A-stable rank Asr(R) [BT] ist the
smallest natural number m such that sr(R) < m and such that given a right unimodu-
lar vector (ay,- - -, Gpmy1, b1, by1) € B2 there is a 2(m + 1) x 2(m + 1) matrix
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v € My(m+1) (A) with the property that

I 0
( Y 1 ) t(al" e ’am+1ablﬁ T 7bm+1) = t(all" o ’alm-l—hbllﬁ T 7b;n+1)
with (b7, -- -, 8, ) right unimodular. If no such number exists then by definition Asr(R) =
oo. It is not difficult to show that the right and left A-stable rank are equal. Obviously
sr(R) £ Asr(R) and by [BT] (3.4), Asr(R) < asr(R).
We define local versions of the notions of rank above as follows. If > € MS(R) or AMS(R)
and S € Y, let Jac(R[S!]) denote the Jacobson radical of R[S '] and let J(R, S) denote
its preimage in R. By MS1, R/J(R,S) = R[S™!]/Jac(R[S7!]). Let R(S) = R/J(R,S).
If R has a A-involution, let A(S) denote the image of max*(R) in R(S). A(S) is a A-form
parameter on R(S), but is not true in general that A(R) = max*(R(S)). This is the
reason why we had to introduce form parameters in defining stable rank for rings with
A-involution. Define the

right local absolute stable rank lasr(R) = _inf (sup(asr(R(S)))),
SEMS(R) gey

local stable rank [sr(R) = inf (sup(sr(R(S)))),
(R)= | Juf , (suplor(R(S))

and for a ring R with A-involution, define

local A- stable rank [\sr(R) = inf sup(A(S)sr(R(S ]
T(R) = B (o (A(S)s7 (R(S))

Since sr(R) and Asr(R) are left-right invariant and since multiplicative spectra are left-
right invariant, it follows that lsr(R) and Alsr(R) are left-right invariant. From remarks
in the penultimate paragraph, it is obvious that

(1.1) Isr(r) < lasr(R), and

(1.2) for a given Ad-multiplicative spectrum », sup (A(S)sr(R(S)) < sup (asr(R(S5)).
sey Sey

But it does not follow from (1.2) that [Asr(R) < lasr(R), because the set M.S(R)\AMS(R)
is apriori not empty.

Next we state upper bounds on the local ranks above.

4



Recall that a ring is called right Goldie, if it contains no infinite direct sum of nonzero
right ideals and if right annihilators satisfy the ascending chain condition. Clearly right
Noetherian rings are right Goldie. A 2-sided ideal ¢ € R is called a right Artin-Rees
ideal, if the graded ring R®q®q?P- - - is right graded Noetherian, i.e. every homogeneous
right ideal of R ® q ® q? @ --- is finitely generated or equivalently homogenous right
ideals satisfy the ascending chain condition. Obviously the condition forces R to be right
Noetherian. If T € R is a subset, let J(7T') denote the intersection of R and all maximal
right ideals of R which contain 7. A right ideal q in R is called a J-ideal if q = J(q).
A ring is called right J- Noetherian, if its right J-ideals satisfy the ascending chain
condition. Let JK(R) denote the J Krull-dimension of R of Gabriel and Rentschler
[GR]. Finally recall that a 2-sided ideal g £ R is called right primitive, if there is a right
faithful simple R/g-module. Every 2-sided maximal ideal is primitive and every primitive
ideal is prime. Let prtvspec(R) denote the set of all (right) primitive ideals in R.

THEOREM 1.3 For each m € prtvspec(R), let q(m) & m be a 2-sided ideal. Suppose that
each quotient R/q(m) is right J-Noetherian and right Goldie (e.g. each R/q(m) is right
Noetherian). Suppose that for each m, there is a right denominator set Sy, such that for
each s € Sy, s is a unit in R/q(m) and s+ q(m) € S, (e.g. Sm =14 q(m) and R is a
direct limit li_n>1 R; of subrings R; such that each ideal q(m) N R; is right Artin-Rees in R;).
Then Isr(R) < lasr(R) < sup JK(R/J(q(m))) + 1 and if R has a A-involution

méeprtvspec(R)

then [Asr(R) < sup JK(R/J(q(m))) + 1.

méeprtvspec(R)
COROLLARY 1.4 Suppose that for each m € prtvspec(R), R/m is right Artinian and
R is a direct limit lim R; of subrings R; such that each intersection m N R; is a right

H
Artin-Rees ideal in R; (e.g. R is commutative or module finite over its center). Then
Isr(R) = lasr(R) =1 and if R has a A-involution then [Asr(R) = 1.

We explain next the Hermitian form concepts required in formulating our results.

Let V be a right R-module and let A~ : V x V — R be a A-Hermitian on V. By def-
inition, h is a biadditive map such that for all v,w € V and a,b € R, h(va,wb) =
ah(v,w)b and h(v,w) = h(w,v)A. The pair (V,h) is called a A-Hermitian module.
If A € center (R), we get the more familiar identity h(v,w) = Ah(w,v). A morphism
f:(V,h) = (V', 1) of »-Hermitian modules is by definition an R-linear map f:V — V'
which preserves the A\-Hermitian forms. The automorphism group of (V, h) is denoted by
GH(V,h).

To economize notation, we shall frequently abbreviate

h(u,v) by (u,v).

5



An element v € V is called isotropic if (v,v) = 0. An ordered pair e, e_ of elements of
V is called a metabolic pair if e_ is isotropic and (e,e_) = A. Thus (e_,e) = 1. An
ordered pair e, e_ of elements of V is called a hyperbolic pair if it is metabolic and e
is isotropic. (V,h) is called nonsingular, if the map h: V — Homu(V, R),v — h(v,_),
is bijective. It is easy to check that a metabolic pair e, e_ generates a free submodule
eR @ e_R of rank 2 such that (eR @ e R, hlerge_r) is nonsingular. If e, e is metabolic
(resp. hyperbolic) pair then (eR @ e R, h|crgpe_r) is called metabolic plane (resp.
hyperbolic plane). Since metabolic planes are nonsingular, it follows easily that for any
metabolic pair e, e_, V decomposes as an orthogonal sum (eR®e_R) L (eR®e_R)* where
(eRde_R)r ={v € V|(v,e) = (v,e_) = 0}. Metabolic pairs e,e_ and f, f_ are called
complementary if (e, f) = (e ,f) = (e, f) = (e_,f_) = 0. The hyperbolic Witt
index ind(V, h) is the largest nonnegative integer or infinity such that for any nonnegative
integer n < ind(V, h),V contains n mutually complementary hyperbolic pairs. From the
discussion above, it follows that n < ind(V,h) < V has an orthogonal decomposition
V=H L1l ---1 H, L V' where each H; (1 £ i £ n) is a hyperbolic plane. (The
Witt index i of (V,h) is the largest nonnegative integer or infinity such that for any
nonnegative integer n < i,V contains n mutually complementary metabolic pairs).

An element v € V is called even if (v,v) = a + aX for some ¢ € A. It is obvious that
the set of all even elements in V' forms an R-submodule. It will be denoted by Veyen.
If v is isotropic then clearly v € Veyen. (V,h) is called even, if V = Ven. An ordered
pair u,v € V is called a transvection pair if u is isotropic, v is even, and (u,v) = 0.
A transvection pair u,v and an element s € A such that s + 5\ = (v,v) defines an
automorphism 7(u, v, s) of (V,h) called an Eichler transvection as follows:

7(u,v, 8)(x) = x + v(u, x) — ul(v, ) — uAs(u, ).

Let GH(V, H) denote the automorphism group of (V;, h). Let T'(V, h) denote the subgroup
of GH(V, h) generated by all transvections. If 7(u, v, s) is a transvection and 0 € GH(V, h)
then ou,ov is a transvection pair such that s + sA = (ow,ov). Thus 7(ou,ov,s) is
a transvection and one checks straightforward that o7(u,v,s)oc™" = 7(ou,ov,s). thus
T(V,h) is a normal subgroup of GH(V, h).

For a hyperbolic pair e,e_ € V, let T ._y(V, h) denote the subgroup of T'(V, h) generated
by all transvections 7(e,v,s) and 7(e_, w,t).

THEOREM 1.5 Suppose R is a ring with A-involution, of local A-stable rank m. Let (V, h)
be a \-Hermitian module and let e, e_ and f, f_ be hyperbolic pairs. If ind(V, h) = m+2
then T(e,e_>(V, h) = T(f,f_>(V, h)

COROLLARY 1.6 Under the conditions of (1.5), Tic . y(V; k) is normal in GH(V, h).
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PROOF Let 7(e,v,s) and 7(e_,w,t) be typical generators of Ti._y(V,h) and let o €
GH(V,h). Then oe,oe_ is a hyperbolic pair and the elements o7 (e, v, s)o~! = (o€, ov, 8)
and o7(e_,w,t)o™! = 7(0e_, 0w, t) € Tigepe_y(V, h). But by Theorem 1.5, Tige pe_y(V, h)
= T(e,e—) (V: h’)D

Suppose that V' has a basis ey,--- ,e,,e_1, -+, e_, consisting of mutually complementary
metabolic pairs e;,e_;. Let 1 < r < n and suppose that (e;,e;) = 0 for all ¢ > r.
thus e;, e_; is a hyperbolic pair for ¢ > r. Thus ind(V,h) > n —r. Let a; = (e;, e_;).
Obviously a; = 0 for 7 > r. Using the basis above for V', we can associate to each element
o € GH(V,h), a 2n x 2n invertible matrix, and identify GH(V, h) with the subgroup of
the general linear group GLa,(R), consisting precisely of these matrices. This is called
the general Hermitian group [B] p. 40 - 42 and is denoted by GHa, (R, a1, -+ ,a,). We
allow » = 0 and interpret this to mean that a; = --- = a, = 0. The Hermitian module
(V, h) with the basis e1, - ,en,€_1, -+ ,€_, is by definition the underlying module [B] §1
C and (2.10) - (2.13) of GHy,(R, a1, - ,a,). It will be denoted by My, (R, a1, - ,a,).
The elementary subgroup of GHs, (R, a1, - ,a,) is denoted by EH,, (R, aq,--- ,a,) and
is called the Hermitian elementary group [T] §4 and §8. Its definition is recalled in
§2.

THEOREM 1.7 If < i < n then Tie, o) (Mo (R, a1, -+ ,0,)) = EHon(R, a1, - -, ay).
We deduce from (1.6) and (1.7) the following normality result.

THEOREM 1.8 If R is a ring with A-involution, of local A-stable rank m, then FH,,
(R,aq,--- ,ay) is normal in GHy, (R, a1, - ,a,) whenever n —r > m + 2.

PRrROOF By Theorem 1.7, EHy, (R, a1, -+ ,0;) = Tie; ey (Mo (R, a1,--- ,a,)). Since n —
r > sup(m +1,3),ind(My, (R, a1, -- ,a,)) > m+ 2. Thus by Corollary 1.6, Tj, . ,,(My,
(R,a1,---,a,;)) is normal in GH My, (R, a1, - ,a,)) = GHap (R, a1, -+ ,a,).0

We explain now the module theoretic concepts required to state the linear analogs of the
results above.

Let V be a right R-module. An element v € V is called unimodular, if there is an
element f € Hompg(V, R) such that f(v) = 1. Clearly v is unimodular < the submodule
vR of V is a free direct summand isomorphic to R. The unimodular index ind(V)
of V' is the largest nonnegative integer n such that V contains a free direct summand
isomorphic to R"™. If no such integer exists then by definition ind(V) = oo. (It is possible
that ind(R) = occ.)

Let R denote the opposite ring of R; by definition, the additive group of R is
that of R and multiplication is defined by a o b = ba. Let V be a right R-module.
Then V ®z Hompg(V, R) is a right R ®z R°P-module such that (v ® f)(a ® b) = va ®

7



bf and the pairing V x Hom,(V,R) — R, (v, f) — f(v), defines an R ®z R°-linear
map V ®z Homg(V,R) — R. A pair (v, f) € V x Hom,(V,R) is called isotropic if
f(v) = 0. Pairs (v, f) and (v', f') are called complementary, if f(v') = f'(v) = 0.
An ordered pair ((v, f), (v, f')) of complementary pairs such that (v, f) is isotropic is
called a transvection pair. A transvection pair (u, f), (v,g) defines an automorphism
7((u, f), (v, g)) of V called a transvection as follows:

7((w, f), (v,9))(@) = = + v f(z) — ug(z) — ug(v)f ().

Let GL(V') denote the automorphism group of V. Let T'(V') denote the subgroup of GL(V)
generated by all transvections. If 7((u, f), (v, g)) is a transvection and o € GL(V') then
((ou,0*f), (ov,0*g)) is a transvection pair where o* denotes the dual o* : Homg(V, R) —
Homg(V,R), h +— ho, of 0. Thus 7((ou,c*f), (ocv,0*g)) is a transvection and one checks
straightforward that o7((u, f), (v,9))o~" = 7((ou,o*f), (ov,0*g)). Thus T(V) is a nor-
mal subgroup of GL(V'). For a unimodular element e € V', let T,(V') denote the subgroup
of T(V') generated by all transvections of the form 7((e, f), (v, g)).

THEOREM 1.9 Suppose R has local stable rank m. Let V' be a right R-module and let e
and ¢’ be unimodular elements in V. If ind(V) 2 m + 2 then T,(V) = To (V).

COROLLARY 1.10 Under the conditions of (1.9), T.(V) is normal in GL(V).
PROOF Same as that of (1.6) O

Suppose that V has a basis ej,---,e,. Thus ind(V) > n. Using the basis above of
V', we can identify GL(V') with the general linear group GL,(R) of all invertible n x n
matrices. Let E,(R) denote the elementary subgroup of GL, (R). Let F,(R) denote the
free R-module with basis e, - -- , e,.

THEOREM 1.11 T, .(F,(R)) = E,(R) for any 1 <4 < n.
We deduce from (1.10) and (1.11) the following result.

THEOREM 1.12 If R is a ring of local stable rank m then E,(R) is normal in GL,(R)
whenever n = m + 2.

PROOF Same as that of 1.8. Of course, the hyperbolic Witt index is replaced by the
unimodular index. [J

The theorem above extends Suslin’s pioneering result [Su] that E,(R) is normal in GL, (R)
when R is commutative and n > 3 and Tulenbaev’s extension [Tul] of this result to rings
that are module finite over their center.



The rest of the paper is organized as follows. §2 begins by recalling basic identities
for Eichler transvections. Then the definition of the Hermitian elementary group EH,,
(A,aq,--- ,a,) is given. It is generated by Hermitian elementary matrices and their defi-
nition is formulated slightly differently than in [T] §8 because we are not assuming that A
is central. It is shown how to pass back and forth between Hermitian elementary matrices
and Fichler transvections. Theorem 1.7 is proved. §3 proves the main result Theorem 1.5.
84 deduces our linear results, namely Theorem 1.9 and Theorem 1.11, as a special case
of their Hermitian counterparts, namely Theorem 1.9 and Theorem 1.11, respectively.
85 establishes the upper bounds for lsr, lasr, and [Asr announced in Theorem 1.3 and
Corollary 1.4.

2 Eichler Transvections and Hermitian elementary
matrices

The goal of the section is to prove Theorem 1.7. This is done following Lemma 2.9. To
prepare for the proof, we write each transvection of the form 7(ey;,v,s) as a product
of Hermitian elementary matrices and conversely, we write each Hermitian elementary
matrix as a product of transvections of this kind. This done, the proof of Theorem 1.7 is
not difficult. The section closes by studying certain quadratic subgroups of the Hermitian
elementary group and how they act on unimodular vectors. This result will be applied in
the next section.

Let R be an associative ring with identity element 1 and A-involution a +— a. Let (V, h)
be a A-Hermitian module.

LEMMA 2.1 Transvections on (V, h) satisfy the following identities.

T1. o7(u,v,s)0 ! = 7(ou,0v,5), Vo € GH(V,h).
T2. 7(ua,v,s) = 7(u,va,asa), ¥V a € R.

T3.

\]

u, v, $)T(u, w,t) = 7(u,v +w, s+t + (v,w)).

T5. 7

7(

(

T4. 7(u+u',v,5) = 7(u,v,s)7(, v + us), s), providing (u,u') = (u,v) = («/,v) = 0.

(u,v,0) = 7(vA, —u,0).
7(

T6. 7(ua,u,0) = 7(u, 0, \aX — A\a).



The identities above are verified by straightforward computation.

LEMMA 2.2 Let ej;,e_; and ey, e_o be complementary hyperbolic pairs in V. Then
T(e1,e_1)(V7 h) = T(ez,e_z)(‘/: h)

PROOF Let 7(e1,v,s) and 7(e_y, w,t) be typical generators of Ti, . ,)(V;h). Let 0 =
T(e—2,e_1(—=A),0)7(e2,e_1(—1),0). Then o(e;) = ez and by (2.1) T1, o7(er,v,s)0 " =
7(e2,00,). Thus 7(e1,v,s) = 07 '7(e2,00,5)0 € Tie,e_y(V, h). Similarly 7(e_1,w,t) €
T(€2,€—2)(V’ h) Thus T(el,e—l)(vﬂ h’) g T(e2,e_2)(V, h’)

Interchanging in the argument above e; with e; and e ; with e_5, we obtain the reverse
inclusion. Thus Tie, ¢ y(V, h) = Tiey ooy (V, h).0

If o denotes a k x ¢ matrix («;;) whose (i, 7)’th coefficient ;; € A, let & denote the £ x &
matrix (of;) where of; = @;;. a is called the conjugate transpose of a.

Suppose for the rest of the section that (V, h) = My, (R, a1, - ,a,). Recall that My, (R, a1,

.-+, a,) is equipped with a basis ey, --- ,e,,e 1,---,e_, such that the pairs e;,e ; (1 <
i < n) are mutually complementary metabolic pairs with the property that (e; e;) =
a; (1=i=r)and (e,e)=0 (r<i<n). Let
a;
A; = r xr diagonal matrix ,
Gy
(" )
A = n xn diagonal matrix ar 0 ,
\ 0/
I = an identity matrix .
Let ey =€ (1 £4 =< n). Then ey, - ,eq, is the basis above of My, (R, a1, - ,a,).

In this basis, the matrix of h is by definition the 2n x 2n matrix



and

Y AN
GHmw,mv“ﬂ”:{UEGh“m‘“<I 0)”:(1 0>}'

A typical element of this group is denoted by a 2n X 2n matrix

(27).

where «, 3, and § are n x n block matrices.

Let miny(R) = {a + a\|a € R}. Let

C={z,...,2,) € "(R") | Zi‘iaixi € miny(R)}.
i=1
In order to deal effectively with technical difficulties caused by the elements aq,...,
a,, we shall partition a typical matrix
a p
v o

Q11 (2 511 ﬁ12
Qg1 (22 521 ﬁ22

2.3
(2:3) Yii Yz Ou 012
Vo1 Yoz 021 O

of GHon(R, ay,...,a,) into the form

where ay1, f11, 711, 011 are r Xr matrices, aya, Bi2, Y12, 012 are r X (n—r) matrices, gy, a1, Vo1,
dg1 are (n — ) X r matrices, and g, B2, Y22, 022 are (n —r) X (n — r) matrices. By mod-
ifying routinely the proof of [T] (3.4) which is carried out under the assumption that
A € center(R), we obtain

(2.4)  the columns of ay; — I, a1, B11, Bz, Bi1, Bo1, 011 — I and &1 belong to C.

We define now Hermitian elementary matrices as in [T] §8 but with small adjustments to
account for the fact that A is not necessarily central in R. Let

He;j(a) (@€ Rand r <i<n,1<j<ni#j)
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denote the 2n x 2n matrix with 1 along the diagonal, @ in the (i, j)’th position, —AaX in
the (n + j,n + i)’th position, and 0 elsewhere. Let

rij(a) (a€ Rand r < i,j <mn)

denote the 2n x 2n matrix with 1 along the diagonal, a in the (i, n 4 j)’th position, —aA
in the (j,n + 4)’th position, and 0 elsewhere. If i = j, this forces of course that a = —a.
Let

lij(a) (ae Rand 1 <14,j <n)

denote the 2n x 2n matrix with 1 along the diagonal, a in the (n + 4, j)’th position, —_S\C_L
in the (n + j,4)’th position, and 0 elsewhere. If i = j, this forces of course that a = —\a.

For ¢ =%z, -+ ,2,) € C, let

(;ER such that ¢y + {pA = ) 70,

=1

The element (f is not in general unique. Define

I 19 0 0

0 I 0 0 .
Hm;(() = 0 —XAja i 0 ((eCandr<i<n)

0 Y22 —AdppA 1

to be the 2n x 2n matrix such that aio is the r X (n — r) matrix with ¢ as its (i — r)’th
column and all other column’s zero, and 7y, is the (n — ) x (n — r) matrix with (s in its
(1 — r,i — r)’th position and 0 elsewhere. Define

10 0 py
| 0T =fiA P .
0 0 0 1

to be the 2n x 2n matrix such that (i, is the 7 x (n — r) matrix with ¢ as its ( — r)’th
column and all other columns 0, and S, is the (n — ) x (n — r) matrix with (zA in its
(1 — r,i — r)’th position and 0 elsewhere.

Each of the matrices above is called a Hermitian elementary matrix for the elements
A1y ey Qp.

12



One can show by direct computation as in [T] §4 that each Hermitian elementary matrix
is in GHy, (R, a1, ,ay).

Define the Hermitian elementary group
EHQH(R, Ay, .- ,CLT)
of the elements ay,...,a, to be the subgroup of GHy,(R, ai,...,a,) generated by all

Hermitian elementary matrices.

If A € center(R), the definitions above of Hermitian elementary matrix and Hermitian
elementary group agree with those in [T] §4 and §8.

LEMMA 2.5 Let r < i < n. Let 0 € GLy,(R) be a matrix whose diagonal coefficients
are 1 and whose only other nonzero coefficients are restricted to the i’th row and n + i’th

column. Let (z1,- - ,T9,) and *(yy, - - - , y2,) denote respectively the 7’th row and n +7’th
column of o. (Thus z; = y,4; = 1 and x,; = y;.) Then 0 € GHon(R, ai, -+ ,a,) & 0 =
[[ Heij(z:) [T ruly) | r(() where ¢ = ‘(y1,---,y,) and ¢ =
i—1 i=r+1
Yot I
(xn+i — Z?Zl :ijj) A. In particular 0 € GHy, (R, a4, ,a,) < 0 € EHy, (R, a4,--- ,a,).
i

PROOF Reduce to the case i = n as follows. Suppose i # n. Set 7 = He;, (1) Hepi(—1)Hegy
(1). By definition, 7 € EHo, (R, a1, -+ ,a,). Moreover mor ! satisfies the hypotheses of
the lemma for i = n, and mon~! satisfies the conclusion of the lemma < o does. This
reduces the proof to the case i = n.

Set p = (nl;[iH%(—ﬂ?j)) 0( ﬁ Tjn(—yj)) =

J Jj=r+l

13



!/ !/
L Zngr o0 Tngr Tpypyy ot Ty g 2

1

K : yén—l

where 7}, ; = Tp YA (P <J<n), Y = Ynij + AN (1< 7 <n), and z = 79, —
n

-1
S z;y,. Clearly o € GHop(R, a1, ,0,) < p € GHyn(R, a1, ,a,) @/0( 1;1 )E)I ) b=
=1

A A : _ ,
( I 0 ) & (using (2.4), see [T] p. 217 - 218) @iy = —y;A (1 S j = 71), 274, =
0 (7’ < .7 < TL), yqlz-i—j = _S‘&jyj (1 é .7 é 7’), y;;,—}-j =0 (7’ < .7 < TL), t Y1y ayr) €

C, and z + Z\ = ) yja;y;. Thus 0 € GHy(R,01,---,a,) & 0
j=1

I
VR
<. 3
=l
=

&
—~
8
S,
S~

7n(C) ( nﬁl Tjn(yj)) = C}f{iHen,-(xj)> (nﬁl Tjn@j)) ra(C) where ¢ = "(y1,---,y,)

j=r+1 j=r+1
and (y = zA.0J
COROLLARY 2.6 Let r < i < n. Let 7(e;,v,s) be a transvection on My, (R, a1, - , a,).
Suppose under the basis of My, (R, a1, - - - ,a,) that v = *(vy,- -+ ,v9,). Then v, ; = 0 and
(e, v,8) = (H Heij(—Avja; — ;\@nﬂ')) [T Heij(=Atnyy) IT rji(v;A) | 7:(C)
bre eie

where ¢ = (v, .-+ ,v,A) and (4 =
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(=ATA + vid — AsA) — Z( Mja;vjN) — Z(—Xﬁ‘)nﬂ-vj/\) A.

Jj=1 J
J

PROOF The matrix of 7(e;,v,s) has 1 along the diagonal and all other nonzero coef-
ficients are restricted to the i’th row and (n + 7)’th column. Since (e;,v) = 0, it fol-
lows that v,y; = 0 and an easy computation shows that the i'th row of 7(e;,v,s) is
(— AOLA1 — ADpy1, -+ 5 —AVply — Mgy —ADpgrils * * 5 — Ao, —ATLA, = -+ — AT A) + (V;A —
AT — AsA)pyi + (1 )Z where (a); (e € R,1 = j § 2n) denotes the row vector whose
j’th coefficient is @ and all other coefficients are 0; the (n + 7)’th column of 7(e;, v, s) is
Lo, -+, vapA) (=M A — AsA); +° (1)n44. The conclusion of the corollary follows now
from Lemma 2.5. [J

LEMMA 2.7 Let r < i < n. Let 0 € GLy,(R) be a matrix whose diagonal coefficients are
1 and whose only other nonzero coefficients are restricted to the (n + )’th row and i’th
column. Let (z1,---,9,) and *(y1,--- ,%2,) denote respectively the (n + 7)’th row and
i’th column of 0. (Thus z,4; =y; =1 and x; = yn1;.) Then 0 € GHop(R, a1, ,0,) &

o= H1 Cij(z5) I1 1H€ji(—fn+j) Hm;(¢) where ¢ = *(y1,-++ ,yr) and (5 =
= _]:7‘—|—
J#Fi J#i

(yn—l—z E Z5Y; )
Héz

PROOF Reduce as in the proof of Lemma 2.5 to the case i = n.

Set p = (nl:li gnj(_xj)) ( 1:[+1 HG]n(£n+J)) =
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yén—l
\ Zz | Zog1 ccc Tpar Occr 0 1)

- n—1
where ¥ = y;+Tny; (1 <j<n), Y = Ynyj+AT; (1S5 <n),and 2z = yo— ) 759,
7j=1

Clearly 0 € GHan(R,a1, -+ ,0;) & p € GHy(R, 01,777 ,0,) & '5(1;1 )E)I>’0 -

( z}l )E)I ) < (using (2.4), see [T], p. 217 — 218) y} =0 (r<j<n), y’nﬂ' =0 (r<

j < n)a yvlz-i—j = _a’jyj (1 § ] § T)a t(yla"' :yr) € Cv and 5‘2)‘ + ZA = Zgjajyj'
j=1

n—1 n—1
Thus 0 € GHop(R, a1, ,0,) & 0 = | [] Enj(xj)> Hm,(¢) ( I Hejn(—a_;n+j)> =
j=1

j=r+1

(H %(w») ( it Hejn(—xn+j)) Hm, (€) where ¢ = (y1, -+ ,y,) and {; = AzA.0

j=r+1

COROLLARY 2.8 Let 1 £ 4 < n. Let 7(e_;, v, s) be a transvection on My, (R, a1, - , a,).
Suppose under the basis of My, (R, a1, - ,a,) that v = *(v1,--- ,v2,). Then v; = 0 and

T(e—i,v,5,) = (H fz’j(—j\@jaj—hnﬂ)) T G(=A0asy) | 11T Heji(vg) Hmi(C)
a ik o
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T

where ¢ = ‘(vy, -+ ,v,) and (; = A | (Vngi — AS) — Y0 (=ATja;v;) — D (= ATnrjvi) | A
. =
it

J=1

PROOF The matrix of 7(e_;, v, s) has 1 along the diagonal and all other nonzero coeffi-
cients are restricted to the (n+i)’th row and i’th column. Since (e;,v) = 0, it follows that
v; = 0 and an easy computation shows that the (n +i)’th row of 7(e_;, v, s) is (—=Av1a1 —

)\En—kla T _)"Drar - )\'Dn—kra _)\En—l—r—kla ) _/\7_]271; _)"Ul)‘a R _)‘En)\) + (Un—|—i - )\S)z +
(1)n+4i where (a); (e € R,1 < j = n) denotes the row vector whose j’th coefficient
is a and all other coefficients are 0; the i’th column of 7(e_;,v,s)is *(vy, -+, va,)+

!(—=A8)ppi+ “(1);. The conclusion of the corollary follows now from Lemma 2.7. O]

The next lemma expresses each Hermitian elementary matrix as a product of at most 2
transvections. Its proof is a straightforward computation.

LEMMA 2.9 The following identities hold.

1) Hej(a) = 7(e;,ej,a,0).
€_ zaC )‘Cf)
ei,e_;a,0), for i # j.

(
(
(e:,
(ei,e *J’_ a)7(ei,e—;,0), for j #i.
(€:,
(
(e

[\
v
B
—_
N
N
|
9

Tij 0,) = T

ot

ei, C', =N’ A), where ¢ ='((y, -+, ¢) and ¢ =GN, -+, GA)-
e_i,e_;a,0), for i # j.

’Lae—]a)‘a’) (6—1"6—]'(_1)50)7 fOI‘j 7é i

N
\\'

AN N SN AN SN S/
(=2} o~
~— N N N N N
=3
N
S
N~
S
~—
\]

(e

gij (a) = T
(@) =

PROOF OF THEOREM 1.7 Let 7 < i < n. By (2.6) and (2.8), Ti¢; c_;y(Man (R, a1, - - ,a,)) C
EHy,(R,ay,- - ,a,). To prove the converse, we note that by (2.2), T( esei)Map (R a1, -+ -,
ar)) = Tiepe )Moy (R, a1,--- ,a,)) for any k such that r < £ < n. Each Hermitian el-
ementary matrix of the kind Heg,(a), Hme(C), rem(a), ree(a), and 7,(¢) has the property
that 7 < £ < n and by (2.9) (1) - (5), each of these matrices lies in T, . ,)(My, (R, aq,- - -,
a,)). The remaining Hermitian elementary matrices are of the kind Kkm(a). By (2.9) (7) -
(8), Hermitian elementary matrices of this kind lie in T, ¢ ,y(Mo, (R, a1, -+, a,)) and so
we are okay if r < k < n. If r < m < n then we are also okay, because Ekm(a) = Emk( a).
Suppose 1 < k,m < r. If k # m then ly,(a) = Hepp(1)lpm(a) Henp(1) YUpm(a) ™t €
Tienen)Maon (R, a1, -+ - ,a;)). If k = m then fy(a) = Heng(1)lpn(a) Heng (1) pn(a)™! €
T(en,e,n)(M2n (R, ap,--- ,ar)).D
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Ifa,=ay=---=a, =0, we set

GHy,(R,0) = GHs,(R,ay,--- ,a,), and
EHQn(R, 0) = EHQn(R, Ap,--- ,CLT).

It is obvious that the definition of GHs, (R, 0) is independent of r and the same is true of
EH,,(R,0), thanks to the following lemma.

LEMMA 2.10 Define the 2n x 2n matrices

Hejj(a) (a€ Rand 1 =4,j S n,i# j)
rij(a) (a€ Rand 1<14,j < n)
Eij(a) (aERand1§i,j§n)

as after (2.4), except replace r by 1. We require that if i = j then r;;(a) has the property
that @ = —a\ and /;;(a) the property that « = —Aa. Then each of the matrices above is
in FHy,(R,0) and EH,,(R,0) is generated by these matrices.

PROOF Since A; = 0, it is easy to see that each Hermitian elementary matrix defined after
(2.4) is either one of the matrices in (2.10) or a product of such matrices. Conversely, since
A; =0and C = YR"), it is easy to check that each matrix in (2.10) is some Hermitian
elementary matrix. [

We describe next certain subgroups of GHy,(R,0) and EH,,(R,0), which arise in the
theory of quadratic forms. Let A be a A-form parameter on R, as defined in §1. Let
M, (A) denote the additive subgroup of the ring M, (R) of n x n matrices with coefficients
in R, consisting of all 3 such that 8 = —B\ and the diagonal coefficients of 3 lie in A.
Define the general quadratic group [B] §3

Gan(R,A):{(‘;‘ §>€GL2n(R)| (3 ?)(g A01>(: §)=
(? )\OI),’_YCMandgﬁ M, (A }
If A = max*(R) then it follows from the equation ( ) ( 0 AI) ( : ﬁ) _

( ? )\OI ) that ¥ and 68 € M, (max*(R)). Thus
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GQon(R, max (R)) = GHan(R,0). (2.11)

Since each A-form parameter A € max*(R), it is obvious that each group GQo, (R, A) €
GQon (R, max*(R)). Define the 2n x 2n matrices

Heij(a) (a€ Rand 14,5 < n,i#j) (2.12)
rij(a) (a€ Rand 1<14,j < n)
lij(a) (e€ Rand 1=<14,j <n)

as in Lemma 2.10, except if ¢ = j, we insist that r;;(a) has the property that a € A and
?;j(a) the property that a € A. These matrices are called A-quadratic elementary
matrices. One checks easily that they are members of GQa,(R,A). They generate by
definition the A- quadratic elementary group EQa,(R,A) [B] §3. From Lemma 2.10
and the definition of EQy, (R, max*(R)), it follows that

EQon(R, max'(R)) = EHy,(R,0). (2.13)

Obviously each group EQq,(R,A) € EQo, (R, max*(R)), because each A-form parameter
A € max*(R).

For technical reasons, we give names to several kinds of A-quadratic elementary matrices.
Let m be a natural number such that 1 £ m < n — 2. We define 5 types of matrices as
follows.

(2.14) Typel. Hep, (n—m—-1Zi<n)
Type 2. 4y (n—m-1Zi<n)
Type 3. gij (1 § 1,7 < TL)
Typed. Hej (1Si<n—m—-2,n—m—2<j<n)
Type 5. Hejj (n—m—2Z14,j <n,i#j).

Let
EQ%;”)(R, A) = ( type k A-quadratic elementary matrices | 1 < k < 5).

19



PROPOSITION 2.15 Let 1 < m < n—2. Let e € EQm (R,A),v = (by, - ,by,c1,

cn)ER",andeU—(b’l,---,b;“c’1 ). by =bpy = =b, = ¢, =0
then b,_,,_, =b,_,, = = b, = ¢}, = 0. Furthermore if v is right unimodular and
m > Asr(R) then there is an € such that 1 =C g =---=c, =1

PROOF The first assertion is trivial to check. We prove the second assertion. If k£ is a natu-
ral number and €V, @ ... k) ¢ EQ%) (R, ), let e®) b= .. Dy = (b(lc c 0P cgk)

&F). Suppose m > Asr(R) and v is unimodular. By [K] VI (1 5.1), there is a product

¢ of type 1 matrices such that (bgl), e ,bg), cgl), oM ) is unimodular. Again by [K]

) ¥n—1

VI (1.5.1), there is a product €?) of type 2 matrices such that (bg2 e ,bgll, cg ), - ,c,(zzll)
is unimodular. By [BT] (3.3), there is a product €3 of type 3 matrices such that

(c (3), - ,07(13)1) is unimodular. By [K] VI (1.5.1), there is a product €® of type 4 matrices

such that ( §n) s ,0514)1) is unimodular. By [K] VI (1.5.2), there is a product €® of
type 5 matrices such that ( £n) n—1,""" ,651521) =(1,---,1).0

3 Normality of elementary subgroups of general Her-
mitian groups

The goal of this section is to prove Theorem 1.5. This is done at the end of the section.

Let R be an associative ring with identity element and A-involution a — a. Let (V) h)
be a A-Hermitian module. We fix the following notation throughout the section. Let
n be a natural number and let e;,e_1,---,e,,e_, be a set of mutually complemen-
tary hyperbolic pairs e;, e ; in (V,h). The submodule, say X, of V' generated by these
pairs is nonsingular and V splits as an orthogonal sum X | X1 where X+ = {v €
V| h(v,z) = 0V 2 € X}. The module X is free on the elements of the hyper-

bolic pairs above and we let X have the ordered basis e, ---,e,,e_1, -+ ,e_,. Let
Hy, (R) = (X, h|x) with the choice of basis above. Thus Hy,(R) is the \-Hermitian
module My, (R, ay,--- ,a,) defined in §2, with a; = as = --- = a, = 0 and with basis as

in §2. Let V' = X*. Thus V = Hy,(R) L V'. we identify GH (Hy,(R)) with its image
in GH(V, h) under the map o — o L 1y.. By definition GHs,(R,0) = GH (Hs, (R)), by
(2.11) GQ2, (R, max*(R)) = GHy,(R,0), and by (2.13) EQ,, (R, max*(R)) = EHa,(R,0).
For any A-form parameter A, we have a sequence of inclusions EQy,(R,A) € EQq,(R
max*(R)) = EH,,(R,0) € GH(V,h) which allow us to view EQy,(R,A) as a subgroup
GH(V,h). Moreover from Theorem 1.7 applied to Hy, (R), it follows that EQa, (R, A)
Tiese_y(V,H) forany i (1 <4< mn). If v € V then we can write uniquely
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n
v = g eiv; + v

i=—n

n
where v' € V' and we make this a notational convention. In vector notation, Y. e;v;

i=—n
becomes identified with the vector *(vy, -+ ,v,,v 1, - ,v_,) because of our choice of
orderd basis. Each element € € FQy, (R, A) acts on *(vy, -+ ,vp,v_1,-*+ ,v_y), but leaves
v fixed.

LEMMA 3.1 Let (7(u,v,a) be a transvection on (V, h).

(3.1.1) If for some ¢ (1 £ 4 < n),u = exu; or v = exw; and a = 0 then 7(u,v,a) €
T<elae—1)(‘/v’ h)'

If for some i (1 <4< n),u; =u_; =v; =v_; =0 then 7(u,v,a) € Tie, .\ (V, h).
3
3.1.4

3.1.2
If for some 7 (1 =4 = n),u; =v; =0 then 7(u,v,a) € T, o,y (V, h).

(3.1.2)

(3.1.3) If for some ¢ (1 =¢=n),u; =u_; =0 then 7(u,v,a) € Tie, c_,)(V, ).

(3.1.4)

(3.1.5) Suppose n > 3. Suppose for some i # j (1 < 4,5 S n),v_; =u; = u_; = 0. Let
s € R such that @_;u;s € 4_;jR. Then 7(us,v,a) € Tie, . ,)(V, h).

PROOF (3.1.1) Suppose u = e;u;. By (2.1) T2, 7(e;us, v, a) = 7(e;, vy, Usau;) € (by (2.2))

Tier,e_1)(V, h). Suppose v = e;v; and a = 0. By (2.1) T5 and T2, 7(u, e;v;,0) = 7(e;, —uv;,0) €
(by (2.2)) Tie, -y (V, h). The remaining cases are proved similarly.

(3.1.2) The identity (2.1) T2 suggests looking for an element o € T, ._,y(V, h) such that
ou =wu and oge_; = v + ¢;b 4+ e_;c for suitable b,c € R. This done, we could try to relate
7(u,v,a) to 7(v + €;b + e_;c,u,0) = o7(e_;,u,0)o" and finish the proof with (2.2).

By (2.1) T1,7(e;,v,a)7(e_s, —u,0)7(e;,v,a) ™t = 7(7(es, v, a)e_i, T(es,v,a)(—uN),0) =
T(e_i+v—e;Aa, —ul,0) = (by (2.1) T5 and T2) 7(u,e_;j+v—e;Aa,0) = (by (2.1) T3)
7(u, e_;, 0)7(u, v, a)7(u, —e;Aa,0) = (by (2.1) T 5 and T 2) 7(e_;, —ul, 0)7(u, v, a)
7(ei, uraX,0). Thus 7(u, v, a) = [T(e—i, —uX,0)7L, 7(es, v, a)]7(e—i, uraX,0) ™t € (by (2.2))
T(el,e_1>(v, h/)

(3.1.3) Let v = e;v; + e_;v_; + w where w is orthogonal to e; and e_;. By (2.1) T3,
T(u,v,a) = 7(u,w,a — Gv_;)7(u, €;v;,0)7(u, e_;v_;,0). By (3.1.2), 7(u,w,a — G;v_;) €
Tieye_1y(V,h) and by (3.1.1), 7(u, €;v;,0) and 7(u, e_;v_;,0) € Tie, ey (V, h).
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(3.1.4) Let u = e_ju_; +w where w is orthogonal to e; and e_;. By (2.1) T4, 7(u,v,a) =
T(e_iu_s,v,a)T(w,v + e_ju_AaA,a). By (3.1.1), 7(e_ju_s,v,a) € Tiec_y(V;h) and by
(3.1.3), T(w,v + e_ju_iAaA, a) € Tie, ey (V, h).

(3.1.5) Let ¢ € R such that @_;u;s = @_jc. Then u is orthogonal to e;u;s — ejc. Thus
us is orthogonal to e;u;s — ejc. Define w by the equation us = w + (e;u;s — ejc). Since
us and e;u;s — ejc are totally isotropic and e;u;s — ejc is orthogonal to us, it follows
that w is totally isotropic and orthogonal to e;u;s — e;jc. Thus by (2.1) T4, 7(us,v,a) =
T(w, v, a)T(euis — ejc,v + wAad, a). By (3.1.4), 7(w,v,a) € Tie, e ,)(V,h) and because
n > 3, it follows from (3.1.3) that 7(e;u;s — ejc, v +wha, a) € Tie, (V. h).0

LEMMA 3.2 Let 7(u, v+w, a) be a transvection such that v and w are even and orthogonal
to u. Let b,c € R such that b+ b\ = v and ¢+ ¢\ = w. Then the element d = a — (b +
¢+ (v, w)) has the property that d = —d\ and 7(u,v + w, a) = 7(u, v, b)7(u,w, c + d).

PROOF Since a+aX = (v+w,v+w) = (b+c+ (v,w)) + (b+ c+ (v,w))A, it follows that

d+d)\ = 0. Thus d = —d\. The second assertion in the lemma is a direct consequence of
(2.1) T3. O

The next lemma is an easy exercise.

LeEMMA 3.3 Let S be a right denominator set in R. Let x1,--- , 2k, Y1, , Y, u, v € R
such that v and v are units in R[S™']. Then there is an element s € S and elements
bi,---,bg,c1,--+ ,¢0 € Rsuch that z;s =ub;, (1< i<k)andyjs=ve; (1=j7=4).

LEMMA 3.4 Suppose m = [Asr(R) and n > m+2. If 7(u, v, a) is a transvection on (V, h)
such that u can be completed to a hyperbolic pair v, and v , = v, = v, 1 = --- =
Un—m—1 = 0 then 7(u,v,a) € T, e y(V; h).

Proor Call an element w € V good, ifw_, =w, =w, 1 =---=w, 1 =0. Thus v
is good. Let ) be a A-multiplicative spectrum on R such that m = sup (A(S)sr(R(S))).
Sey

Let w € V such that u,w is a hyperbolic pair. Let S € > . (Keep in mind the nota-

tional conventions.) Since (w,u) = 1, it follows that (uy, -, Up,u 1, ,u_4, (W', u')) is
a unimodular vector in R?"*! and hence also in R(S)**!. Since m > sr(R(S)), there are
elements z_1,--- ,z_, € R such that the vector (uy, -, Up,u_1+z_1 (W, u'), -, U_pm+
T (W, u), U1, -+ ,u_y,) is unimodular in R(S)?**. Trivially for any choice of ele-
ments a_1,---,a_, € R, the vector (u1,--- ,up,u 1+ (W, u')+a 1u 1, Uy +
T (W v) +a pUm, U 1, ,u_y) is unimodular in R(S)?". Let u(a_1, -+ ,a_,) de-

note this vector as a member of R?" and using the ordered basis of Hy, (R), identify
n

R?™ with Hy,(R). Since w' = w — Y e;w; and since w and each e; are even, it fol-
i=—n

lows that w' is even. Choose elements b; € R (1 < i < m) such that b ; +b ;A =
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_ _ m _
(—w' AT _;, —w'AT_;). Set oy = H T(e_j, —w'A\T_;,b ;). A straightforward computation

i=1
shows that oyu = u(—=Ab_1,- -+, —Ab_p,) + (01u)’ where (oyu)' is orthogonal to Hy, (R).
Moreover ojv is good. By (2.15), there is an element oy € EQ%) (R, max*(R)) such
that (o901u)_(,—1) = 1 in R(S) and 0y0,v is good. By MSI in §1, (0901u)_(n—1) must
be a unit in R[S™']. Let 2/ , denote its inverse in R[S™']. Since (5301u) ,A(0201u),
and (0201U)—(n—1)2_1(02010) —n A(02011),, are equal in R[S™!'], there are elements tg €
S and z,_1 € R such that (03010)_pA(0201U)nts = (0201U)_(n—1)2n—1 as elements of
R. An easy computation shows that for any element cs € R,o901u is orthogonal to
en(0201U)ntsCs — €y 12, 1¢s. Thus ogo1utscs is orthogonal to fs = e,(0201u)ntscs —
en-12n-1¢s. By (2.1) T4, 7(0901utscg, 02010, a) = T(0901utscs— fs, 02010, a)T(fs, 02010—
fsAaX, a). By (3.1.4), the first factor above lies in T}, . ,)(V, h) and by (3.1.3), the sec-
onds factor lies in Ty, ._,y(V, h). Thus for any cs € R, 7(u, vtscs,tscsatscs) = (by (2.1)
T2) 7(utscs,v,a) = (0201) ' T(0201utscs, 02010, 0)(0201) € Tieye_yy(V, h). Moreover tg
is independent of the choice of the element a in 7(u,v,a). This will be important. By
MS 2 in §1, there are a finite number of denominator sets Si,---,Sg € > and elements
k
c1, -+, ¢ € Rsuch that tg,c; + - - - +tg,cp = 1. Thus 7(u,v,a) = 7(u, Y vtg,c;i,a) = (by

=1

k
(3.2), for suitably chosen a;’s) [] 7(u,vts;ci,a:) € Tie, e_y(V, h).00
i=1

PROOF OF THEOREM 1.5 Let m = [Asr(R). Let > be a A-multiplicative spectrum on
R such that m = sup (A(S)sr(R(S))). Suppose v € V, which can be completed to a
Sey

hyperbolic pair u,u_. We shall show that any transvection 7(u,v,a) on (V,h) lies in
Tieye_y(V,h). Let S € >°. The proof of (3.4) demonstrates that we can find a o €
Tie,e_yy(V, h) such that (ou),—; and (ou), o = 1 in R(S). By MS 1 in §1, (ou),—, and
(0u),_o are units in R[S™']. Let N = {-n,n,n—1,---,n —m — 1}. Since (ou), 1
and (ou), o are units in R[S™!'], there is by (3.3) an element tg € S and elements
zi € R (i € N) such that

(ow)_i(ov)its = (0U)n_1A2;, fori #n —1and —n,
(TW)n—i(0V)n_its = (OU)n_2A2_1, Tfori=n-—1,
(T A (00) _nts = (OU)p_1A2_n, for i = n.

It is important to observe that ¢g is independent of the choice of the element a in 7(u, v, a).
For 7 € N, define f; such that

fi = ei(ov)its — e_n_1)2;, fori #n—1and —n,
Jno1 = en_1(0V)n_1ts —e_(n_9y2n—1, fori=n-—1,
Jfon = e_n(0v) _pls — €_(n_1)2_n, for i = n.
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An easy computation shows that for any element c¢g € R, u is orthogonal to fics (i € N).

Let cs € R. Let w = " f;. Then o7(u,vtscs,a)o™ = (by (2.1) T1) 7(ou,ovtscs —
i€N
weg +weg, a) = (by (3.2), for suitable ¢’ and ;) 7(ou, ovtscs —weg, a') [ 7(ou, fics, a;).
€N
By (3.4), 7(ou,ovtscs — weg,a’) € T, o y(V, h) and by (3.1.3), each 7(owu, fics,a;) €
Tiere_1y(ViR). Thus 7(u,v,tscs,a) € Tie, ey (V; R).

Keep in mind that tg is independent of the choice of the element a in 7(u,v,a). By

MS 2 in §1, there are finitely many denominator sets Si,---,S, € > and elements
k
1, -+ ,cx € R such that tg,c; + -+ + tg,cx, = 1. Thus 7(u,v,a) = 7(u, Y vig,ci,a) =

i=1
(by (3.2), for suitable a;)
k

T(Ua vig, Cs, a'i) € T<€1,€71)(‘/7 h’)'
=1

2

Finally let u € V' such that u can be completed to a hyperbolic pair w, u. Then T(u,v,a) =
7(u, vA\, a) = (by (2.1) T2) 7(uA,vA, Aa)). But ud can be completed to the hyperbolic
pair uA, w and so by the paragraph above, 7(u\, v\, Aa)) € Tie, . y(V, h).00
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