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Abstract We define a notion of group functor G, on categories of graded
modules, which unifies all previous concepts of a group functor G possessing
a notion of elementary subfunctor E. We show under a general condition,
which is easily checked in practice, that the elementary subgroup E(M) of
G(M) is normal for all weak and quasi-weak Noetherian objects M in the
source category of G. This result includes all previous ones on Chevalley and
classical groups G of rank = 2 over a commutative or module finite ring M
and settles positively the still unanswered cases of normality for these group
functors.

1. Introduction.

Beginning with H. Bass’ pioneering paper [Bsl], much attention has been
given to determining whether or not the elementary subgroup E(M) of a
Chevalley or classical group G(M) over a module finite ring M is normal in
G(M). Bass’ result [Bsl] was valid for G = GL,, (general linear group of
rank n) under the condition that n was large with respect to the dimension
of the ring M. It was immediately asked whether or not similar looking
subgroups of other classical groups were also normal. This question was
settled by H. Bass [Bs2] in the symplectic case and in general by A. Bak
[B1], [B2], again under the assumption that the rank of the functor was
large with respect to the dimension of the ring. The approach taken in
[B1], [B2] introduced a generalization GQo, (referred to by the notation Uy,
in [B1], [B2], [Bs2] and by GQ2, in [B3]) of the notion of classical group,
which depended on the concept of a form parameter and allowed treating in
a uniform way all the classical and classical-like groups other than those in
the GL,-family. The groups corresponding to the minimum form parameter
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are treated also in L. Vaserstein [V]. After a gap of roughly ten years, A.
Suslin showed in [S], [Tu] that the elementary subgroup E,(M) of GL,(M)
is normal whenever n > 3 and M is commutative or module finite. Following
his results, several papers Kopeiko [K], Kopeiko-Suslin [KS], Taddei [T1],
[T2], Golubchik-Mikhalev [GM] and Vavilov [Vvl], [Vv2] were devoted to
analogous questions for Chevalley groups and general quadratic groups GQs,,.
A detailed survey of developments to-date is given in [Vv3, §9]. However, the
articles above left open the case of twisted Chevalley groups and the general
case (in classical language, nonsplit case) of the general quadratic group
GQaon(M,A) (n > 2) for an arbitrary module finite ring M with involution
and form parameter A. They are settled in (3.12) and (3.10) respectively,
as consequences of our Main Theorem (2.9). The result (3.10) is included in
those announced in [B4, §1].

The approach we take to prove our results is inspired by the technique
used in [B4], particularly in [B4, §4], for establishing results concerning G L,,.
This technique hinges for the most part only on a simple minded, flexible,
and general concept of group functor, which is divorced from the confines
of linear algebra and at the same time contains as special cases the group
functors mentioned in the previous paragraph. Specifically, we consider group
functors G on a category A of graded modules M (for example, a category of
rings or form rings) such that G(M) contains homogeneous components of M
in a functorial way. The elementary subgroup E(M) of G(M) is defined as
the subgroup of G(M) generated by the embedded homogeneous components
of M. This construction obviously defines a subfunctor £ — G, which we
christen the elementary subfunctor of G. In the case of Chevalley or
general quadratic groups G, it is clear that the elementary matrices define
embeddings into G of the ring and form parameter over which G is defined
and that the elementary subgroup of G is indeed the subgroup generated
by these embedded entities. On the other hand, any Chevalley or general
quadratic group is itself embedded set theoretically, but still functorially, into
a direct sum of copies of the ring over which it is defined. So, we assume
in the general setting that our groups G(M) embed set theoretically and
functorically into a direct sum &M of copies of M. This extra structure
coupled with the notion of weak Noetherian module (2.6) is enough to proof
our main result (2.9) concerning the normality of E(M) in G(M), in just a
few words.

The rest of the article is organized as follows. In §2, we define in
detail the concepts we use and prove the Main Theorem (2.9) concerning the
normality of E(M). In §3, we explain how Chevalley and general quadratic



groups fit into our setting and then apply our main theorem to these groups.
2. Main theorem.

We fix the following notation for the remainder of the article. We let G
denote the category of all groups and group homomorphisms. The letter J
will denote an index set and we let M (J) be equal to the category whose
objects are all pairs (kj;, M) where kj; is a commutative, associative ring
with identity and M = @jMi is an J-graded, right kj,-module. A morphism
1€
(kpy, M) — (kaer, M') in M(J) is any pair g : kyy — kye, f = M —>
M' where ¢ is a ring homomorphism preserving the identity, f a graded
homomorphism of abelian groups of degree zero, and f(ma) = f(m)g(a) for
all m € M and a € ky. We let M = M(Jy) where Jy is a set containing
exactly one element. There is a canonical inclusion M C G and for each
i € J, there is a canonical coordinate functor \; : M(J) — M, M — M;,

and ((g, f) = (kar, M) — (kaer, M7)) = ((9, Flag) = By Mi) — (Ragr, M;)).

The letter A will always denote a subcategory of M(J), for some J,
such that if (kp, M) € Obj(A) and S C kj is a multiplicative set then
(ks-1a, S7IM) € Obj(A) where kg-1j; := S~k and the canonical mor-
phism (kar, M) — (kg-1p7, ST1M) is in Mor (A).

DEFINITION 2.1 A A-group functor (on A) consists of a functor G : A —
G and for each 7 € J, a natural inclusion ¢; : A; — G of functors. If M € A
and U C M is a homogeneous subgroup of M, let E(M,U) denote the
subgroup of G(M) generated by all subgroups €/ (U;) C G(M)(i € J) where
U; := i’th homogeneous component of U. Let E(M) = E(M, M). Clearly,
the construction M — FE(M) defines a subfunctor £ »— G. If M € A and
s € ky, define A(M,s) = {0 € G(M)| given p € Z>° 3¢ € Z2° such
that cE(M, Ms%)o* C E(M,Ms*) and 0 *E(M,Ms%)o * C E(M, MsP)}.
Clearly, A(M, s) is a subgroup of G(M).

LEMMA 2.2 Let G be a A-group functor and let M € A. Suppose that for
each element o € G(M) and each mazimal ideal p C kyy, there is an element
Sop € kn \ p such that o € A(M, s5p). Then E(M) < G(M).

PROOF Let i € I, m € M;, and o € G(M). It suffies to show that oe;(m)o~! €
E(M). For each maximal ideal p of ks, choose s,(= s,,) as above. By hy-
pothesis, there is a g,> 0 such that oe;(Msy")o™ € E(M). Since {s;’|p
maximal ideal of kj,} is not contained in any maximal of kj;, there is a finite
set P, ..., p¢ of maximal ideals of k;; and of elements aq,...,a; of kj; such
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that 3 a;s;% = 1. But, then o¢;(m)o™" = [] oe;(ma;s;% )0~ € E(M).
j=1 j=1

Q.E.D.

DEFINITION 2.3 Let G be a A-group functor. If M € A and s € kyy, let
< s > denote the multiplicative set generated by s and let “Ms” denote the
image of Ms in < s >"! M under the canonical homomorphism M —<
s >"1 M. Define B(M, s) = {oc € G(< s >~! M)| for each p € Z=°, there is
a ¢ € Z2° such that cE(< s >71 M, “Ms?)o™! C E(< s >~} M, “MsP”)
and 07 E(< s >t M, “Ms?)o C E(< s >~1 M, “MsP”). Clearly, B(M, s)
is a subgroup of G(< s >~! M). Define E(M,Ms) = normal closure of
E(M, Ms) in G(M).

LEMMA 2.4 Let G be a A-group functor. Let M € A and s € ky. Then
the canonical homomorphism ® : G(M) — G(< s >~ M) takes A(M, s)
into B(M,s). Moreover, if for some p € Z2°,® |E(M7MS,,) is injective then
®~(B(M,s)) = A(M,s).

ProoOF Straightforward.

LEMMA 2.5 Let G be a A-functor. Let M € A. Suppose that the following
conditions hold:

(2.5.1) For each element o € G(M) and each mazimal ideal p of k, there
is an element s, € kn \ P such that the image of 0 in G(< spp > 1 M) lies
in B(M,s).

(2.5.2) For each element s € kys \ ﬂ p, there is a p € Z2° such that
p

mazimal

E(M, MsP) injects into G(< s >~' M) under the canonical homomorphism
G(M) — G(< s> M).
Then E(M) < G(M).

PROOF This follows immedeately from (2.2) and (2.4).

DEFINITION 2.6 An object (ka, M) € M(J) will be called weak Noetherian

if given s € kps\ ﬂ p, there is an element p € Z2° such that Ann,(s?) =
p

maximal

Anny, (sP*h) (where Anny(sP) = {m € M | ms? = 0}). Note that the
index set J need not be finite; for example, if each M; is Noetherian over
kp and the number of isomorphism classes [M;] of modules M; is finite then
(kar, M) is weak Noetherian. An object (ky, M) € A will called quasi-weak



Noetherian (in A) if it is a direct limit of weak Noetherian objects in A. An
object (kpr, M) € M(J) will be called Noetherian if M is Noetherian over
kp. An object (kp, M) € A will be called quasi-Noetherian (in A) (or
quasi-finite as in [B4, §3]) if it is a direct limit of Noetherian objects in A.
Clearly, the property of being Noetherian (resp. quasi-Noetherian) implies
the property of being weak Noetherian (resp. quasi-weak Noetherian).

The next lemma generlizes [B 4, (4.10)].

KEY LEMMA 2.7 Let G be a A-group functor. Let M € A. Suppose the
following:

(2.7.1) For each element s € kys \ ﬂ p and p € Z2°, there is a commu-
p

] ) mazimal
tative diagram of sets

E(M,Ms?) — G(M) = G(< s >~ M)

\J \J \J
(®M)sP — &M < >~1 (M)

where E(M, MsP) is as in (2.3), ®M is a finite direct sum of M’s, the
horizontal maps are the canonical ones, and the left vertical map is injective.

Then if M is weak Noetherian over kys, the group E(M, MsP) maps injec-
tively for some p into G(< s >~ M), under ®.

PRroOF It suffices to show that for some p € Z2° ¥ maps MsP injectively
into < s >"! M. But, this is an easy exercise which is done, for example, in
the proof of [B4, (4.10)]. Q.E.D.

THEOREM 2.8 Let G be a A-group functor. Let M € M and suppose that
(2.6.1) and the following are satisfied:

(2.8.1) For each element o € G(M) and each mazimal ideal p of ky, there
is an element S, € kar \ p such that the image of o in G(< s, >~ M),
under the canonical homomorphism, lies in B(M, Sqy).

Then if M is weak Noetherian, E(M) < G(M).
ProOF This follows immediately from (2.5) and (2.7).

MAIN THEOREM 2.9. Let G be a A-group functor. Suppose that conditions
(2.7.1) and (2.8.1) hold for each object M' € A which is weak Noetherian.
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If G commutes with direct limits then E(M) < G(M) for every quasi-weak
Noetherian object M of A.

PROOF This follows immediately from (2.8) and the definition of direct limit.
3. Applications to Chevalley and general quadratic groups.

In this section, we show that Chevalley, twisted Chevalley, and general
quadratic groups are A-groups, for suitable A, satisfying (2.7.1) and that
they satisfy (2.8.1) under the usual conditions excluding small ranks. It will
follow then from the Main Theorem (2.9) that their elementary subgroups
are normal.

The demonstration that (2.7.1) is fulfilled will be essentially trivial. The
proof that (2.8.1) is satisfied will be executed by showing that the following
condition fulfilled.

CoNDITION 3.1 Let 3, M(J), and A C M(J) be as in section 2. Let G be a
A-group functor. Let M € A and if p is a maximal ideal of &y, let S, denote
the multiplicative set kjs \ p. Suppose the following holds for G, M, and each
maximal ideal p of k.

(3.1.1) For each j € J, there is a subset J(j) of J such that the following
holds:

Given s € S, and p € Z=2°, there is a ¢ € Z=" such that for each m; € M, (=
Aj(M)) and i € I(5), €;(2)e;(Mis?)e;(2)"' C E(< s >71 M, “MsP 7).
(3.1.2) Given p € Z2° there is a ¢ € Z>° such that for all 4,5 € J,
€;i(M;s?) C< ey (MysP)|i' € I(j) > where I(j) is as in (3.1.1).

(3.1.3) If 0 € G(M), there is an element s € S, such that the image “o”
of o in G(< s >~! M) has a product decomposition “oc ”= §e where € €
E(< s >~! M) and § has the property that given i € J and p € Z2°, there
is a ¢ € Z2° such that §e;(“M;s? ")d~' C E(< s >~' M,“Ms? ”) and
0 le(“M;s? 7)d C E(< s >71 M, “MsP”).

LEMMA 3.2 Let G a A-group and M € A such that (2.7.1) and (3.1) hold.
Then if M is weak Noetherian over kyr, E(M) < G(M). Furthermore, if for
all weak Noetherian objects in A, (2.7.1) and (3.1) hold and G commutes
with direct limits then for all quasi-weak Noetherian objects M € A, E(M) <
G(M).

PrOOF Conditions (3.1.1) and (3.1.2) show that for each maximal ideal p of
kar and element s € kp\p, E(< s >~' M) C B(M, s). Since the element § in



(3.1.3) clearly lies in B(M, s), it follows from (3.1.1) - (3.1.3) that condition
(2.8.1) is satisfied. Thus, for M weak Noetherian over kj;, E(M) < G(M)
by (2.8). The second assertion of the lemma follows from (2.9). Q.E.D.

Let alg(J) denote the subcategory of M(J) of all objects (ka, A) such
that A; (= \i(A)) is an associative k4-algebra with identity , A; = A; for
all 7,7 € J, and each morphism f : (ka, A) — (ka, A") is a direct sum
f = GEBI fi of algebra homomorphism f; preserving the identity such that
fi = f;j for all 4,5 € J. Let alg = alg (Jy) where J; is some index set with
exactly one element. There are mutually inverse canonical functors ¥(J) :

alg — alg (9), (ka, A) — (ka, @IA) and (f : (ka, A) — (ka, A")) —
1€

(_Eij : (ka, EBJA) — (kar, @jA’)), and ®(J) : alg (J) — alg, (ka, @in) —

US S (S S

(ka, Aio) (i0 € Jo, Aig = Ai) and (D fi = (ka, ®Ai) — (kar, © A)) — (fio

(ka, Aiy) — (kar, A})) (fio = fi)- Forn € Z2%, let J(n) = {(4,7)| 1 <i,j <
n,i # j}. Let alg (n) =alg (J(n)), ¥(n) = ¥(I(n)) and &(n) = ®(I(n)). Let
GL, : alg — G denote the usual general linear functor. Composing GL,,
with ®(n), we get a functor alg (n) — G, which we also denote by GL,,.
Thus, if A €alg then

GLp(A) = GLn(¥(n)(A)).

If A calg, a € A, and (4,5) € I(n), let e;pj(")(A)(a) denote the n x n-
elementary matrix whose (i,7)’th coefficient is a. Clearly, the assignment
a— e;pj(”)(A)(a) defines a group embedding e?j(")(A) : A — GL,(A) and
these embeddings taken over all objects W(n)(A) of alg (n) define a natural
transformation €;; : A;j; — GL,. Thus, the functor GL, :alg (n) — G is
an alg(n)-group functor in the sense of (2.1). Clearly, the usual elementary
subgroup E,(A) C GL,(A) is just the subgroup generated by the subgroups

¥ (n)(4) iy
i ) where (7, j) ranges over the elements of J(n).

image (e

If A €alg, let M, (A) denote the set of all nxn-matrices with coefficients
in A. Let 74 : GL,,(A) — M, (A), 0 — o — I, where I denotes the identity
n x n-matrix. The functions 74 define a natural transformation 7 : GL,, —»
M, of functors defined on alg. Using 7, one shows easily that the functor GL,,
on alg (n) satisfies (2.7.1). Moreover, if n > 3, the standard commutator
relations (cf. [B4, (2.2)]) for elementary matrices show that GL, satisfies
(3.1.1) and (3.1.2). Suppose now that A is module finite over k4. Let p
denote a maximal ideal of k4 and let S, = k4 \ p. Let 0 € GL,(A) and ‘0’
its image in GLn(Sp_lA). Since Sp_lA is semilocal, it is well known (cf. [B4,
(4.9) (b)] with s = 1) that ‘0’= d1¢; where d; is a diagonal matrix and ¢; a
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product of elementary matrices. It follows that for some s € S, the image
“6” of 0 in GL,(< s >~! A) has a product decomposition “c ”= de where
0 is a diagonal matrix and € a product of elementary matrices. Since ¢ is
diagonal, one deduces easily that it has the property ascribed to it in (3.1.3).

Thus, we have shown the following:

LEMMA 3.3 The functor GL, on alg (n) is an alg (n)-group functor satis-
fying (2.7.1). Furthermore, if n > 3 then GL, satisfies (3.1) on objects A
which are module finite over k4.

THEOREM 3.4 Let GL,, denote the general linear group functor on associative
algebras A with identity. If n > 3 and A is quasi-Noetherian then E,(A) <
GL,(A).

ProoF This follows immediately from (3.2) and (3.3). Q.E.D.

COROLLARY 3.5 (Suslin [S], [Tu]) Let GL,, denote the general linear group
functor on associative algebras A with identity. If n > 3 and A is module

finite over k4 then E,(A) < GL,(A).

PROOF One shows easily that A is quasi-Noetherian. The corollary follows
now from (3.4). Q.E.D.

Following procedures similar to those used in the proof above of Suslin’s
theorem, one can prove the analog of his theorem for the general quadratic
functor GQ2,. We do this next.

Let A denote an associative ring with identity and involution a — @.
Thus, ab = baand a = a for all a,b € A. Let A € center (A) such that A\ = 1.
Let min*(A) = {a — \a| a € A} and max*(A) = {a € A | a = —A@}. Let A
denote a form parameter on A. By definition, A is an additive subgroup of
A such that min*(A4) € A C max*(A) and aAa C A for all a € A. The triple
(A, )\, A) is called a form ring and is frequently abbreviated by (A4,A). A
form algebra is a 4-tuple (k4, A, A\, A) where (k4, A) € algand (4,\,A) isa
form ring such that the trivial involution on k4 is compatible with that on A
and k4A C A. We shall frequently abbreviate the form algebra (k4, A, A, A)
by (A,A). A morphism (ka, A, \,A) — (kar, A', X', A") of form algebras is
a morphism (g, f) : (ka, A) — (kar, A") of algebras such that f preserves
the involution, f(A) = X" and f(A) C A’. Let form alg denote the category
of all form algebras and morphisms of form algebras.

If n € Z2% let I(n,n) = {(4,5) |1 < 4,5 < n,i # j}. Define the
subsets J5T(n,n) = {(i,n+14) |1 < i < n}h I (n,n) = {(n+1i,4) |1 <
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i <n},¥(n,n) =I5 (n,n) UIS (n,n) and I*(n,n) = I(n,n) \ ¥(n,n). The
superscript £ (resp. s) is derived from the terminology long (resp. short) root
in the theory of Chevalley and classical groups. Let form alg (n) denote the

subcategory of M (J(n,n)) whose objects are all (ky;, M) such that for some
form algebra (ka, A, A\, A),

(3.6.1)
kg = ka

Aif (4,75) € I°(n, n)
Aif (4,5) € 3(n,n).
A morphism f = ( )EB( )fi,j : (kpry M) — (kpp, M') is any morphism f in
1,7)€I(n,n
M (3(n,n)) such that the following holds:

(3.6.2) For each (i,7) and (¢,5') € 3°(n,n), fi; = frjy and the map f;, :
A — A’ defines a morphism (k4, A, \,A) — (kar, A', X', A') of form alge-
bras.

(3.6.3) For each (i,5) € 3%(n,n), fi; = foy|a for any (¢, 5') € 3°(n,n).

There are mutually inverse functors ¥(n) : form alg — form alg (n) and
¢(n) : form alg (n) — form alg which are analogous to those between alg
and alg (n).

Let (A,A) € form alg. If ¢ is an n x n-matrix (ag,) with coeffi-
cients axy € A, let @ = transpose (age). Let GQayn(A, A) denote the general
quadratic group [B3, §3]of rank12n over (A, A). By definition, GQo, (A, A) =
{(i g) € GL,(A) | ((;[ g) = (%7 ?), diagonal coefficients of Ja
and 64 lie in A}. The elementary matrices of GQa,(A, A) are described in
detail in [B3, §3]. If M = ¥(n)(A,A), (4,5) € I(n,n), and a € M,; then the
description of elementary matrices in [B3, p. 27 - 29] makes it clear that

U(n)(A,A)

there is precisely one elementary matrix ¢;; (a) corresponding to the

data above. The assignment a — ez(")(A’A) (a) clearly defines an embedding
M;; — GQq,(A, A) of groups. As usual, we define EQ,(A, A) to be the
subgroup of GQ2,(A, A) generated by the images of the embeddings above
where (i, j) ranges over J(n,n). Composing the functor GQs, : form alg
— G with the functor ¢(n) : form alg (n) — form alg, we get a functor

from form alg (n) to G, which we also denote by GQs,. Evidently,
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and the embeddings ez(n)(A’A) t Aij (T (n) (A, A)) — GQan(A, A) where (3, ) €
I(n,n) is fixed and ¥(n)(A, A) ranges over the objects of form alg (n) de-
fine a natural transformation €;; : A\jj — GQ2,. This shows that the functor
GQs, on form alg (n) is a form alg (n)-group functor.

If (A, A) € form alg, let My, (A) denote the set of all n x n-matrices
with coefficients in A. Let 744 : GQq, (A, A) — My, (A), 0 — o— I, where
I denotes the 2n x 2n-identity matrix. The functions 74* where (A, A) ranges
over form alg define a natural transformation 7 : GQo, — My, of functors
defined on form alg. Using 7, one shows easily that the functor GQ2, on
form alg (n) satisfies (2.7.1). Moreover, if n > 3, the standard commutator
relations [B3, (3.16)] for the elementary matrices on GQo, (A, A) show that
G Qs satisfies (3.1.1) and (3.1.2) over all objects of form alg (n). And,
if n = 2 and the form algebra (A, A) has the property that the subgroup
AA 4+ AA of A, generated additively by all products ax and xa where a € A
and z € A, equals A then again by [B3, (3.16)], GQ2,(¥(n)(A, A)) satisfies
(3.1.1) and (3.1.2). Furthermore, for any n > 2 and any (A, A) € form alg
such that A is module finite over k4, GQo, (¥(n)(A, A)) satisfies (3.1.3). One
checks this as follows. Let p be a maximal ideal of k4 and let S, = (k4 \ p).
Let 0 € GQan(A,A). If ‘0’ denotes the image of o in GQ2,(S; A, Sy A)
then by [B1, III (4.9)] (cf. also [Bs2, III (3.11)]), one can write ‘c’= pr
where p € GQ,(S, A, S;'A) and 7 € EQy,(S, A, S;'A). Thus, for some
s € Sp, one can write the image “0” of o in GQay(< s >71 A, < s >71 A)
as a product “0”= de where §eGQy(< s >71 A, < s> A) and € € EQy,(<
s > 1A < s>"1A). It is straightforward to check that ¢ satisfies (3.1.3).
Thus, we have shown the following:

LEMMA 3.7 The functor GQ2, on form alg (n) is a form alg (n)-group
functor satisfying (2.7.1). Furthermore, if (A, A) € form alg is such that A
is module finite over ka (resp. A is module finite over ky and A = AN+ AA)
and n > 3 (resp. n > 2) then GQq, satisfies (3.1) on ¥(n)(A,A).

DEFINITION 3.8 A form algebra (A,A) is called quasi-Noetherian if it
satisfies one of the following equivalent conditions:

(i) (A, A) is a direct limit of form algebras (A’, A’) such that A’ is Noetherian
over kAI .

(ii) ¥(n)(A, A) is quasi-Noetherian in form alg (n) for any n > 1.

THEOREM 3.9 Let GQo, denote the general quadratic functor on form al-
gebras (A, A\). Suppose that (A, A) is quasi-Noetherian. If either n > 3 or
n=2and A= AN+ AA then EQq, (A, A) < GQar (A, A).
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PROOF By definition, ¥(n)(A, A) is a direct limit of objects ¥(n)(A’, A") such
that A’ is Noetherian over k4. Moreover, if the condition A = AA + AA is
satisfied then we can arrange that each (A’, A’) above has the property that
A"= A'N"+ A'A'. The assertion of the theorem follows now from (3.2), (3.7),
and the fact that G@Q)s, commutes with direct limits. Q.E.D.

COROLLARY 3.10 Let GQo, denote the general quadratic functor on form
algebras. Suppose that (A, A) is a form algebra such that A is module finite
over ka. If either n > 3 orn =2 and A = AN + AA then EQ2,(A,A) <
GQan(A,N).

PROOF One shows easily that (A4, A) is quasi-Noetherian. The corollary
follows now from (3.9). Q.E.D.

REMARK 3.10.1 There is a slight generalization of the general quadratic
group, given in [B3, §13], for which the conclusions of (3.9) and (3.10) are
also valid. The generalization is based on replacing the notion of form ring
above by a pair (A,A) where A is a ring with antiautomorphism a — @
(by definition, ab = ba for all @ € A) such that for some fixed element
A € A,a = Xa) for all @ € A and where A is a form parameter in the
sense defined above. One can then define a generalized form algebra to be
a triple (ka, A, A) where (A, A) is as above, (ka, A) is an algebra over ky,
the antiautomorphism a — @ on A is compatible with the trivial involution
on ka, and k4A C A. The notion quasi-Noetherian for (k4, A, A) is defined
as in (3.8). The general quadratic group GQs,(A,A) and its elementary
subgroup EQ2,(A,A) are defined as for ordinary form rings above. This
done, the conclusions in (3.9) and (3.10) remain valid. Checking details is
straightforward.

The next result for Chevalley groups overlaps with (3.5) and (3.10).

THEOREM 3.11 (Taddei [T2]) Let ® be a reduced, irreducible root system
of rank 2 2. Let R denote a commutative ring (which we view as an alge-
bra over itself). Let G(®,R) denote the (untwisted) Chevalley group of ®

with coefficients in R and let E(®, R) denote its elementary subgroup. Then
E(®,R)<G(®,R).

PROOF Let the index set J = ®. Let as agree to denote the elements of

J by small Greek letters «, 3,..., as is customary when dealing with root

systems. Let A denote the subcategory of M (J) whose objects are all pairs

(k, EBjka) where k£ is a commutative ring and k, = k for all @« € J. A
ac

morphism (g, f) : (k,®ky) —> (K',®k.) is a pair (g, f) where g : &k — £’
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is a ring homomorphism and f : @k, —> @k., a degree 0 map such that
flk., = gforall @ € J. The assignment k — (k, ®k,) defines an isomorphism
((commutative rings)) — A of categories. The Chevalley functor G(®, —) :
((commutative rings)) — G defines a A-group G : A — G such that
G(k,®ks) = G(®,k) and for each o € I, ¢4 : \y —> G(P,_) is the natural
transformation with the property that if a € k then €% (a) € G(®,k) is the
usual elementary transformation defined by the root o € J(= @) and the
element a € k.

We want to apply now (3.2) to deduce that E(®, R) <G(®, R). So, we
must check that all the hypotheses of (3.2) are satisfied. It is well known that
there is a natural number n and an embedding G(®, R) — GL,(R) which is
functorial in R. Using the set theoretic map GL,(R) — M, (R),0 — 0 —1
(where I is the n X n-identity matrix), one deduces easily that condition
(2.7.1) is satisfied. Clearly, any commutative ring R is a direct limit of
Noetherian subrings of itself and the functor G(®, ) commutes with direct
limits. Thus, to complete the proof of the theorem, it suffices to show that
condition (3.1) is satisfied.

Since J is a root system ®, the negation —« of an element o € J is
defined. Define J(a) =3I\ {—a}. Condition (3.1.1) follows directly from the
standard commutator formula [C,(5.2)]

eala),es®)] = [ €iasis(Napiia't?)
ta+jpBed
i,jEN
where 8 € J(«). It is an easy exercise to check that the hypotheses on ®
guarentee that given v € J, there are roots o, 8 € 3,8 € J(a),a, € I(7)
such that a + 8 = v and Nyg1,1 = 1. Rewriting the commutator formula
above as

ex(ab) = [eal@)y s O[] ciarip(~Napaga®)):
ia+jBeTd
i,jEN

(1,5)#(1,1)
one deduces easily that (3.1.2) holds. Let p denote a maximal ideal of R
and let S, = R\ p. Let 0 € G(®,R) and ‘o’ its image in G(®,S,'R).
Since S, 'R is a local ring, it follows from a result of Matsumoto [M, (4.4)]
in the simply connected case and Abe-Suzuki [AS] in general that ‘o '= d;¢;
where §; is a diagonal matrix, i.e. an element of the split maximal torus
of G(®, 5, 'R), and ¢; a product of elementary transformations. It follows
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that for some element s € Sy, the image “0” of o in G(®, < s > ! R) has a
product decomposition “o ”= de where ¢ is a diagonal matrix and € a product
of elementary transformations. Since § is diagonal, one deduces easily that
it has the property ascribed to it in (3.1.3). Q.E.D.

Let ® be a reduced, irreducible root system of type Ay, D;, or Eg and
rank = 2. After fixing a system of fundamental roots for ®, we have the
notion [St, |, [A, ], [P, | of a canonical automorphsim g of ®. Except for
Dy, there is exactly one such automorphism and it has order 2. In the case
of Dy, there are two such automorphisms, one of order 3 and the other of
order 3. Given a pair (P, p) and a commutative ring R with a Ring action
of < p > (: = the group generated by p), one has the notion ¢G(®, R) of a
twisted Chevalley group with coefficients in R and the notion ¢E(®, R) of its
elementary subgroup.

The next theorem is the analog of the one above, for twisted Chevalley
groups of type # Ay, and overlaps also with (3.10).

THEOREM 3.12 Let ® be a completeley reduced, irreducible root system of type
Agpy1, Dy or Eg and rank 2 2. Let p be a canonical automorphism of ®. Let R
denote a commutative ring with a ring action of o. (We view R as an algebra
over the fized ring R?). Let °G(®, R) denote the twisted Chevalley group of ®
with coefficients in R and let ¢(®, R) denote its elementary subgroup. Then
E(®,R)<G(P,R).

PRrROOF Our proof is the same as the one above, except J is set equal to
the root system defined by the orbits of the action of p on ®, the standard
commutator formula [C, (5.2) |is replaced by its twisted analogs [A, §3], [P, |
and the reference to Matsumoto [M, (4.) | and Abe-Suzuki [AS] are replaced
by reference Suzuki [Sz]. We fill in now the details.

The action of g on the enveloping Euclidean space E of ® preserves the
usual inner product. If V' denotes the subspace of E of all elements fixed by
the action of p then by [St, |, [A], the orthogonal projection of E on V' maps
the orbit space of the action of p on ® onto a root system in V. Let J denote
this root system. If (®, o) = (Aort+1,), (Dy, 0), (Es, 0) and throughout p has
order 2, or (Dy, ) and p has order 3 then J = Cy, 1, B;_1, Fy, Go, respectively.
(The twisted Chevalley group G(Ass1, R) is the general quadratic group
GQQ((.H) (R, Rg) in (310))

Let k£ denote a commutative ring with a ring action of p. Let k2 = {a €
klo(a) = a}. Let A denote the subcategory of M (J) whose objects are all
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pairs (k, @ ko) such that
ac]

b k, if « is a short root
* )| ke, if a is a long root.

A morphism (g, f) : (k, ® ko) — (K, ® k.,) is a pair (g, f) where g : k —>
a€ld a€l

k' is a g-equivariant, ring homomorphism and f : @&k, — ®k., a degree
0 map such that f|r, = g|g, for all @ € J. (Note that each k, C k.)
Let ((comm p-rings)) denote the category of all commutative rings with a
ring action of p and all g-equivariant ring homomorphisms. The assignment
k — (k, ®k,) defines an isomorphism ((comm g-rings)) — A of categories.
The twisted Chevalley functor ¢G(®, —) : ((comm p-rings)) — G defines a
A-group G : A — G such that G(k,®k,) = °G(P,k) and for each a €
J,€q 1 Ag — 2G(P, —) is a natural transformation with the property that if
a € ko(= Ao(®kp)) then €k (a) € °G(P, k) is the elementary transformation
(which is also referred to in the literature by the expression elementary root
unipotent element) (cf. [C,(13.6)] ) defined by the root & € J and the element
a € ky.

We want to apply now (3.2) to deduce that ¢E(®, R)<?G(®P, R). So, we
must check that all the hypotheses of (3.2) are satisfied. It is well known that
there is a natural number n and an embedding ¢G(®, R) — GL,(R) which is
functorial in R. Using the set theoretic map GL,(R) — M, (R),0 — 0 —1
(where I is the n X n-identity matrix), one deduces easily that condition
(2.7.1) is satisfied. Clearly, any commutative p-ring R is a direct limit in
((comm p-rings)) of Noetherian g-subrings of itself and the functor ¢G(®, )
commutes with direct limits. Thus, to complete the proof of the theorem, it
suffices to show that condition (3.1) is satisfied.

Since J is a root system, the negation —« of an element o € J is defined.
Define J(a) = I\ {—a}. Condition (3.1.1) follows directly form the twisted
analogs [A, §3], [P, | of the standard commutator formula [C, (5.2)] used
in the proof of (3.11). It is an easy exercise to check that the hypotheses
on ® guarente that given v € J, there are roots o, f € J,c, 8 € I(y) such
that o+ 8 = v and Ny p,1,1 = 1. Using the analogs above of the standard
commutator formula, one can write

6’7(ab) = [ea(a)’ 6,3 (b)] H eia-l—jﬂ (*(O[, /Ba i’ ja a, b))’
ia+jBEd
1,JEN
(4,5)#(1,1)
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for suitable coefficients x(c, 3,1, j,a,b) and deduces that (3.1.2) holds. We
leave the details here to the reader. Let p denote a maximal ideal of R?
and let S, = R?\ p. Let 0 € °G(®,R) and ‘o’ its image in °G(®, S, 'R).
Since S, 'R? is a local ring, it follows from a result of Suzuki [Sz] that ‘o’
= 011 where ¢ is a diagonal matrix, i.e. an element of the Cartan subgroup
of ¢G(®, S, 'R), and ¢; a product of elementary transformations. It follows
that for some elements s € Sy, the image “0” of o in ¢G(®,< s >~! R)
has a product decomposition “0” = de where ¢ is a diagonal matrix and €
a product of elementary transformations. Since § is diagonal, one deduces

easily that it has the property ascribed to it in (3.1.3). Q.E.D.
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