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Abstract
This paper classifies under a local stable rank condition for rings with
form parameter, subgroups of the general linear group GL2; which contain
the elementary unitary subgroup EUy;.

1 Introduction

In the present paper we describe overgroups of the elementary hyperbolic uni-
tary group over a form ring subject to a certain stability condition which holds
in particular for almost commutative and semilocal rings. This paper is a con-
tinuation of previous joint papers with N. Vavilov [16, 17], where a similar
description was obtained for the orthogonal and symplectic cases.

We use the setting of generalized unitary groups introduced by A. Bak [2, 6,
5] which we recall in Section 3 in slightly different terms. Let (R, A) be a form
ring, EUg (R, A) be the elementary hyperbolic unitary group of degree 2! over
(R, A). Consider subgroups of the general linear group GLg;(R) which contain
EUy(R,A). We prove that for any such subgroup H there exists a unique
ideal form parameter (A,T) such that H normalizes the elementary subgroup
EEUy (R, A,T) of level (A,T") (see Section 14 for definitions).

In the case of a skew-field R our results boil down to a special case of results
by O. King [8] and Li Shangzhi [9] pertaining to hyperbolic forms. On the other
hand for the case of a commutative R with trivial involution and the maximal
form parameter our results spicialize to those of [16, 17].

Asin [17] we use a version of local-global techniques introduced by D. Quillen,
A. Suslin, L. Vaserstein and A. Bak, see, for example, [14, 15, 3, 7] and references
there. We make substantial use of calculations from the theses of R. Hazrat [7].
Unlike the case of split classical groups, in our setting several new ideas are
required to settle the local case. Here we prove a version of Witt’s theorem in
terms of a new stability condition Asr introduced by A. Bak [4]. This theorem
is an extension of a result by W. van der Kallen, B. Magurn and L. Vaserstein
[12] and in particular immediately implies surjective stability for KUj.

The paper is organized as follows. In Sections 2—6 we recall basic definitions
related to unitary groups and their elementary subgroups, in Section 7 and



8 we prove several auxiliary results we need for localization procedures. In
Sections 9-11 we introduce Asr and prove Witt’s theorem. In Section 12 we
perform calculations with elementary matrices similar to the yoga of conjugation
used by R. Hazrat [7]. Section 13 is a crucial step in the proof of the main
theorem. In Section 14 we introduce the group EEUy (R, A,T') and calculate its
normalizer. Finally the main theorem is established in Section 15.

I wish to express thanks to my advisor Nikolai Vavilov and to Anthony Bak
for his valuable comments. Also I wish to acknowledge the partial support of
DAAD, INTAS 00-566 and the partnership program Bielefeld University — St.
Petersburg State University.

2 General notations

Let G by an arbitrary group. If a,b € G, we write 2b for aba=! and [a, b] for
aba='b71. In the sequel we use the following commutator formulae

[a,bc] = [a,b] - b[a, ],

[ab, c] = *[b, c][a, c],

[ab7 Cd] = a[ba C] : ac[bad] : [aac] : C[aad]a

[a, [b,c]] - [°¢, [a, b]] - [*D, [c,a]] = 1 (the Hall identity).

For a subset X C G and a subgroup H < G we denote by (X) the subgroup
generated by X, and by (X)f the smallest subgroup containing X and nor-
malized by H. For two subgroups F, H < G we denote by [F, H] their relative
commutator subgroup, generated by [f,h], f € F, h € H. A group is called
perfect if it coincides with its commutator subgroup.

Further, let R be an arbitrary associative ring with identity. Denote by
R* the group of all invertible elements of R. Let n be a positive integer. For
a matrix a € GL,(R) we denote by a;; its coefficient in the position (4, j),
and we write aj; for (a ');;. For a; € GLy,(R), i = 1,...,m we denote by
diag(ay, - - -, an) the block-diagonal matrix with blocks ay, . .., G-

A column u = (uy, ..., u,)! is called unimodular if the left ideal generated by
Uu1,-- ., U, coincides with R. For example, a column of every invertible matrix
is unimodular.

Let e be the identity matrix and % be the matrix which has 1 in the position
(¢,7) and zeroes elsewhere. By t;;(§) (£ € R, i # j) we denote the linear
elementary transvection: t;;(£) = e + £e¥. In the sequel we use the following
relations among the elementary transvections:

tij (§)ti;(Q) = ti; (€ + ()
[ti5(£),tin ()] = tin(£C), h #1.

Let A be an ideal of R. Denote by E, (A) the following subgroup of GL,, (R):



When A = R the subgroup E,(R) is called the linear elementary group. By
E,.(R, A) we denote the normal closure of E,,(A) in E,(R):

En(R, A) = Eq(4)P®

Lemma 1. Let n > 3. Then E, (R, A) is generated by all elements of the form
zij (€, €) = t;i(Q)ti; (§)tji(—C), E € A, CER, j #1i.

Proof. See, for example, [14, Lemma 8]. O

Denote by pa the reduction homomorphism modulo A:
PA GLQl(R) — GLQ[(R/A)

The kernel of p4 is denoted by GLy (R, A) and called the general congruence
subgroup of level A.

3 Unitary group

Let R be an associative ring with identity. An additive map ¢ : R — R,
& — € is called a pseudoinvolution if £ = € and € = (17'€. Set ¢ = —1 and
& = 171, Then we have 1* = 1, (£0)* = (*¢* and £** = e&e*. Conversely,
given an additive map 7: R = R, £ — £* and an element € € R satysfying the
conditions above, define the pseudoinvolution o : R — R as follows: £ = —&*e.
So our notion of pseudoinvolution coincides essentially with one of Magurn, van
der Kallen and Vaserstein (see [12]), but we use only one parameter o instead
of 7 and €.

Set min® (R) = {& + £J¢ € R}, max®(R) = {€ € RIE = €}.

An additive subgroup A of R is called a o-form parameter if the following
conditions hold:

min? (R) C A C max?(R),
EIT'A¢C Aforall € €R.

This is Bak’s notion of form parameter [2, §1B and §13], formulated in the
language of pseudoinvolutions.

Let V be a right R-module. A biadditive form B : V xV — R is o-
sesquilinear if

B(ué,v¢) = €17 'B(u,v)¢ for all u,v € V, &,¢ € R.
A o-sesquilinear form H is called o-antihermitian if
H(u,v) = —H(v,u) for all u,v € V.

A (o, A)-quadratic form is a pair ¢ = (H, Q) consisting of a o-antihermitian
form H and a map @ : V — R/A satisfying the following conditions for all



u,v €V, €€ R:

Q(v€) = E171Q(v)¢,
(u+v) Qu) + Q(v) + H(u,v) + A,
H(v,v) = a—a for any a € R such that Q(v) = a + A.

We denote H by (-,-)q and @ by |-|4. (-,-)q is called the associated antihermitian
form of ¢ and | - |, the associated quadratic form. The (o, A)-quadratic form q
is called nonsingular, if the map V' — Hompg(V, R), v — (v,-), is bijective.

A pair (V, q) is called a (o, A)-quadratic space.

Any o-sesquilinear form B determines a (o, A)-quadratic form by setting
(U‘:U)q = B(U,U) - B(U,U), |U|q = B(U,U) + A.

Let B denote a o-sesquilinear form on V. If A € Cent(R) then the o-
sesquilinear form AB (by definition (AB)(u,v) = AB(u,v)) is called similar to
B. Moreover, if {B(u,v)|u,v € V} contains a nonzero divisor and X is an
arbitrary element of R then AB is a o-sesquilinear if and only if A € Cent(R);
furthermore AB = X' B for some X € R if and only if A = X'. If in addition B
and A\B are o-antihermitian then A = A1. Indeed, choose u,v € V such that
B(u,v) is a nonzero divisor in R. Then

B(u,v)A = AB(u,v) = =AB(v,v) = —B(v,u)1 A = B(u,v)1 1},

hence A = Al

Let Ry = {¢€ € Cent(R)|§ = €1,6A C A}. Obviously Ry is a subring or
Cent(R). If ¢ = (H,Q) is a (o, A)-quadratic form on V and A € Rj then the
(0, A)-quadratic form Ag = (AH, AQ) is called similar to q. If {H (u,v)|u,v € V}
contains a nonzero divisor then A\¢ = X'¢ if and only if A = X', by the paragraph
above.

Let (V,q) and (V',q") be two (o,A)-quadratic spaces. An R-module ho-
momorphism f : V' — V' is an isometry if (fu, fv)y = (u,v)q, |fvly = |v]g
for all w,v € V, and a similitude if {(u,v)q|u,v € V} contains a nonzero di-
visor and there exists (a unique) A € Rp (called the multiplicator of f) such
that (fu, fv)y = A(w,v)q, |fv]lg = Av|q for all u,v € V. So an isometry is a
similitude with multiplicator 1.

If {e;}; € I is a family of generators V then it’s sufficient to check identities
from the definition of a similitude (or an isometry) only for the case when u and
v belong to this family. Indeed, if u =3, e;&;, v =3_, €;(; then

(fu, fo)g =D &1 (fei, fe)g G = A D &1 (e, €5)4G = Au,v)q,

2 %)

|fu|q’_z:£zl_1|fez|q gz+2€zl_ feufe]) f

i<j

2511 1|ez| £z+zgzl 1 61,6]) é‘]) /\|U|II'

i<j



A composition of two similitudes is clearly a similitude. So we have two
categories of (o, A)-quadratic spaces: in the first one, morphisms are isometries,
and in the second one morphisms are similitudes.

Suppose {(u,v)4|u,v € R} contains a nonzero divisor. Let U(V,q) denote
the group of all bijective isometries of (V, q) with itself and GU(V, q) the group
of all bijective similitudes of (V,q) with itself. U(V,q) is called unitary group
and GU(V, q) is called group of similitudes of (V,q).

Under the assumption above, the multiplicator of a similitude determines a
group homomorphism from GU(V, ¢) to the group Ry, whose kernel is clearly
U(V,q). Thus U(V,q) is a normal subgroup of GU(V, q).

4 Eichler-Siegel-Dickson transvections

Let u, v be elements of V, £, a be elements of R such that |u|, =0, (u,v), =0,
[vlg = @+ A. Define Ty, (€, ) to be a transformation of V' mapping w €
V to w + ué((v,w)y + a1 1Y (u, w),) + vI~ 117 (u,w),. Transformations
of this form are known as FEichler-Siegel-Dickson transvections. The following
properties are verified by a direct calculation:

Tuv (gga Oé) = Tu&,'u (Ca Oé) = Tu,vi—lf(‘fa Cai_lg)a

Tuw1 (&, ) Tu,05(C, B) = Ty ppy 118400112 (15
Eal™tE+ (BI7IC + £(v1,02),1710),
and if g € GU(V, ¢) has multiplicator X then
gTuv(faO‘)gil = Tgu,g0 (/\7157 Aa).
Lemma 2. T,,(§,a) belongs to U(V,q).
Proof. We may suppose that £ = 1. Let w € V; set a = (u,w)q, b = (v,w),.
Then
|Two (1, )w|y = |w +u(d+ ol ta) +v1 tal,
= |w|, + alv|,1 e — a(b + al™ta) — bl 'a.
But @b+ bl~'a € min? (R) C A, and
alvl;1"'a—aal™ta
Now let wi, w2 € V; set a1 = (u,wi)q, a2 = (u,wa2)q, b1 = (v,w1)g, ba =
(v,w2)q. Then
(T (1, @)w1, Ty (1, 0)w2) g = (w1 + u(by + al tay) +v1 tay,
wa +u(by + al ™ az) + v17tas), = (w1, w2)y + (b1 + @a1@) 1 as
+aiby — ay (b + al tag) — b1 tag + a1 (v,v),1 tay
= (w1, w2)y + a1((v,0), —a+a)l tay = (w1, ws),.

O



5 Hyperbolic unitary group

A family of vectors {e;}i=1,...n,—n,...,—1 in (V,q) is called hyperbolic if |e;|; =0
for all 4, (ei,ej)q = 0 for all j # =+i, and (ej,e_;)g = 1 for i = 1,...,n.
Then (e;,ej) = &;,—;1e;, where § is the Kronecker symbol, and &; equals to 1
ifi=1,...,n,and to =171 if § = —n,..., —1. The greatest n such that there
exists a hyperbolic family {e;}i=1,...n,—n,...—1 is called Witt indexz of quadratic
space (V,q) and denoted by ind(V).

Suppose V has a hyperbolic family {e; }i=1,...1,—1,...,—1 as a basis (that is (V, q)
has dimension 2] and Witt index [). The group U(V, q) (respectively, GU(V, q))
in this case is called hyperbolic and is denoted by U (R,0,A) (respectively,
GUy(R,0,A)). We fix o and will omit it in the notation.

Now we deduce explicit formulae determining whether an element of GLy;(R)
belongs to GUy (R, A) (or Uy (R, A)).

Since {e;} is a family of generators, g € GUy (R, A) if and only if (ge;, ge;)q =
Ai,—jle; = 8;,—j)e; and |gei|l, = O for all i,j. The second condition can be

rewritten in a form
l

Zgjig_ji € A for all 3. (GU2)
j=1
The first condition may be written as

ngiekg—kj = (5i,_j5\e,~ for all i, j. (GUI’)
k

Multiplying by g; _, on the right and summing by j, we obtain
Z Gri€kO—k,—h = A Z bi—jleig; p,
k J

or, equivalently, ~
Jhi = Aeig'_ii_he,jl for all i, h. (GU1)
Conversely, (GU1’) follows obviously from (GU1).

Now we can write conditions (GU1’) and (GU2’) for g—! and apply equation
(GU1). We have

Zgz’kskgj,—k = —51',—3‘)\6]-_1, (GU1”)
&
and
l
Zgi,—ji_lgi]’ €A. (GU2”)
j=1

To obtain equation for Uy (R, A) one has to substitute A = 1.

Now it’s easy to see that the functor mapping pair (R, A) to Uy (R, A) com-
mutes with filtered direct limits.

Denote by Ty (R, A) subgroup of GUy; (R, A) consisting of all diagonal matri-
ces. Let A € RY. Note that a matrix diag(1,...,1,,..., ) belongs to Ty (R, A)
and has a multiplicator A. So we have GUg (R, A) = Uy (R, A) Ty (R, A).



We consider GUg;_o(R,A) as a subgroup of GUg (R, A) consisting of ele-
ments preserving e; and line generated by e_;. That is a matrix g maps to a
matrix diag(1, g, \) where A is the multiplicator of g.

6 Elementary unitary group

Now we describe a subgroup of Uy (R, A) called elementary unitary group.
Set

Tij(é.) = Teie—j (_£6j70)= J # =+,
Ti,fi(a) = Teio(l,aei_l), where o € Ag;.

T;;(€) is called a short elementary transvection, and T; _;(a) a long elementary
transvection. They satisfies the following relations:

Tij(€) = T—j—i(e—;&es) (R1)
Ti5(€)Ti;(C) = Ti (€ +¢) (R2)
[Ti(€), The ()] =€, h#j,—i, k#4,—j (R3)
[T35(6), Tin ()] = Tin(&C),  i,h # £j, i # £h (R4)
[T35(€), Tj,—i(Q)] = Ts,—i(&¢ + €17 Eeq), j # +i (R5)
[T5; (), Tj,—j(@)] = Ti,—j(€a)Ti,—i(—Eae_jéei), j # +i. (R6)

They are related with elementary linear transvections by formulae (S1) —(S5):

Tij(€) = tij(E)t—j—i(e—j€ei), J§# *i (S1)
T —i(a) =t;,_i(a) (S2)
(T3 (&), tne(Q)] = €, h#j,—i, k#i,—j (S3)
[T3(6),tn(Q)] = tin(§C), h#i,—j (S4)
[T35(€), t5,—5(Q)] = Tj,— (€Q)ti,—i (—€Ce—j&ei)ts,—i(—(Ce—j + €;¢17 ") Ees), j ;é(si5;

The elementary unitary group EUy (R, A) is the group generated by all ele-
mentary transvections (both short and long).

Obviously, the functor mapping pair (R, A) to EUy(R,A) also commutes
with filtered direct limits.

Lemma 3. Letl > 3. Then EUy (R, A) is perfect.

Proof. From (R4) it follows that commutator subgroup contains all short ele-
mentary transvections, and from (R6) it follows that it contains also all long
elementary transvections. o

Lemma 4. Let [ > 2, g € GLy(R) such that gEUy(R,A)g™" < Uy(R,A).
Then g belongs to GUqy (R, A).



Proof. Since gT,c;(1,0)9~" belongs to Uy (R, A), we have
(gei,ge—i)q = (9Te.e;(1,0)€4, gTe e, (1,0)e_)q = (gei, ge_i + gejei)q-

Thus (ge;, ge;)q = 0 for all j # +i.
Next, one has

lge—ilq = |9Te;e; (1,0)e—ilg = |ge—i + gejeilq
= |9€—z'|q + (ge—z’agej)qei + 5i171|9€j|q6i-

Thus |ge;|q = 0 for all j.
Since gTe,e,(£,0)g " € Uy(R,A), we have

(ge—ia ge—j)q = (gTeiej (57 0)e—i7 gTEiej (67 O)G—j)q = (ge—i + geji_lgsia
ge—j + geikej)q = (ge—i,ge—j)q + Ei1E(gej, ge—j)q + (ge—i, gei)g€le;
+&17"¢(ge , gei) g E e

Thus &; '1(ge—_;, gei) & = —f(gej,ge_j)qu_li_l for all j # +i. But &;'1 = ¢;,
Ej_li’l = —e_j, s0 g;(ge_i, gei)€ = E(gej, ge_j)e_;.

Substituting £ = 1, we have ¢;(ge_;, ge;)q = (gej,ge_j)qe—;. Applying this
equation to the previous one, we see that (ge;, ge_;)q,e—; is central for all j.
Now we have (since (ge_;, ge;)q€; is central)

ci(ge_i,gei)q = €i(ge_i, gei)ecic; | = (ge_i, gei) i

Hence, (ge_i, gei)qei = (9ej,9€e_;)qe—; for all j # +i. Since [ > 2, an element
A = —(gej,ge_j)q,e—; does not depend on j. We show that A € Ry. We already
proved that X is central. Let o € A. Then

lge_1lqg = 9T 0(1,a)e_1]q = |ge_1 + geraly = [ge_1|, — Ac.

Thus Aa € A, hence AA C A.
Now it’s easy to verify that (ge;, gej)q = A(es, e;)q for all i, j, and therefore
g is a similitude with multiplicator A. O

7 Localization

Let Ry be a fixed subring of R such that Ry C Rp for every form parameter A.
The set of all maximal ideals of Ry will be denoted by Max(Ry).

All multiplicative systems considered below will be in Ry.

Let S be a multiplicative system. The image of R under the localization
homomorhism will be denoted by ”R” g.

Denote by As a set of all elements of the form ¢, a € A, s € S. It’s easy to
check that Ag is a form parameter of Rg.

A pair (Rs, As) can be represented as a filtered direct limit of pairs (R, As)
by all s € S.



Let V be a right R-module, B be a biadditive form on V, S be a multi-
plicative system. Define a biadditive form Bg on a module Vs = V ®r Rg as
follows:

U v
Bs(s’ t

It’s clear that if H is antihermitian then Hg is also antihermitian.

Similarly, if @ is a map V' — R/A satisfying the condition from the definition
of quadratic forms, define Qg to be a map Vg — Rg/Ag as follows:

):QS(:) wherev eV, s€ S.

B
) = % where u,v € V, s,t € S.

v
Qs(-
s
So we have a localization functor from a category of A-quadratic spaces to
a category of Ag-quadratic spaces mapping (V,q) to (Vs,qs) (we leave to the
reader defining a value of this functor on morphisms). As a consequence, we

have maps GU(V,q) — GU(Vs,¢s) and U(V,q) — U(Vs,qs). They clearly
coincide with restrictions of Fs : GL(V) — GL(Vs) defined as follows:

(Fs(g))(g) = @ where v € V, s € 8.

Lemma 5. Let V be a finite generated R-module, q¢ be a A-quadratic form.
Assume that V' contains vectors u,v such that (u,v), is a nonzero diwvisor. Fix
for every m € Max(Ry) a multiplicative system Sm C Ro \ m. Let g € GL(V).
Then g € GU(V,q) if and only if Fs_(g) € GU(Vs,,,qs,, ) for all m € Max(Rp).

Proof. Let {e;}i=1,...,n be a family of generators. We can assume that (e, e2)q
is a nonzero divisor. Suppose for each m € Max(Rg) Fs,(9) € GU(Vs,,,4qs,.)
and has multiplicator A\y. For each m € Max(Ry), there exists s, € Sm such
that

SmAm € ”R”Sm; say, SmAm = FSm (/J/m)’
Sm(geiagej)q = Nm(eiaej)qa
Smlgeilq = timleilq-

The ideal generated by all sy, is not contained in any maximal ideal of Ry. Thus,
there exist tm € Rp such that > tmsm =1. Set A =3 tmftm. Then we have

(geiagej)q = )‘(ei’ej)q’
lgeilqg = Aleilq-

It remains only to prove that A € Ry.

Note that A(e1,e2)y = (ge1,9€2)q = Am(e1,€2)q in Rg,, s0 A = Ay in Rg,_,
since (e1,e2), is a nonzero divisor also in Rg_ . Therefore, the image of A in
each Rgs_ is central, so A is central in R by the local-global principle.

Now we have to prove that AA C A. This is equivalent to showing that
the map my : A - R/A, a — MAa, is trivial. By the definition, the map
Mz, : As, = Rs,.[As, = (R/A)s,., @ — Ana, is trivial. Since A = Ay in
Rs,,, my, =myg,_ . Thus by the local-global prinicple, mj is trivial. O



8 Bak-Vaserstein lemma

Let {s) be a multiplicative system generated by an element s € Ry. We write
simply Ry, As, Fs instead of R(s), A(s>, F(S)

For £ € R; we denote by ords(§) the minimal non-negative integer N such
that sV¢ € " R”,. Obviously, ord,(€) = ord, ().

If s € S, we denote by EUy("sVR’5,”7sVA”s) where N is non-negative
integer the subgroup of EUy(Rs,Ag) generated by all elements of the form

T;;(558), € € Rfor j # +i and £ € A, for j = —

Lemma 6. Let ey,...,e,e_y,...,e_1 be a hyperbolic basis for V. Let v be a
vector in Vs orthogonal to e; and e_;, |vlq = o+ A;. Then for each N there
exists non-negative integer M (say, M = N + L, L = max{ord,(¢;),ords(a)},
where &; are the coefficients of v in the hyperbolic basis above) such that for all
§ € R: Teiv(sM€7 Oé) € EU(”SNR”SJ”SNA”S)'

Proof. Let v =73, ,.;€;§;. Then we have

l

HTeieJ 66 -t 0) e ,wi- 1€8M(1 2M€(Z£_j§—j)i_l ):
J

l
= Tooo(sM€,0)Te0(1, 52 M (Y £ 5)1718).

So T,,»(sM€,0) e EU(sNR”,,”sVA”,), as claimed. O
Lemma 7. Let g € GUy_2(Rs,A;). Then for each non-negative integer N
there exists non-negative integer M (say, M = 4(N + L), L = ords(\) +
ords(A™") + max{ord,(gi;), ords(9i;)}, where X is multiplicator of g) such that
gEUu("sMR”,,”sM A )g™" <EUy("s"R”,,”sVA”,).

Proof. It’s sufficient to prove that for all 4,7, £ € R

gTi;(sM€)g™ € EUgy("sVR”,,7sVA”).

First, suppose i = £1 or j = £1. We shall show that
gT;;(sM/%) g1 € EUy("sVR”,,7sVAY ).

By relation (R1) we can assume that ¢ = +1. Note that ge; = e;u, where p =1
for i =1and = A for i = —1.

10



Let j = —i. We have
9Ti;(sM/*E)g™" = gToi0(1,sM/ €27 1)g ™" = Teio(pA ™", 8™ Aee7 ™)
= Tij(sM/4X 1) € BUn("sV R7 4,75V A7),
Let j # +i. Note that ge; is orthogonal to e;. We have
9Ti;(sM*E)g™" = gTese_; (—sM/*¢2;,0)97" = Tey ge_; (=™ pX""¢¢;,0)

lies in EUqg("sVR”,,”sVA”,) by Lemma 6.
Now suppose i,j # 1. Let j # —i. Then we have by (R4)

9Ti;(sM€)g™" = [gTun(sM?)g™", gTu; (sM?€)g7 1],
so gT;;(sM&)g™1 lies in EUy ("sVR”,,7sVA” ).
Finally, let j = —i. We have by (R6)
9T;-i(sM€)g™
= gTi, 1(=s*M*¢e; M) g 9T (s™/*)g ™", gTh, 1 (M€ Mg 7],

s0 gT;,—i(sM&)g™" lies in EUy("sVR”5,”sVA”,) again. O

9 A-stable rank

We say that stable rank of R does not exceed n and denote this fact by sr(R) <
n, if for every unimodular column u = (ug,. .., u,+1)! of length n+ 1 there exist
elements &, ...,&, € R such that the column (u; + & Unt1,-- -, Un + .fnun+1)t
is also unimodular.

We say that local stable rank of R does not exceed n and denote this fact by
Isr(R) < m, if there exists subring Ry of R contained in Cent(R) such that for
every m € Max(Ry) there exists a multiplicative system S, C Ry \ m such that
sr(Rg, ) < n.

Proposition 1. Let n > lsr(R) + 1,3 and let A be an ideal of R. Then
[GL,(R,A),E,(R)] = E,(R,A).
In particular, E,(R) is normal in GL,(R).

Proof. This result was proved by Vaserstein, see [14, Corollary 14]. (He supposes
that Ry coincides with Cent(R) but he uses only the inclusion Ry C Cent(R).)
O

We say that A-stable rank of R does not exceed n and denote this fact by
Asr(R) < m, if sr(R) < n and for every unimodular column

— t
u = (ul,...,un+1,u_n_1,...,u_1)
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of length 2(n + 1) there exists an (n + 1) X (n + 1)-matrix a such that for all 4, j

Qij = Ap42—j,n+2—i,
Gint2-i €A,

and the column (uy,...,un41)t +a(u_n_1,...,u_1)! is also unimodular.
The conditions imply that the matrix

e a
0 e
belongs to EUy(,,41)(R, A); indeed, it’s equal to
H Ti,—j(asnt2—j)-

1<i<j<n+1

It’s proved in [4] that Asr(R) < asr(R) where asr is absolute stable rank;
for example, Asr(R) < 1 for a semilocal ring R. The definition and properties
of asr can be found in [12] and [10].

We say that local A-stable rank of R does not exceed n and denote this
fact by Alsr(R) < n, if there exists a subring Ry of R such that Ry C Rr
for every form parameter I' containing A, and for every m € Max(Ryp) there
exists a multiplicative system Sy C Rp \ m such that Ag_sr(Rs,, ) < n. Obvi-
ously, lsr(R) < Alsr(R) < Asr(R), and if A < T then I'sr(R) < Asr(R) and
Tisr(R) < Alsr(R).

Ring R is called weakly finite if every square matrix that has a one-side
inverse must be invertible. For instance, commutative rings are weakly finite.

Proposition 2. If sr(R) <1 then R is weakly finite.

Proof. By [13, Theorem 3], sr(Mu(R)) < 1 for all n, where M,,(R) is the ring of
all n x n-matrices. Then by Kaplansky-Lenstra theorem (see [11]) every element
of M,,(R) that has a one-side inverse is invertible. O

We say that the locally finite A-stable rank of R does not exceed n and
denote this fact by Alfsr(R) < n, if in the definition of local A-stable rank, we
insist that the rings Rgs,_ are weakly finite. Obviously, Alsr(R) < Alfsr(R),
and Tlfsr(R) < Alfsr(R)if A <T.

Proposition 3. If Alsr(R) <1 then Alfsr(R) < 1.

Proof. Indeed, sr(Rg,,) < 1, so these rings are weakly finite by Proposition 2.
O

Proposition 4. If R is module-finite over its center then Alsr(R) < 1.

Proof. Let Ry be a subring generated by all elements of the form £1-'¢ where
& € Cent(R). Set Sm = Ro \ m. Then Rg,, is semilocal (see [15, Lemma 1.4]),
hence Ag,_ sr(Rs, ) <1. Thus Alsr(R) <1,s0 Alfsr(R) < 1. O

Proposition 5. If asr(R) <1 then Alfsr(R) < 1.
Proof. Indeed, Alsr(R) < Asr(R) < asr(R) <1, hence Alfsr(R) < 1. O
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10 Witt’s theorem

Proposition 6. Let {v;}i=1,...m be a family of vectors such that there exist vec-
tors {v}}i=1,....m satisfying the condition (v},vi)q =0d;;. Let {e;}i=1,...n,—n,..,—1
be a hyperbolic family, where n > m + Asr(R). Then there exists an element
a € U(V,q) such that av; = e; +u; where u; € (e_;,...,e_1) for all i. Moreover,
if (V,q) is hyperbolic with a hyperbolic basis {€;}i=1,...1,—1,..,—1, L > n, we can
find such an element in EUgy (R, A).

Proof. This proposition was proved by Bak (see [1]) with BS(R) + 1 replacing
Asr(R) and central 1, where BS(R) =Bass-Serre dimension (R), and for the
case m = 1 with asr(R) + 1 replacing Asr(R) by van der Kallen, Magurn and
Vaserstein (see [12, Theorem 8.1]).

We prove our proposition using induction on m. Base m = 0 is trivial.

We shall use only elements of the form T,,,,(£, @) where w is orthogonal to
e; and e_;. If (V, q) is hyperbolic then these elements belong to EUy (R, A) by
Lemma 6 (with s = 1).

Denote v = v,,,. By the induction assumption, there exists o' € U(V,q)

such that a'v; = e; + u; where u; € {e_;,...,e_1) for all i < m — 1. We have
(a'vj,a'vy)q = ;5. Therefore we may assume from the very start that v; = e;+u;
where u; € (e_,...,e_1), and there exists v’ such that (v',v;); =0,i <m -1

and (v',v), = 1. We are looking for a € U(V, q) such that av; = v;, i <m —1,
av==e;+u,u € (e_m,...,e_1).

Set & = —ei(e—,v)q. Then v = Z‘i|<n e;& + w where (e;,w), = 0 for all
i=1,...,n,-n,...,—1. Next, (v',v), = 1, hence

R( Y, e+ W w)g)+ Y, RE=R
li|<m—1 m<[j|<n
Since sr(R) < Asr(R) < n —m, there exist v; € R such that
Y R&+ Y REGHw( Y (e + (,w),)) = R
—n<i<—m m<j<n |i]<m—1
Let v" =v"+ 37, < \jj<n €i€i(€—=j,v")q, [v"|g = a + A. Note that (v, w), =
(W', w)q, (V",ei)g = (V',ei)q and (v",v;)q = (v',v;)q =0 for all i <m — 1. Set
b= H Te]-,v” (’Yjaa)'

m<j<n

Then bv can be expressed in the form E\i|<n e;&} + w', where (e;,w'), = 0 for
all 4, and B

f_;zfja —TLSjS—m,
=6+ D>, We)bi+ @, w)y)+GE;, m<j<n

i|<m—1
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for some ¢; € R. Thus }_, - \;<, B = R.

But bvp, = v, for all h < m — 1, since e; and v"' are orthogonal to vy, for all
|m| < j < |n|. Therefore, by multiplying by b, we can assume from the very start
that v =} <, €i§i +w, where w is orthogonal to all e; and . . ; <, B¢ = R.

Let Vi = {em,---s€n,€—n,...,e_n) and Vs is the orthogonal complement to
V1 in V. Since Asr(R) < n—m, there exists an elementary matrix ¢ € U(V1, q|v;)
such that ¢(3_,,< j<n €;§;) hasaform }°, o\, €;&; where - ., R{; =R
Replace v by (¢ @ idy, Jv; so we can assume that already 3°, ;< R§; = R.

Now by replacing v with T, ._;(—¢,0)v, m < i,j < n, we change §; to &+4(¢;
without affecting the other coefficient among &, .. .,&,. Since sr(R) < n —m,
we can perform a sequence of such transvections until &, = 1.

Set

d=T. o0 a) ][] Teen(&,0)
m+1<|i|<n
with any a such that |w|; = a+A. Then dv has a form ngm_l ei&itemte_mé
and d acts trivially on v;, ¢ < m—1. So we can assume that v = ngm—l ei&i+
em + e_mé.

Let f = H:’;l Te.e_..(&:,0). Then fv has the required form e, + u' where
u € (e_m,---,e_1). But fu; = v; + e_,,,¢; for some (; € R. Now set g =
H::l Te_,.e_;(G,0). Then gfv; = v; for i <m —1 and gfv = e, + u where
u € {é_m,--.,€_1), that finishes the proof. O

Subspace U of quadratic space (V, q) is called non-singular relative to V if for
every R-linear map f : U — R there exists vector v € V such that (v,u), = f(u)
forallu € U.

Theorem 1. Let Vi and Va be free non-singular relative to V' subspaces of V,
g : Vi = Vs is isometry and ind(V') > dim(V1) + Asr(R). Then there exists an
isometry a : V. — V such that a|ly, = g. Moreover, if V is hyperbolic, we can
find elementary one.

Proof. Let dim(V1) = m, {v;}i=1,.,m be a basis of Vi. Then {g(vi)}i=1,....m
is a basis of V2. By the condition, there exist vectors vf,...,v!, such that
(vi,vj)q = 6;5. Letey,..., e, be ahyperbolic family of V', where n = m+Asr(R),
By Proposition 6, there exists isometry a sich that av; = ei+Z§:1 e_;&;; where
&i; € R. Similarly, there exists isometry b such that bg(v;) =e; + E;Zl e—;Gij-

Note that &;+A = 17 av;|, = 171|bg(v;)|q = Cis+A. Therefore, multiplying
a by appropriate transvections T._,o(c;), we can assume that &; = ;. Further,
if j < then &; = 17 (avi, avy), = 171 (bg(vi),bg(v;))q = Cij- So av; = bg(v;),
and b~ 'a is required isometry. O

11 Surjective stability of KU,

Proposition 7. Letl > Asr(R) + 1. Then
GUax (R, A) = EUs(R, A) GUs_2(R, A).
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Proof. This statement was proved by Bak (see [1]) with BS(R) + 1 replacing
Asr(R) and central 1 and by Vaserstein and You (see [15, Proposition 2.3]) with
asr(R) + 1 replacing Asr(R). See also [4, Theorem 1.1] for hermitian groups.

First note that by Lemma 7 (where we set s = 1) GUy_2(R, A) normalizes
EUq (R, A), so the right-hand side of the equality is a group.

Let g € GUy (R, A). Note that (ge_1,—ge1A 1), = 1 (X is the multiplicator
of g). By Proposition 6 there exists element a € EUqy(R,A) such that the
ager = e1 + e_1€ for some £ € R. But & = 17'|agei|, = 0 in RLa, so,
multiplying by T_; 1(—£) on the left, we can assume that ge; = ey, that is the
first column of g coincides with the first column of the identity matrix.

Now, multiplying g by [] J T1j(—g1;) on the right, we obtain a matrix
whose first row equals (1,0,...,0,(). But ¢ € A (by (GU2”)), so we can multiply
by T1,—1(—() on the right in order to get a matrix, whose first column and first
row coincide with the first column and the first row of the identity matrix, and,
therefore, belonging to GUg_2 (R, A). O

Corollary. Let 1 > Asr(R) + 1. Then Uy (R) = EUg(R) Ugy_o(R).

Remark. This result actually says that for | > Asr(R) + 1 the canonical map
KU1,2172(R, A) — KUl,zl (R, A)

is surjective, where KUj oj(R,A) = Uy (R,A)/ EUy(R,A) is the unitary K-
functor.

Proposition 8. Letl > Alsr(R) +1,3. Then EUqy(R,A) < GUy (R, A).

Proof. Since GUy(R,A) = Ugy(R,A) Ty (R, A) and Ty (R, A) obviously normal-
izes EUy (R, A), it’s sufficient to prove that EUy (R, A) is normal in Uy (R, A).
But this fact was proved by Vaserstein and You, [15, Theorem 1.1]. (They
formulate it in the terms of asr, but they use only the property of stability
of KU; in rings obtained by localization.) See also [5, Theorem 1.1] and [7,
Theorem 4.4] for the case of almost commutative rings and central 1. O

12 Conjugation calculus

Lemma 8. Letl > 3, g € EUy(R,,A;). Then for every non-negative integer
N there exists a non-negative integer M such that

gEU2l (”SMR”sa ”SMA,’3)971 S EUQl(”SNR”g, ”SNA”S).

Proof. This lemma was proved by Hazrat, see [7, Lemma 4.1], but he supposes
that 1 is central, so we reproduce his proof here. Compare also [15, Lemma 3.1].

We have to prove that for every £ € Ry and every non-negative integer N
there exists non-negative integer M such that for all ¢ # j, h# kand all { € R
LTy (sM¢) € EUy(?sVR?,,”sVA”,). Then induction on the length of g
completes proof.
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Set M = 4(N + ords(§)).

First, if h # j,—i, k # i,—j, we can apply (R3), and there is nothing to
prove. So we can assume h = j (other cases reduce to this using (R1)).

Case I. j # —i.

Subcase 1.1 k # +i,j. We can apply (R4).

Subcase 1.2 k = —i. We can apply (R5).

Subcase 1.3 k = —j. We can apply (R6).

Subcase 1.4 k = j. Pick r # +i,£j. We have

Tji(s™¢) = [Tjr (M), Tra(sM72()).

Now T (&) Ty, (sM/2) = T}, (sM/2)T;,.(sM/?) € EUy("sVR”5,7sNVA” ), and

Tz’j(&)TM(SMﬂO — T_]-,_,-(s_]-g’s,-)Tii 77-(571'8M/2C_.Er)
=T ; _(—e_jsM 207 e, )T i _,(e_i5M/%(e,) € EUy("sV R, 7 sV A?,).

Case II. j = —i.
Subcase I1.1 k # i. We have

TimilOT 4 (sMC) = [Toi(sMQ), Ti, s (6)] 1 Tix (s™¢)
= [T_pi(e_rs™Ce_s), Ty —i (€)' T_ir (s™()
= (T_p,—i(e—rCe—is™E)T_pp(—e—rCe—is®™EQ)) ' Toir(s™(Q)

lies in EUy ("sVR”,,” sV A”}).
Subcase I1.2 k = 4. Pick r # +i. We have
T ii(sM¢) =T i (=M Ceie )T ir(s™/*), T,

—-r

(5™ CeieZ)).

b

Now, as in the Subcase II.1, one can verify that Ti—i(O)T_; _, (—s3M/4(¢g;e71)

and To-iOT_; (sM/4) belong to EUs ("sV R 5,7 sV A”,). O

Lemma 9. Let S be a multiplicative system of Rg, Il > Asr(Rs) + 1. Let g €
GUy(Rs,As), £ € Rg, j #i. Then there exists s € S satisfying the following
condition: for every mon-negative integer N there exists My not depending on
the pair (i,7) such that for all M > My

gTi;(sM&)g™" € EUy("sV R 5,75V A7 5),

Proof. Since | > Asr(Rs) + 1, we can find elements a € EUqy(Rs,As), b €
Uy 2(Rs,As), d € To(Rs,As) such that g = abd. Denote the multiplicator of
d by A. Then we have:

dhk = 07 h 75 k: (Tl)
dnn = Aend_y, _pey ", and, if j = —i, (T2)
Mgt € As. (T3)
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Since Rg is a filtered direct limit of R, s € S, and EU and U commutes
with limits, we can find s € S such that s§ € "R”;, and there exist elements
i € EUgy(Rs,Ay), b € Uy_s(R,, A,) and d € GLy(R,, A,) satifying condition
Fs(@) = a, Fs(b) = b, Fs(d) = d, and equations (T1)—(T3) hold (with d instead
of d and A, instead of Ag). Set § = dbd; so Fs(j) = g.

Let K denote a non-negative integer. Let j # —i. Then dTj;(sM¢)d ' =
Ty (dizs™ fcig-j) obviously belongs to EUy; (" sE R”,,”sKA”,) for a sufficient large
M.

Let j = —i. Then dT; _;(sM&)d~" = T; _i(dis™ A\ ~'¢e; ' 1~ djie;) also be-
longs to EUy ("s®E R”,”s%A”,) for a sufficiently large M.

Now we can apply Lemma 7 and Lemma 8 and conclude that f}T,-j(sM &gt
lies in EUy ("sNVR”,,7sVA”;). Hence gT;;(sM€)g~! = Fs(§Ti;(s™€)g 1) be-
longs to EUy("sVR”s,”sVA”s). O

Lemma 10. Let I > 3, s an element of R, and H a subgroup of GLo(R;)
containing EUqy ("sVR” 5,7 sV A7) Set A;j = {€ € Rs|ti; () € H}. Then A;j
are additive subgroups of Rs and the following relations hold:

1) s*NRA;jRC Apk, i # £j, h # *k,

2) s*NRA;;R C Ak, i # £j, h # *k,

3) s"NRA;RC Ap,_p, i # £j,

4) ifa € A;_; and s¥a € "R, then sV K (ag;! —;a)R € Ajn, j # £h,
5) ifa € A;_; and s¥a € "R”, then s'?Nt2K¢ae_;fe; € Aj_j for all € € R.

Proof. 1) Let h # +i,+j, £ € Rs,( € R. Then we have

[Thi(s™ ), ti5 ()] = thj(s™ CE),

so s"RA;; C Apj. If h = i or h = —i, we can pick k # =+i,4j. Then
SNRAz']‘ C Ak]‘ and SNRAkJ‘ C Ap;, so S2NRAU - Ahj.
Similarly,

[t:5(€), Tyr(s™ Q)] = tar (sVEQ),

hence s?N A;; R C Ay, for all k. Now s*NRAR C s*N ApjR C Api.

2) _Let £ e Az'j. Then t,j,,i(s,j&ti) = Tij(f)t,'j (—f) So &€ RA,j,,iR, and
S4NR§R € Ank.

3) Let £ € Ag,_p. Pick k # +h. Then

[Tk (s™), te,—n(&)] = th,—n(s™E).

Now S5NRA,']'R g SNAk’_h g Ah,—h-

4) Pick k # +i, r # +i,£k. We have

[Tki (sV ), £, i(a)]

= T,—i (N a)ty (s VT K ae; e )ty —i(sV T (ag; ! — ei@)er).
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So we have ty, 1 (s?NT2Kae; tep)ty, i(sV K (ag;! — e;@)er) € H. By com-
muting with T, (s") on the left, we obtain t. ;(s?V*X(ag; ' —¢;a)er)) € H.
Hence sVt &(ae; ' —e;@)R € Ajp,.

5) We have

[T5i (s*NH5€), b5, —i(a)] =

Tj—i(s*NtE¢a)t; (=N 2R eae_iej)t) i (8PN H (ag; ' — ga) 171 Eg;).

But by 4) t;,_;(sN K (ag; ! — e;a)171€e;) belongs to H, so s2V+2K¢ae ;&g
lies in Aj,—j- O

Lemma 11. Let | > 3, g € EUy(R,,As), £ € Ry, j # i. Then for every
non-negative integer N there exists a non-negative integer My not depending on
the pair (i,7) such that for all M > My

gti;(sM€)g™" € (ti;(€), EUn("sVR”,,7sVA,)).

Proof. Set H = (t;;(£), EUy("sVR”,,7sVA”,)).

We have to prove that given &, ( € Rs; and a non-negative integer N there
exists non-negative integer My such that for all ¢ # j, h # k and all M >
My, T(Ot;;(sM¢) € H. Then induction on the length of g (using Lemma 8)
completes proof.

Set Moy = 12N + 20rd;s(§) + 20rd,(¢).

First, if h # j,—i, k # i,—j, we can apply (S3), and there is nothing to
prove. So we can assume k = i (other cases reduce to this using (R1), (S1), and
Lemma 8).

Case L. j # —i.

Subcase 1.1 h # j. We can apply (S4) and Lemma 10.

Subcase 1.2 h = j. Pick r # +i,+j. We have

tij(s™€) = [T (s™/%), t,5(s™/¢)).
Now Ti#(Q Ty, (sM/2) = T, (sM/2() T (sM/?) € H, and
T8Ot (5M/26) = tra (=M€t (sM1%¢)

belongs to H by Lemma 10.
Case II. j = —i.
Subcase II.1 h # —i. We can apply (S5) and Lemma 10.
Subcase I1.2 h = —i. Pick r # +i. We have

ti,—i(s™/%€) = [Tin(sM/?), tr,_s(s™/€)).
Now
T_“(C)Tir(sM/z) = (T—ri(_er_leisM/on—rr(Er_lsisMC))_lTir(sM/z) €H,

and T-(O¢, _;(sM/2¢) = t,,(—sM/2¢¢) € H by Lemma 10. O
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Lemma 12. Letl > 2, A be an ideal of R. Then
EUy; (R,min? (R)) Eo (A) =Ey (R, A).

Proof. Denote the left-hand side by H. Clearly, H < Eg(R, A). By Lemma 1
it’s sufficient to prove that z;;(£,¢) = %i(9¢;;(¢) € Hforall j #4,( € R, £ € A.
If j # —i one has z;;(&,¢) = Tii(9¢;;(€) belongs to H. It remains to verify that
Zi,—i(é.a C) €H.

Pick j # %i. Then ¢;,_;(§) = [ti;(£),t;,—:(1)]. We have

2i,-i(6, Q) = 1O [t55(€), t5,-5 (V)] = [t ()45 (€), 15 (=)t (1)]-

Set a = t;;(§), b=1t_4;(¢&), ¢ =t (— ) t;,—i(1). We have to prove that
[ab, cd] = ®[b, ] - *°[b,d] - [a,¢] - °[a,d] € H We show that all factors belong to
H.
€),t5i(=0)] = [t65(8), Tyi(=0)] € H.

[b c] [ ij Cﬁ) ( C)] - t—zz( C§C) € E2Z(A)>
so %[b,c] € H, since a € Ey(A).
(

1] =404 (€)= tj,—i(—CE)ti,—i(€) € En(A).

i (
(
“la,d] = O [t5(8), tj,—i

°[b,d] = 15Ot _55(CE), 1, o(1)] = Tt (e 5(C8), 15, 5(1)]
= T (O ([t_3;(CE), tj—i (), (—e_iCe;)])
=T O ([t 45(CE), 1, i(V)]ts, i (—Ce z'C_Ej)t i,—j(—C&e—iCe;))
=T (= ([t_45 (CE), Ty —s(V)]tj_j (—CEe_iCej)t_i_j(—CEe_iCej)) € H
hence *[b,d] € H. H

13 Extraction of transvections

Throughout this section H is a subgroup of GLgy(R) containing EUy (R, A),
1>3.

We say that an elementary linear transvection ¢;;(£) in GLy(R) is non-
trivial, if j # —i and £ #0, or j = —i and £ ¢ Ae;.

Lemma 13. Assume that there exist elements g € H, s € Ry, £ € R such
that Fy(g) = t;;(£) is a non-trivial transvection. Then H contains a non-trivial
transvection.

Proof. We have Fs(t;;(—€)g) = e, so g = t;;(£)a where a € GLy (R, Ann(sX))
for some K. So the element a commutes with every element of the form T} (s%).
First, let j # +i. Pick k # +i,+5. We have

[9, Tjr(s™)] = [ts;()a, Tie (s™)] = [ti; (€), Tjn(s)] = tir(s%€).
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It’s a non-trivial transvection, since £ # 0 in R;.
Let now j = —i. Pick k # +i, h # +i, £k. We have

[9, T—ik(s™)] = [ti,—i(E)a, Tk (s%)] = [ti,—i (&), Tir (s™)]
=T j_i(se; e i&)t_pu(—s* e e i) tin (s (€ — e4€ey))-

Hence H contains the factor z = tope(—s2Ker e iE)tin (s ({_—Ez{ei)). Consider
[Thi(1), 2] = thr (s (€ —eiée;)) € H. If it’s trivial, s% (£ —g;€e;) = 0, so z itself
is a non-trivial transvection. O

Fix a multiplicative system S.

Lemma 14. Assume that there exist elements g € H, a € EUy(Rs, As) such
that aFs(g)a™" = t;;(€) is a non-trivial transvection. Then H contains a non-
trivial transvection.

Proof. Since Rg is a filtered direct limit of R, s € S, and EU commutes with
limits, we can assume that S = (s). We know that F,(H) contains a='¢;;(£)a.
On the other hand, by Lemma 8 there exists IV such that

a—l EUzl (”SNR”S, 9 SNA”S)G S EUzl (” R”s, 9 A”s) S Fs (H)
So Fs(H) contains the group
ail<tz’j (f); EUQl (”SNR”S, 9 SNA”S))CL.

By Lemma 11, F;(H) contains t;;(sM¢) for a sufficient large M. Now we can
apply Lemma 13. O

In the sequel we assume that I > Asr(Rg) + 1.

Lemma 15. Assume that there exist elements g € H, a € EUy(Rg,As),
b € GUy(Rs,As) such that aFs(g)b = t1,—1(a)ta,—2(B8)t1,—2(£)t2,—1(¢) does
not belong to Us(Rs,Ag). Then H contains a non-trivial transvection.

Proof. Multiplying by T _1(—() on the right, we can assume that { = 0.
By Lemmas 9 and 8 there exist s € S and M such that bT_»3(sM)b~! €
EU2l (” R”S, ” A” S) and

a ! EUy (aastords (ﬂ)R”S, aastords(ﬂ)AwS)a < EUy (”R”S; ”A”S).

Sox = aFs(g)bT_23(sM)b"1Fs(g) ta~!isaproduct aFs(g,)a ! where g; € H.
On the other hand, we have

z = Tos(sMB)t_s,_o(—sMI7H(B — B))t_s3(s*M 17 B)t13(sM )T 23 (s™).

Hence aFs(H)a™! contains the factor

y=t_5_o(—sMT (B = B))t_s3(s*MT 1B)t13(sM&).
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Consider an element [T o1(sM),y] = t_23(s?M€). We see that if £ # 0 then
aFs(H)a™! contains a non-trivial transvection, and we can apply Lemma 14.
So we can assume & = 0. Similarly, by commuting with T_s;(s™) on the right,
we see that 3 = 8. But then y = ¢t_33(s?M1713), so B € A.

Similarly we can prove that a € A. But this contradicts our assumption
that aFs(g)b ¢ Ux(Rs, As). O

Let Y be a subgroup of GLg(Rs) generated by all transvections of the
following forms: tlj(f), t2j(£), ti 1 (€) and ti,,g(g),j #1,2,1# -2,—1,£ € Rg.
Clearly, z € Y if and only if z;; = J;; for all ¢, j such that j =1,20r3 = -2,-1
ori,j#+1,+2.

Lemma 16. Assume that there exist elements g € H, a € EUqgy(Rg,Ag), b €
GUy(Rs,As) such that aFs(g)b =y € Y \ Uy (Rs,As). Then H contains a
non-trivial transvection.

Proof. Multiplying y by Hi;ﬁjﬂ’i2 T1i(—y1s) Hj;é:tl,:l:2 T5;(—y2;) on the right,
we can assume that all columns of y except the two last one coincide with the
corresponding columns of the identity matrix.

Fix an index ¢ # £1,£2. By Lemma 9 there exist s € S and M such that
bTy;(s™)b~! and aT1;(s™V)a~! belong to EUy("R”s,”A”s). So

T = [y,le(sM)] = an(g)bTij(sM)b_117’5(g)_la_lle(—sM)aa_1

has a form aFs(g;)a* for some g; € H. On the other hand, by direct calcula-
tion we obtain that 2 = t;,_»(s™y} _,)t1,_1(s™yj _,). Therefore, if H does not
contain any non-trivial transvection then by Lemma 15 yé,—1 = 0. Similarly,
we can prove that yg,_2 = (0. But then y itself has the form required to apply
Lemma 15. o

In the sequel we assume additionally that Rg is weakly finite.

Lemma 17. Assume that there exist elements g € H, a € EUy(Rs,As),
b € GUy(Rgs,Ag) such that x = aFs(g)b ¢ GUy(Rs, Ag) satisfies the following
conditions: the first and the second columns of x coincides with the correspond-
ing columns of the identity matriz, and, moreover, t_s; = x_1; = 0 for all
j# —2,—1. Then H contains a non-trivial transvection.

($—2,—2 37—2,—1)
T_1,-2 T-1,-1
is invertible on the right. But then it’s invertible, since Rg is weakly finite.
Thus 2’ ,; = 2’ 1; =0 for all j # -2, -1.

Fix an index j # +1,+2. By Lemma 9 there exist s € S and non-negative
integer M such that bTy;(s™)b~' € EUy("R’s,”A”s). So y; = zTy,;(sM)z~!

Proof. Note that the matrix
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has the form aFs(g;)a~" for some g; € H. On the other hand, direct calculation
shows that

_ M r1k 1. k2 1. k1
yj=e+s (E Tie — E T,—jE; T_q,_ne — E Tg,—j€j T_i _1€ ).
& & &

Note that this matrix belongs to Y. Hence, if H does not contain a non-
trivial transvection, by Lemma 16 y; € Uy (Rs,As). So we have the following
equations:

Tp, 5 =0, k#+£1,+£2,
By =lepa g, je;'aly _y, k#+£L (X1)

Similarly, by considering matrix z; = 2T%;(s™)z "1, we obtain the following

equations:
.’L'k,_j.Z'I_Z’_l = 0, k 75 :|:1, :|:2,
By = lerz y, je; a0y o, k# £2. (X2)

Now note that our assumption on z implies that matrix Z obtained from
z by deleting the 1-st, the 2-nd, the —2-nd and the —1-st rows and columns
is invertible. Hence the left ideal generated by the elements x,_;, k # £1,42
coincides with R. Therefore,z’ ; ,=12", ; =0andz’;, ; =2', ,. Denote
.’L'I,]_’,]_ by A

We show that A € Rs,,. By Lemma 9, for every { € Rs there exist s € S
and M such that b7y _»(sM&)b~! € EUy ("R’ 5,”A”s); s0 ¢ = 2T, _o(sM &)1
has the form aFgs(g2)a™! for some go € H. But ¢ = t1,_o(sMEN)ty _1(sMEN).
Hence, by Lemma 15, if H does not contain any non-trivial transvection, ¢ €
Usi(Rs,As). So €A = A1 for all £ € Rg, hence A = Al and A € Cent(Rs).

Let a € As. By Lemma 9 there exist s € S and M such that bT7, 1(s™a)b™!
lies in EUg ("R s,”A”s); so d = 2T1,—1(sMa)z ™! has the form aFs(g3)a~! for
some g3 € H. But d = t;,_1(s™Xa). Hence, by Lemma 15, if H does not
contain any non-trivial transvection, d € Uy (Rg,As), so Ada € Ag.

Now it follows from (X1) that # satisfies (GU1) (with multiplicator A~1).
We show that Z satisfies also (GU2’). By (GUZ2’) for y; we have

1
SM(E‘;-,71 - )\:l?l,_j{:‘;l) + SQM)\QEJ'(Z .@k7_j$_k7_j)6;l € As.
k=2
But from (X2) for K = —1 we obtain that the first summand lies in min? (Rg).
So Z belongs to GUs;_4(Rgs,As) with multiplicator A~1.
Now consider matrix z - diag(1,1,Z71, A\, A). It has the form aFs(g)b; with
by € GUy(Rs,As) and lies in Y'; so we can apply Lemma 16. O

Lemma 18. Assume that there exist elements g € H, a € EUy(Rg,Ag), b €
GUsy(Rs,As) such that the first and the second columns of the matriz x =
aFs(9)b ¢ GUy(Rs,As) coincide with the corresponding columns of the identity
matriz. Then H contains a non-trivial transvection.
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Proof. By Lemma 9 there exist s € S and M such that the matrix Ty, o (s™)b™!
belongs to EUy ("R”s,”A”5). So y = 11, 2(s™)z~! has the form aFs(g1)a™?
for some ¢g; € H. On the other hand, direct calculation shows that

y=e+ SM(Z gl yiett + 1aly;e?).
i

Note that this matrix belongs to Y. Hence, if H does not contain a non-trivial
transvection, by Lemma 16 y € Uy (Rs, Ag). But then we have 2’ ,, =2’ ;;, =0
for all i # £+1,+2, and we can apply Lemma 17. O

Lemma 19. Assume that there exist elements g € H, a € GUy(Rs,As), such
that x = aFs(g) ¢ GUx(Rs, As) satisfies the following condition: z;; = x;o =0
for alli # £1,+2, and 1 > 4. Then H contains a non-trivial transvection.

Proof. Fix indices 4,7 # £1,+2 and an element £ € Rg. By Lemma 9 there
exist s € S and M such that a 1T};(sM&)a € EUy("R”s,”A’s). Soy =
z7T;;(€)z has the form Fs(g1) for some g; € H. But it’s easy to see that the
first and the second columns of y coincide with the corresponding columns of
the identity matrix. Hence, by Lemma 18, if H does not contain any non-trivial
transvections then y € GUg(Rs, As). Denote the multiplicator of y by A.

Since y € GUg(Rs,As), the —2-nd and the —1-st rows of y coincides with
the corresponding rows of the matrix Ae. So we have

sM(a! i€ + 3y je_jéeim_in) = (A = 1)6_1x for all k, if j # —i,
sMy! oy = (A —1)d_qy for all k, if j = —i.

Suppose that { = 1, j # —i. Multiplying by z}, on the right and summing over
k, we obtain

sM(z! ;0 — &'y e teib_in) = (A — 1)z, for all h,

that is,
a =M - Dz’
i= —s M\ - 1)5’3,—1,—1'52'_151';

A=1z'y, =0, h#j,—i.

!
Ty _

Hence (A — 1)%2’ ;, = 0 for all h, so (A —1)* =0.

Consider the ideal I generated by all elements of the form A — 1, where A is
the multiplicator of z7*T};(1)z, j # —i. Since A is central and (A — 1) = 0,
I is contained in Jacobson radical of Rg. Let A be the left ideal generated by
the elements z’ ;, i # +£1,+2. From our equations we obtain that A = A. By
Nakayama lemma, A = 0, so all ' ;; = 0. Similarly, 2’ ,; = 0.

Now we see that the multiplicator of z'T;;(£)z is equal to 1, that is
z7'T;;(€)z € Uy(Rs, As).

Denote by Z (respectively, Z') the matrix obtained from z (respectively,
x71) by deleting the 1-st, the 2-nd, the —2-nd and the —1-st rows and columns.
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We see that 2’ = e; so & = #~'. Further, #7'T;;(§)Z € Uy_4(Rs,As).
Therefore, by Lemma 4, & € GUg_4(Rg,As); denote its multiplicator by u.
Now consider matrix z = ! diag(1,1,%, u, ). It has the form Fs(g)b, b €
GUy(Rs,As), and z;; = 6;; for all 4 # 1,2, j # £1,+2. Multiplying z by some
elementary unitary transvections on the left, we get a matrix whose 3-rd and
4-th columns coincide with the corresponding columns of the identity matrix;
further, multiplying on the right by some elementary unitary permutation, we
obtain a matrix 2; satisfying the properties of the element x in Lemma 18. This
finishes the proof. O

Lemma 20. Assume that | > Asr(R)+ 2,4, and there ezists an element g € H
such that Fs(g) does not belong to GUqg(Rg,As). Then H contains a non-trivial
transvection.

Proof. If u is any row of length 2[, denote by @ the column

= = T-15 T—1- 1\t
(u,l,...,u,l,—l ul,...,—l ul).

It’s clear that (&, v), = uv for every column v € R?.

Denote by v; and vy the first and the second columns of z = Fs(g) and by
uy and uy the first and the second rows of 1. Set v} = 4y, vh = 2. We have
(v, vj)qg = 835, 1,7 = 1,2. By Proposition 6 there exists element a € EUy (R, A)
such that av; € (e1,e_1) and avs € (e2,e_2,e_1). But then matrix az satisfies
the conditions of matrix z in Lemma 19. O

Lemma 21. Let I > Alfsr(R) + 2,4. Then either H < GUy(R,A), or H
contains a non-trivial transvection.

Proof. Fix for every m € Max(Rg) a multiplicative system Sy, such that | >
As, sr(Rs,,) + 2 and Rg,, is weakly finite. Suppose that there exists g € H \
GUy(R,A). By Lemma 5, there exists m € Max(Ry) such that Fs_(g) ¢
GUy(Rs,,,As,, ). Hence by Lemma 20 H contains a non-trivial transvection.

O

14 Ideal form parameters and
corresponding subgroups

An ideal form parameter is a pair (A,T") consisting of an ideal A of R and an
additive subgroup I' of R such that the following conditions hold:
A=A,
min’ (R) + A<T,
I'/A is a form parameter of R/A.
We say that (A,T) contains (B,A) if A> Band T > A.
The elementary group of level (A,T) is by definition the group generated by

EUg (R, min? (R)), Ey(A) and all elements of the form ¢; _;(a) where a € T¢;.
We denote it by EEUy (R, A,T). It’s clear that EEUy (R, 0,A) = EUy (R, A).
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Lemma 22. Letl > 3. Then EEUy (R, A,T) is perfect.

Proof. Denote by H the commutator subgroup of EEUy; (R, A,T"). By Lemma 3,
EUy(R,min? (R)) < H. Consider an element t;;(§), j # %i, £ € A. Pick an
index k # +i,%j. We have ¢;;(§) = [Tix(1),tr;(€)] € H. Finally, let a € Te;.
Pick k # +i. Then

[T,-k(l),tk,,k(aezflek)] = Ti,,k(aejlek)tk,,i(aafl — 6i0_£) i,,i(a).

But we already proved that H contains EUg (R, min?(R)) and E(A4). So
ti7_z~(a) € H. O

Let pa denote the reduction homomorphism GLy(R) — GLoy(R/A). We
obviously have p4(EEUy (R, A,T")) = EUy(R/A,T'/A). Define the congruence
general unitary group of level (A,T) to be the group p;' (GUy(R/A,T/A)). We
denote it by CGUy (R, A,T). For example CGUy (R, 0, A) is simply GUy (R, A).

An element g € GLy (R, A) belongs to CGUy (R, A,T) if and only if there
exists A € Rr such that the following conditions hold:

Ghi = Aeig'; _pe, " mod A for all i, h, (CGU1)
!

> gjigji € T for all i. (CGU2Y)

j=1

The condition (CGU2’) may be replaced by

1
Zgi,,ﬂ*lgzj e T for all . (CGU2”)

j=1

Theorem 2. Letl > Isr(R) + 1,(T/A)lsr(R/A) + 1,3. Then CGUy(R, A,T)
is the normalizer of EEUy (R, A, T).

Proof. Denote CGUy (R, A,T) by C and EEUy (R, A,T) by E.
By Proposition 8, EUy(R/A,T'/A) is normal in GUy(R/A,T/A). Hence
pA([C, E]) < EUx(R/A,T/A), so

[C,E] < E - GLy(R, A). (C1)

Note that
[GLy (R, A),E(R)] < Ey(R,A) < E

by Proposition 1 and Lemma 12. So we have
[C,EL,E]<E. (C2)

By Lemma 22, it’s sufficient to prove that for alla € C, b,c € E [a,[b,c]] € E.
The Hall identity implies that

[a, [b,d]] = [[a,c ], [c ac, b]b][[cac, b], bc].
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The second factor lies in E by (C2). By (C1) we can express [a,c™!] in the form
zy where ¢ € E, y € GLy (R, A). Denote [cac,b]b by z. We have to prove
that [zy,z] € E. Now [zy, 2] = *[y, #][z, 2]. But

[yaz] < [GL2Z(R7 A)7E2Z(R)] < E.
So it remains to prove that [z, z] € E. But
[z, 2] = [z, [c  ac, b]|[[c " ac, V], [z, b]][x, b],

and by (C2) all factors belong to E.

Conversely, if g € GLy(R) normalizes EEUy (R, A,T'), then pa(g) nor-
malizes EUy(R/A,T'/A), hence by Lemma 4 pa(g) € GUy(R/A,T/A), so
ge CGUQ[(R, A, F) O

15 Main theorem

Theorem 3. Suppose that | > 4 and for every ideal A in R such that A = A
1> (A+A/A)lIfsr(R/A)+2. Then for every subgroup H in GLoy(R) containing
EUy (R, A) there exists a unique ideal form parameter (A,T') containing (0,A)
such that

EEUy (R, A,T) < H < CGUy(R, A,T).

Proof. Tt follows from the conditions (CGU1), (CGU2’) that if
EEUy(R,B,A) < CGUy(R,A,T)

then (B, A) < (A,T). So the uniqueness of (A,T) is obvious.

Set A = {{|t;j(&) € H} (j # +i) and T = {a|t; _i(ae;) € H}. It follows
from Lemma 10 (with s = 1) that A and T" do not depend on choice of 4, j and
(A,T) is an ideal form parameter. It’s clear that H contains EEUy (R, A,T").

Consider the group pa(H). It contains EUy(R/A,T'/A). We show that
pA(H) does not contain any non-trivial transvection.

Let t;;(€+ A) € pa(H), j # i, £ ¢ A. Then there exist a € GLy;(R, A) such
that t;;(§)a € H. Pick k # +i,+£j. We have

[Thi(1), ti5(€)a] = t4; (&) - 49O [Thi(1),a] € H.

But by Proposition 1 [Tx;(1),a] € Ey(R, A) and, since Ey (R, A) is normal in
Ex (R)7
ti(€)[Ty;(1),a] € Ex(R, A) < EEUy (R, A,T) < H

by Lemma 12. So we have ¢;;(£) € H, which contradicts the definition of A.
Now let t;,_i(a+A) € pa(H), o ¢ Te;. Pick k # +i. By the same argument
as above we see that

[Tki(l),ti,_i(a)] = Tk,_i(a)tk,_k(as;lek)t,’7_k((a5;1 — Eid){:‘k) € H.

So tg,—r(ae; ‘er)ti—k((ag; ' —eia)ex) € H.
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Pick h # =+i,+k. By commuting with T;(1) on the left, we see that
th, k((ag; ' —eia)ex) € H. So ag; ' —e;a € A, and t;,_x((ae; ' — gi@)er) €
E2(A) < H. But then tk,_k(aaglsk) € H, which contradicts the definition of
T.

Note that I — 2 > (A + A/A)lfsr(R/A) > (T/A)Ifsr(R/A). Now by
Lemma 21 we have ps(H) < GUy(R/A,T/A), that is H < CGUy(R, A, T). O

Corollary 1. Suppose that I > 4 and R is module finite over its center. Then
the conclusion of Theorem 38 holds.

Proof. Tt follows from main theorem and Proposition 4. O

Corollary 2. Suppose that | > 4 and asr(R) < 1. Then the conclusion of
Theorem 3 holds.

Proof. Note that asr(R/A) < asr(R) for every ideal A. Now the assertion
follows from main theorem and Proposition 5. O
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