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1 Introduction

Let G denote a group or monoid and ZG its integral group or monoid ring. The kernel

A(G) of the augmentation homomorphism ZG — Z, ) a,g — > a,, is called the
geG 9€eG
augmentation ideal of ZG. It is clear that A(G) is the free abelian group on the

elements
9] =9-1, g€G
modulo the relation [1] = 0 (cf. [6]). This implies that the n-th power ideal A™(G) :=
(AG)™ of the augmentation ideal A(G) is generated as an abelian group by the products
[gla"'agn] = [91][9n], gla"'agneGa

called the standard generators of A™(G). It is a classical problem in the theory of
group rings to find all relations among the standard generators of A"(G). The current
paper solves this problem for torsion free and torsion abelian groups, as well as free abelian
monoids.

There are two obvious relations which hold for any group or monoid G. The first is
the

(N) normalizing relation : [gy,...,9,] =0 , whenever some g; = 1(n > 1).

The second is a consequence of the fact that the symbol [g1, go] is a 2-cocycle:

(92, 93] — (9192, 93] + [91, 9293] — |91, 92] = 0.

This implies the

(R) cocycle relation: [g1,...,¢,] is a 2-cocycle in g; 1, ¢;

when the other variables are fixed (n > 2). Other relations depend essentially on the

structure of the group G.

If the group or monoid is abelian then we have the

(S) symmetric relation: [g1,-- -, gn] = [90(1), - - ; Go(n)] for any permutation o of
n letters (n > 1).



To the above list of relations, we shall add when n > 3 and G is a torsion abelian
group, two more complicated relations called T and U and define a possibly infinite
number n(G) > 2. Our main results are summarized in the following theorem.

THEOREM (1.1) Let G be a torsion free or torsion abelian group. Then the following
holds.

(1.1.1) N, R, and S are a defining set of relations for A™(G) when either n = 2 or n > 2
and G is torsion free or a direct limit of cyclic groups.

(1.1.2) N, R, S, and T are a defining set of relations for A"(G) when either G is p-elementary
or G is torsion and n < n(G).

(1.1.3) N, R, S, T, and U are a defining set of relations for A"(G) when G is torsion.

Since A™(G) is a subgroup of the free abelian group Z@G, it has a Z-basis. The strategy
of the proof of the theorem is to find a Z-basis for A"(G) and enough relations on A™(G)
to allow writing each standard generator as a sum of the Z-basis elements. It follows then
that these relations are a defining set of relations for A™(G).

For n = 1, it is obvious that for any group G, the standard generators [g] such that
g # 1 form a basis for A'(G). Thus A!(G) is presented by the relation N on the standard
generators of A'(G).

For n > 2, finding a Z-basis for A"(G) is easier if G itself has an ordered basis. By
definition, an ordered (not necessarily finite) basis for an abelian group G consists of a
totally ordered set I and a function g : I — G, i+ g;, such that if (g;) denotes the cyclic
subgroup of G generated by g; then G = [[(g;). Fortunately we can reduce to the case G

il
has an ordered basis, because A" commlzﬁces with direct limits, every abelian group is a
direct limit of its finitely generated subgroups, and every finitely generated abelian group
has an ordered basis (1, g) (such that I is finite). Since there is essentially no difference
between handling groups with an arbitrary ordered basis and groups with a finite ordered
basis, we shall treat the general case. Given an abelian group G with ordered basis
(1, g), we define relations 7T7(G) and U;(G) and a finite number n;(G). The relations
N, R, S, T;(G), and Ur(G) will be enough to present A™(G). The precise theorem will be
formulated below. To obtain the relations 7" and U used in the theorem above, we take
respectively the unions %(LjJTI(H )) and %(LIJU[(H )) where H ranges over all subgroups

of G having an ordered basis and I over all ordered bases of H. The number n(G) in
the theorem above is defined as sup(supn;(H,I)) where H and I range as above. Since
H I
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n(G) can be infinite, whereas ny(H) is always finite, one sees that the limiting process is
interesting, and not just a routine procedure to reduce to the case that G has an ordered
basis.

Theorem 1.1 is deduced routinely from the theorem below for groups G with an ordered
basis (I,g). The latter theorem makes reference to NRS-generators and special NRS-
generators for A"(G), which are defined in the main body of the paper.

THEOREM 1.2 Let G be a free or torsion abelian group with ordered basis (I, g). Then
the following holds.

(1.2.1) The assertion of (1.1.1). Furthermore the N RS-generators of A™(G) are a Z-basis
when G is torsion.

(1.2.2) N, R, S, and T are a defining set of relations for A"(G) when G is p-elementary

or G is torsion and n < n;(G). Furthermore the special N RS-generators form a
Z-basis of A™(G).

(1.2.3) N,R,S,T;, and U are a defining set of relations for A"(G) when G is torsion.
(Furthermore the proof of this assertion provides a procedure for constructing, but
not uniquely, a Z-basis of A"(G), starting from the special NRS-generators in

A™(G)).

Whereas the relations N, R, and S are well known and special cases of T" and T} are
found in the literature, the relations U and U; and the numbers n(G) and n;(G) are
completely new.

Since the relations N, R, and S hold in any abelian group or monoid, it makes sense
singling out the universal object they define. Accordingly, we let

A™(G)

denote the free abelian group on the standard generators of A™(G), modulo the relations
N, R, and S. The strategy of the proof of (1.2.1) is as follows. If G is either torsion or a free
abelian monoid with an ordered monoid basis, we show that the N RS-generators generate
A™(@) and form a Z-basis of A"(G). It follows immediately that A"(G) = A™(G) and this
gives the presentation of A™(G). If G is a free abelian group, we use a trick to deduce the
presentation of A”(G) from that in the case G is a free abelian monoid. The strategy of the
proof of (1.2.2) is to show that the special N RS-generators generate A”™(G)/(Ty) and form



a Z-basis of A™(G). It follows immediately that A"(G)/(T;) = A™(G) and this gives the
presentation of A”(G). The strategy of the proof of (1.2.3) is to replace in a systematic way
the special NRS-generators by another set of elements which generates A™(G)/(Ty,U;)
and is a Z-basis of A"(@). It follows immediately that A™(G)/(T},U;) = A™(G) and this
gives the presentation of A™(QG).

Set

w™(G) = Ker (A™(GQ) — A™(G)).

The group A™(G) has a right action of G which is compatible under the canonical ho-
momorphism A*(G) — A™(G) with the right action of G on A™(G) by multiplication.
Thus w™(G) is a G-module and we call it the relation module of A"(G). According to
Theorem 1.1, w™(G) is trivial if G is either torsion free or a direct limit of cyclic groups;
in the remaining cases, it is generated by the 7" and U relations. It is reasonable to expect
using these generators to compute w™(G), for example by refining the Main Construction
3.9 and Main Lemma 3.10. This will not be attempted, however, in the current paper.

Relation modules describe the failure of exactness of the well known zero sequence in
the theorem below.

THEOREM 1.3 Let G denote an abelian group and N C G a subgroup. Let A™(N)G
denote the G-submodule of A™(G) generated by the image (A™(N) — A™(G)). Then the
homology of the sequence A"(N)G — A™(G) - A™(G/N) is computed by w"(G/N)/w™(G).
Moreover if G is finite (resp. torsion) then so is w™(G/N)/w™(Q).

There is evidence suggesting that the relation module functor w™ on abelian groups is
the fundamental group functor m A" of a suitably defined functor A™ : ((abelian groups)) —

((pointed topological spaces)). Here 7, denotes as usual the fundamental group functor
on pointed topological spaces. We construct at the end of the paper a functor A™ and a

surjective natural transformation w”™ — m; A", whose kernel we describe by certain gen-

erators. It is an open question whether or not these generators are zero. If they are zero
then the higher homotopy groups of A™(G) can be thought of as higher relation modules

of A™(G).
We summarize now some of the previous literature related to our results. For the

moment, let G denote an arbitrary group. The relation [f, g] = [fg] — [f] — [g] in A%(G)
induces the relation

[gla" : 7gk;fagagk:+3a" : 7gn+1] = [glu e ;gk]([fg] - [f] - [g])[gk+3 oo agn-l-l]
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in A"!(@), whose right hand side represents naturally an element of A™(G). Factoring
out of A"(G), the

(B) bilinearizing relation: [g1,- -, g&|([f9] — [f] — [9])[gk+3." - > gnt1] =0,

we get the group A"(G)/B = A"(G)/A™(G).

This group has been intensively studied in the literature and in the case G is finite abelian,
a presentation in terms of standard generators was provided over two decades ago in the
celebrated paper [7] of I.R.S. Passi and L.P.V. Vermani. A survey of this and important
related results is found in Passi’s survey article [5]. A significant impulse for the presenta-
tion of Passi and Vermani was an earlier result of F. Bachmann and L. Gruenenfelder [1].
It says that for a finite abelian group, the quotients A™(G)/A™(G) stabilize for large n,
i.e. there exists an N such that for all n > N, AN (G)/ANTHG) 2 A™MGQ)/A™(G). A
number of papers were written concerned with the problem of determining N and com-
puting the isomorphism class of AY(G)/AN*1(G). Definitive results are found in A.W.
Hales’ paper [3]. This paper contains also another presentation of A"(G)/A"(G) for
any n. For n < N and G an elementary group, the (nonstable) quotients above were
computed recently in G. Tang [10].

The first steps in finding a presentation of A™(G) for G torsion abelian were taken in
A.Bak-N.Vavilov [2], in connection with the generalized Milnor conjecture for quadratic
forms over a field F'. The conjecture predicts a certain presentation of the n’th power ideal
I"(F) of the fundamental ideal I(F) of the Witt ring W (F). Setting G = F*/F*2, we get
a canonical surjective ring homomorphism ZG — W (F) taking each A™(G) onto I™(F).
So if the conjecture for I™(F) is true then one ought to be able to find a presentation
of A™(G) which is compatible with that conjectured for I"(F'). Such a presentation is
given in [2] and coincides with that in (1.1.1) and (1.1.2). This is the first appearance
of T relations. A presentation of A™(G) for any elementary p-group is provided by the
combined work of M.M. Parmenter [4] and G. Tang [9] and coincides with that given in
(1.1.1) and (1.1.2).

The rest of the paper is organized as follows. In section 2, we define NRS-generators.
Then we prove Theorems 1.1.1 and 1.2.1. The presentation part of the results is translated
into the language of Rees rings of augmentation ideals. We do this because the Rees
ring of an augmentation ideal maps canonically onto the associated graded ring of the
augmentation ideal, and the associated graded ring is the construction used in [7], [5], [6]
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and [3] in formulating presentation results. In section 3, we define special NRS-generators,
and show that they are linearly independent in A"(G) and A™(G). Then we define the
numbers n;(G) and n(G) and prove Theorems 1.1.2 and 1.2.2. The presentation part of
the results is translated into the language of Rees rings. In section 4, we prove Theorems
(1.1.3) and (1.2.3) and translate the presentation there into the language of Rees rings.
In section 5, we develop results concerning the relation module w"(G), prove Theorem
1.3, and consider the problem of higher relation modules.
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The second author gratefully acknowledges the support of SFB 343, Fakultat fur Math-
ematik, Universitat Bielefeld, Germany during the preparation of the present article, as
well as the support of the National Natural Science Foundation of China (No. 10271094)
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2 N,R, and S relations

The goal of this section is to prove Theorems 1.1.1 and 1.2.1. Let G denote a torsion free
or torsion abelian group. Theorem 1.1.1 says the relations N, R and S on the standard
generators of A"(G), present the group A™(G) when n = 2 or n > 3 and G is either torsion
free or a direct limit of cyclic groups, i.e. a subgroup of Q/Z. Theorem 1.2.1 supposes
additionally that G has an ordered basis. It makes the same assertion as (1.1.1) and
the additional one that a certain subset of the standard generators, namely the NRS-
generators, is a basis for A"(G) when G is torsion. By a straightforward direct limit
argument, one shows that (1.1.1) follows from (1.2.1).

To prove (1.2.1), we begin with some general preliminaries which will play a role in the
entire paper. Let G denote a torsion abelian group with an ordered basis or a free abelian
monoid with an ordered monoid basis. Our first task is to reduce the number of standard
generators required to generate A™(G). Since only the N, R, and S relations are used in
the reduction process, the set of generators we arrive at will also generate A™(G). This
set will be called the N RS-generators of A”(G) and A™(G). In the special case either G
is a torsion abelian group and the hypotheses of (1.2.1) is satisfied or G is a free abelian
monoid, we show that the NRS-generators are a basis for A"(G). It follows immediately
that the canonical map A"(G) — A"™(G) is an isomorphism and A™(G) is presented by
the N, R and S relations on the standard generators of A"(G). The presentation of A™(G)
when (' is a free abelian group is deduced by a trick from the case G is a free abelian
monoid.



We begin by studying the influence of a product decomposition G = H X (g) on
reducing the number of symbols required for generating A"™(G).

LEMMA 2.1 Let G denote a torsion abelian group and G = H x (g) a direct product
decomposition of G such that (g) is a finite cyclic group generated by g. Let ¢ denote the
exponent of g. Let

g"(g) ={lg"9,""* .9 1<i<e—1}

n—1
n—2

gn(Ha*ag) :{[hla"'h’n—jaga"' ) | OSJ Sn_2ah’1a"' ahn—j EH\<1>}

J

(Obviously if H = (1) then G"(H, g) = G"(H, *,g) = ().) The conclusion is that G"(g) U
G"(H,g) U G™(H, *,g) generates A"(QG).

PROOF The result is trivially true for n = 1. So we can assume n > 2.

We show first that any generator [gy,--- ,gn] of A"(G) can be written as a sum of
generators [g,- - - , gi] such that each g} is either in (g) or in H. Let #[g1,-- - , g denote
the number of gis such that g¢; is neither in (g) nor in H. If #[g1,---,g,] = 0 then
we are done. We proceed by induction on the value of #. Suppose #[g1,---,gn] > 0.
By (S), we can assume that g; = h;g® where ¢* # 1 and h; € H\(1). Let gy = hyg’
where hy € H. Let [g1, 92, ——] = [91, 92,93, - , gn).- Suppose j = 0. Then [g1, g2, ——]| =

[h1g, ho, ——] = (by (R)) [¢°, hiha, ——] + [h1, ha, ——] — [¢*, h1, ——]. Since the value of
# on each generator on the right hand side of the equation above is strictly less than
#[g1, g2, ——], we can write by induction on the value of #, each generator on the right
hand side as a sum of generators of the desired kind. Suppose hy = 1. Then [g1, g2, ——] =
[h1g%, g7, ——] = (by (R)) [h1, 9", —=]+[g", ¢’, ——] — [, ¢*, ——] and we can finish again
by induction on the value of #. Suppose now that ¢ # 1 and hy, € H\(1). Then
(91, 92, ——] = [h1g', hag?, ——] = (by (R)) [hg""?, ho, —] + [Mg’, ¢, —] — [¢7, ha, ——]

and we can finish by induction on the value of #.

By the above and (S), it is clear that any generator of A"(G) is a sum of gen-
erators of the kind [hy, -+, h, j, 9", ,¢%] where 0 < j < n and hy, - ,h, ; €
H. Let [hy, -« hp_j, g%, -+, g% = [-—, ¢, -+ ,¢%]. If j > 2, we show next that
[——, g%, -+, g"] is a sum of generators of the kind [——, ¢*,¢g,+-+ ,g] where 1 <i <e—1.
By (IV), we can assume that 1 < iy < e — 1 for each k such that 1 < k < j. We proceed
by induction on ¢y + --- + ;. If 49 +---+4; = j — 1 then 49 = --- =4; = 1 and we are



done. Suppose i3 +---+i; > j — 1. By (S5), we can assume i, > 1. By (R), we can
write [__a gila gi2, e :gij] = [__, gi1+i2717 g, gi3a e 7gij] + [__a gilagbil: gis’ e )gij] -
[——, 921, g,¢%, -+ ,¢%]. By induction, we can write each of the generators on the right
hand side of the equation above as sums of generators of the kind [——, ¢%, g, - - , g] where
1 <4 < e —1. This completes the demonstration.

Suppose n > 3 and n —j > 2. Let hy,--- ,hy—j—» € H and for any g,_;_1,--- ,gn €
G, let [=—,gn—j-1,""* y9n] = [h1," ", hu—j—2,9n—j-1, ", 9u]- To complete the proof it
suffices to show that a generator of the kind [——, ', h, ¢',g,- -, g] where h',h € H and

j
i > 1is a sum of generators of the kind [——, h®® ¢”, g,--- , gl and [-—, h®) h®Y ¢ ... ¢
1 j

where A A3 h® € H. In fact, the proof will show that i > ¢ > 1. Clearly it
suffices to check the case n = 3. The proof is by induction on i. By (R), [/, h,g'] =
(W', hg'™t, g] + [W b, g7 = [I', 9", g] = (by(R)) [W'h, g, g] + [W',h,g] — [h, g, 9] +
(W, h, g1 —[I,g"1, g]. All the generators on the right hand side of the equation above,
except [, h, g"7!] are of the kind we want. If 1 = 2 then [h', h, "] is also of the kind we
want. If ¢ > 2 then by induction on 1, [/, h, ¢""!] is a sum of generators of the kind we
want. This finishes the proof. O

DEFINITION 2.2 Let G = [ ] G| be a direct sum of nontrivial finite cyclic groups G; = (g;).

i€l
Give I a total ordering and if ¢ € I is not the smallest element of I, set G.; = [[ G;. A
j<i

standard generator [z(1), z(2), - - - , z(n)] of A"(G) or A™(@) is called an NRS-generator
with respect to I, of degree n, if either

(2.2.1)
[2(1),2(2), -+, 2(n)] = 9, Gis> - -, gin] Where 11 =i <iig <+, <ip €1,6 #0

or

(222) [.T(l),I(Q), o ,x(n)] = [hagzzagi:w e aan] where g <3 < - , < In € Ia
iz is not the smallest element of I,e # 0, and h € G;,\(1).

COROLLARY 2.3 Let G = J][G; be as in (2.2). Then A"(G) is generated by NRS-
i€l
generators.



Proor If J C I, let G; = |] G;. Since A"(G) is canonically isomorphic to the direct
ieJ
limit lim A"(G ) where J ranges over all nonempty finite subsets of I with the induced
HJ

ordering, we can reduce to the case [ is finite. We proceed now by induction on the order
I| of I. If |I| = 1 then by Lemma 2.1, A®(G) is generated by g(g). Obviously each ele-
ment of G(g) is an NRS-generator. Suppose |I| > 1. Let I ={1,---,/}. Let g = gg For
1<m<nand2 <k </ let A™(G;) = image Am(G<k) — A G), [z( 1) m)] —
[z(1),---,z(m),q, - ,g]. Decompose G = G4 x (g). By Lemma 2.1, A"(G) is gener—

n—m

ated by G"(g9),G"(G<y,9), and > A™(G.,). By definition, the elements of G"(g) and

m=2
G"(G<e, g) are NRS-generators. By induction on ||, each group A™(G ) is generated by
NRS-generators and clearly the map A™(G.,) — A™(G) preserves NRS-generators. This
completes the proof. O

COROLLARY 2.4 Let G = [[ G; be as in (2.2). Let 4o denote the smallest element of
I, which might not exist. Tzlelén the set of all NRS-generators of A2(G), i.e. Z.LEJIQQ(gi) U
iEI&J{io}g2(G<i’gi)’ is a Z-basis for A?(GQ) and A%(G). In particular the canonical homo-
morphism A2(G) — A?(G) is an isomorphism.

PROOF Let B = igIQQ(gi) U Z.EIL\J{Z.O}QZ(GQ-, g:). Tt suffices to show that 13 generates A%(G)
and the elements of B are Z-linearly independent in A%(G). Since G is canonically

isomorphic to the direct limit li_n>1J (]_[ Gj> where J ranges over all nonempty finite
jE€J

subsets of I with the induced ordering and since A% and A? commute with direct limits,
it suffices to prove the above when [ is finite. If I has one element then by Lemma
2.1, B generates A2(G). If I has more than one element then using induction on the
number of elements of I and Lemma 2.1, one concludes that B generates A?(G). Let
|G| denote the order of G. Clearly rank A(G) = |G| — 1. Tt is well known (cf. [6],
[8]) that the abelian group A(G)/A?(G) is annihilated by some power of |G|. Thus rank
A?(G) = rank A(G) = |G|—1. But B generates A?(G) and has precisely |G| —1 elements.
It follows that the elements of B must be Z-linearly independent. []

THEOREM 2.5 Let G denote a torsion abelian group. Then the canonical homomorphism
A?(G) — A?%(@G) is an isomorphism.

PROOF Since G is a direct limit of finite subgroups and since A? and A? commute with

10



direct limits, we can reduce to the case (G is finite. In this case the result follows from
(2.4). O

The next result is also a corollary of Lemma 2.1.

COROLLARY 2.6 Let G = (g) denote a finite cyclic group. Then for any n, the set G"(g)
is a basis for A”(G) and A"(G). Thus the canonical homomorphism A"(G) — A™(G) is
an isomorphism.

PROOF By Lemma 2.1, the elements of G"(g) generate A"(G) and therefore also A™(G).
It is well known (cf. [6], [8]) that the abelian group A(G)/A™(G) is annihilated by a power
of |G|. Thus rank A"(G) = rank A(G) = |G| — 1. Since G"(g) generates A™(G) and has
precisely |G|—1 elements, it must be a basis of A”(G). Thus G"(g) is also a basis of A™(QG).
The last assertion of the lemma is now trivial. O

COROLLARY 2.7 If G is a direct limit of finite cyclic groups, i.e. a subgroup of Q/Z, then
the canonical homomorphism A™(G) — A"(G) is an isomorphism.

PROOF This follows directly from the previous corollary and the fact that A" and A" com-
mute with direct limits. O

The next lemma is an analog of (2.1), for abelian monoids. Its proof is the same as
that of (2.1), but simpler, and will be omitted.

LEMMA 2.8 Let M denote an abelian monoid and M = H x (g) a direct product decom-
position of M such that (g) is the free monoid generated by g. Let

G"(9) ={l¢",9,---,9] | i >0}
gn(H7g) = {[h;gzaga"' 79] | i >0:h€ H\<1>}
gn(H’*’g) :{[hla ,hn—j>g"" ) |0§]Sn_2;h1; ,hn—j EH\<1>}

J

Then the union of the sets of generators above generates A™(M).
DEFINITION 2.9 Let M = [[ G; be a direct sum of free monoids G; = (g;). Give I a
i€l
total ordering and if ¢ € I is not the smallest element of I, set G; = [[ G;. A standard
j<i
generator [z(1),z(2),--- ,z(n)] of A"(M) or A"(M) is called an NRS-generator with
respect to I, of degree n, if either

(2.9.1)
[x(l)ax(Q)a ,x(n)] = [gflvgiza"' 7gin] where 1 =13 <13 <--- 7§ in € Iae >0

11



or

(292) [.’13(1),33(2), e ,x(n)] = [hagfzagisw e agm] where iy < i3 < aS 7’n € Ia
i is not the smallest element of I,e > 0, and h € G;,\(1).

LEMMA 2.10 Let M = [] G; be as in (2.9). Then the set of all NRS-generators in (2.9)
i€l

generates A™(M) and is a Z-basis for A"(M). Consequently the canonical homomorphism

A™(M) — A™(M) is an isomorphism.

PROOF The proof that NRS-generators generate A" (M) is the same as that of (2.3). Next
we show that they are Z-linearly independent in A™(M). This will complete the proof of
the lemma.

Z@ is a polynomial ring over Z in the indeterminates {g; | 7 € I'}. It suffices to show
that any finite set [2(1)1,--- ,z(n)1], -, [£(1), -+, 2(n)x] of distinct N RS-generators of

k
the same total degree is linearly independent. Suppose Y a;[z(1);,- - ,x(n);] = 0. Then
i=1

k
clearly " a;z(1);---z(n); = 0. The key observation now is that if [z(1),---,z(n)] and
i=1

[z(1)',--- ,z(n)'] are NRS-generators of the same total degree then [z(1),---,z(n)] =
z(1),---z(n)] < x(1)---x2(n) = z(1)"---z(n)". Thus the monomials in {z(1);---z(n); |
1 < i < k} are distinct and therefore linearly independent. Thus a; =0 for 1 <i < k. [

THEOREM 2.11 Let M denote an abelian monojd such that if x,y € M then zy =1 &
x =y = 1. Then the canonical homomorphism A"(M) — A™(M) is an isomorphism.

PROOF Since the functors A” and A" commute with direct limits and since M is a direct

limit of its (finitely generated) free submonoids, we can reduce to the case covered in
Lemma 2.10. O

DEFINITION-LEMMA 2.12 Let G denote an abelian group or monoid. Let [z(1),-- -, z(n)]
denote an arbitrary standard generator for A"(G) and let g denote an arbitrary element
of G. Then the rule [z(1),---,z(n)]g = [z(1),--- ,x(n—1),z(n)g] —[z(1), - ,z(n—1),¢]
defines an action of G’ on A"(G) such that the canonical homomorphism A"(G) — A™(G)
is one of G-modules.

PROOF Since A™(G) is an ideal of Z@G, it has a natural G-action given by multiplication
and this action satisfies the rule above. Thus it suffices to show that the rule defines a G-
action on A"(G) This follows from the equations [ef, g|h — [e, fglh+[e, flh—[f,g]h =0
and [f, glh — [g, f]h = 0 in A%(G), for arbitrary e, f,g,h € G. These equations are
straightforward to verify. O
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THEOREM 2.13 Let G denote a torsion free abelian group. Then the canonical homo-
morphism A"(G) — A™(G) is an isomorphism.

PROOF Since the functors A" and A" commute with direct limits and since every tor-
sion free abelian group is a direct limit of (finitely generated) free subgroups, we can
reduce to the case G is free abelian. Pick a basis for G and let Gt denote the (free)
submonoid generated by the basis elements. From Theorem 2.11, it follows that the
canonical map A"(G*) — A™(G) is injective and thus we can identify A™(G*) with
its image in A"(@). If [z(1),---,z(n)] is a standard generator of A"(G) then there
is an element ¢ € G* such that [z(1),---,z(n)lg € A™G"). Since A"(GH)GT C
A™(GY), it follows that given 2 € A"(G), there is an element g € G* such that
xg € A"(G*’). Thus Theorem 2.13 follows from Theorem 2.11 or even better from Lemma
2.10. U

Corollary 2.7, Theorem 2.11, and Theorem 2.13 have the following immediate conse-
quence for the Rees ring of ZG.

COROLLARY 2.14 Let G denote an abelian group. Let Z & A(G) & A?*(G) @ -+ - denote
the Rees ring of A(G) in ZG. Let X (G) denote the free abelian group on all symbols X,
such that g € G and let T X (G) denote the tensor algebra of X (G) over Z. We introduce
the following relations into TX (G).

(NI) X1 - 0
(R') X, X — X;yXn + X;Xon — X;X, = 0 for all f,g,h € G.
(S") XX, =X,X;forall f,geG.

If GG is torsion free or a direct limit of cyclic groups then the canonical graded surjective
ring homomorphism TX (G) = Z & A(G) ® A*(G) @ ---, X, — (g — 1), has kernel the
2-sided ideal generated by N', R', and S".

PROOF The tensor ring TX(G) is a graded ring. Let TX(G), denote its n-th homo-
geneous component. The Rees ring R(G) of the augmentation ideal A(G) is also a
graded ring whose n-th homogeneous component is A™(G). The ring homomorphism
TX(G) — R(G), X, — |g], is a surjective graded ring homomorphism, taking TX (G),
onto A"(G). The group TX (G),, (n > 1) is free abelian on the products X, - - - X, where
g1, ,9n ranges over all elements of G. The map ¢, = ¢[rx(), : TX(G), = A™(G)
takes the generator X,, --- X, to the standard generator [gi, - - - , gn] of A"(G). Obviously
1 kills the relation N’ and ¢, the relations R’ and S’. Thus the ideal q generated by these

13



relations is contained in Ker . Since the relations N’; R’ and S’ are homogeneous, q is a

direct sum q = @ q,, of its homogeneous components ¢,,. The component g, is obviously
n>1

additively generated by X, the component g, additively by all X Fah = XgXp— X5 Xp+
XiXgn — XX, and all Xy, := X;X, — X, X, and the component g, (n > 3) addi-
tively by all (Xf,g,h) (Xga T Xgn)a (Xf,g)(X.% T Xgn): (ng T Xgi)(Xf,g,h) (XQH—I T Xgn)’
and (Xg, - - Xg,) (X1,4) (X, , - - Xg,) where g3, - - -, g, ranges over G and i over {3,--- ,n}.
But the additive generators above of the subgroup g, of the free abelian group T X (G),, on
the elements X, - -- X, are the N, R, and S relations for A"(G). Thus by Theorem 2.13

and Corollary 2.7, q, = Ker ¢,. O

3 T relations and presenting A" for n < n(G) or G p-
elementary

The goal of this section is to prove Theorems 1.1.2 and 1.2.2. Let G denote a torsion
abelian group. Theorem 1.1.2 says that the relations N, R, S and 7" on the standard gen-
erators of A™(G), present the group A™(G) when n < n(G) or G is p-elementary. Theorem
1.2.2 supposes additionally that G has an ordered basis I, which holds of course if G is
p-elementary. The theorem says that the relations N, R, S and 77 on the standard gener-
ators of A™(G), present A"(G) when n < n;(G) or G is p-elementary. Furthermore it says
that the special N RS-generators are a basis of A"(G). One deduces by a straightforward
direct limit argument that (1.1.2) follows from (1.2.2), using the fact that relations 7' D
relations 717 and n(G) = sup(supn;(H)) where H ranges over all subgroups of G with an
H I

ordered basis and I ranges over all ordered bases of H.

The first task of the section is defining the T relations 7"(G) for A™(G). This will
take several pages and it is recommended that at first reading, the reader just glance at
the result obtained in Definition 3.5. After this definition, we assume G has an ordered
basis and define special N RS-generators. They are used in turn to define in Definition
3.8 the T relations 17 (G) for A™(G). At the conclusion of the definition, the strategy of
the proof of Theorem 1.2.2 is elucidated.

Let p denote a natural prime and ¢ a natural number. Let (h) denote a group of order
p' generated by h. By (2.6), we know for any n the free Z-module A™({h)) has the Z-basis

{(W =) =1)"" 1< <p — 1}

14



t

From the binomial formula applied to the right hand side of the equation 1 = AP =
((h — 1) +1)*", we obtain that

o

p

p(h—1)=- (p.t> (h— 1),

- 7
=2

From this equation, it follows that for any n there exists an [ such that p'(h—1) € A"({h)),
e.g. | =t(n —1). The next lemma describes precisely how large [ must be.

LEMMA 3.1 Let (h) denote a group of order p' generated by h. Then

Pi(h—1) € A((h) N A%(() if 0 <<t
pl(h _ 1) c A(p—l)(l—t+1)+1(<h>) ~ A(p—l)(l—t+1)+2(<h>) if 1 >t

PROOF Suppose 0 < I < t. It is obvious that p'(h — 1) € A((h)). If p'(h — 1) € A2({(h))

then there are integers ci,-- -, cpt—1 such that
pt-1
p(h=1)=> (b’ —1)(h—1).
i=1
So
pt—1 pt—1
PP=) all=1)=d) N
i=1 =0

. . . . . t— i . .
for some d € Z, since the annihilator tofl (h, — 1) in Z((h)) is Z(32;" h¥). Multiplying
both sides of the identity above by Y7 " h’, we get the equation

pt-1 pt—1 pt-1
D0 ST 3
i=0 i=0 i=0

which implies that p' = dp’, contrary to the assumption that [ < ¢.
Suppose | > t. We use induction on [—t to prove first that p!(h—1) € AP~DE—HDF1((p)),
When [ = ¢, then

o

p

ph-1)=-Y (f) (h—1)".

=2
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If p = 2, it is obvious that p’(h — 1) € A?((h)). So we assume that p > 3. Since
(h —1)" € AP({h)) for all i > p, it follows that

h-1)=-3 ()= (moa a7

107

Since each of (”; ), cee (p”_t 1) is divisible by p?, we can iterate the formula above and obtain
that pt(h — 1) € AP(({h)).

Suppose [ > t. Consider the equation

t

Ph—1) = : (M-

We shall use induction on | — ¢ to show that each summand pl’t(”;) (h — 1)! on the right
such that pli or p{i and i > p, lies in APDEHHDFL((B)),

Suppose pli. Choose k such that p*||i (p* divides i but p*™' does not divide 7).
t
Then p' *[|(*) and thus pl*k||pl*t(p;). For the moment assume that [ — k > t. Since
[ —k—1t<l—t, we can conclude by the induction assumption on [ — ¢ that

(i) E Ap 1)(l—k— t+1)+1(<h>)Ai—1(<h>) C A(p—l)(l—k—t+1)+i(<h>)_
Z

Since p*||i (k > 1), we have

p=1-k—t+1)+i>@p-D(l—-k—t+1)+p">@-1)I—-t+1)+1L

Thus .
Pt <p ) (h—1)ie A(p—l)(l—t+1)+1(<h>)'

]

Assume now | —k < t. Then | —t < k, from which it follows that i > (p—1)({ —t+1) +1.
This concludes the proof when pli.

Suppose p{i and i > p. Then p' ! (p;) and thus p' ![p' (p;). Sincel —1—-t<l—t,
we conclude by the induction assumption on [/ — ¢ that

plit (11’5) (h 1)Z, c A(pfl)(l,t)ﬂ(<h>)A(i71)(<h>) C A(Pfl)(lft+1)+1(<h>).
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The conclusions above that the summands p'* (p;) (h — 1) lie in AP=DU=t+D+I((p))
when pli or p{i and 7 > p, imply that

p-1 =30 (7)1 (mod ACTIE (),

Since p!||p'~* (”;) when 2 < i < p— 1, we can iterate the formula above and obtain that
pl(h _ 1) c A(p—l)(l—t+1)+1(<h>)_

Next we prove that if [ > ¢ then
pl(h _ 1) ¢ A(pfl)(l7t+1)+2(<h>)-

From the proof above that p!(h — 1) € AP=DU=HDF1((R)) it is easy to see that
o (%) b -t e sy
for all ¢ # 1, p. So one has
P == (M) -1p (mod AU

Suppose p'(h — 1) € AP=DU=+D+2((p))  We shall obtain a contradiction. From the

congruence above, we obtain that p'~*( t) (h — 1) € AP=DU=t1+2((p)). Thus there are

integers ¢, - -+, cpr—1 such that '
¢ p'-1

pl—t (p ) (h . 1)p — Z Ci(hi - 1)(h . 1)(p—1)(l—t+1)+1'
p i=1

Since Z({h)) has no nonzero nilpotent elements( [8], or by an elementary inductive argu-
ment), it follows that

¢ pl
p (7)) (0= 1) = Yl — (- 1) € A

=1

Since pt*1||(’;f), one can write (’Z) = p'~lu for some u € Z such that (u,p) = 1. Let

v,w € Z such that uv +pw = 1. Since p'~lu(h —1) = p'~* (’Z) (h—1) € AP=DU=D+2((p)),
it follows that

P (h=1) = pluv(h — 1) 4 plw(h — 1) € AP=DE=DF2((pY),
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Thus we have proved that if

pl(h _ 1) c A(pfl)(l7t+1)+2(<h>) then pl—l(h _ 1) e A(p_l)(l_t)+2(<h>).
Applying the implication above consecutively for I,1 — 1,1 —2,...,t, we get that p'~'(h —
1) € A%({h)), which contradicts our result in the first paragraph of the proof. []

We shall need the following notation. If z is an integer or rational number, let

{#}>0 = smallest nonnegative integer > z.

If p is a prime number, let

vy 1 Q = Z, 2z — vy(2)

denote the discrete p-adic valuation on Q. If » > s are natural numbers and (Z) the
binomial coefficient they determine then it will be useful to keep in mind that v,(]) =

vp(r) — vp(s)-

PROPOSITION 3.2 Let (h) denote a group of finite order |h| generated by h. Factor
h = hy---h, such that each |h,| (1 < a < k) is a prime power ple and p, # pg for
a # B. If z is an integer, let

c(h,z) = infimum {{(pa — 1)(vp,(2) —ta +1)}>0+1|1 < a <k}

Then

2(h — 1) € A () \ACBAH ((h))

PROOF Suppose that |h| = p' is a prime power. From the definition of v,, it fol-
lows that we can factor z = ap’»®®) where a is relatively prime to p. By Lemma 3.1,
p*@) (b — 1) € A«P2) ((h)) \A2)+1 ((h)). We also know by Lemma 3.1 that the quo-
tient group is annihilated by some power of p. Thus the action of the element a on
Ah2) ((B)) JAh2)+1 ((R)) by multiplication is a group isomorphism. Thus z(h — 1)% 0
mod A+ ((R)), ie. z(h — 1) € A%m2) ((R)) \ A2 ((R)).

Suppose now that x > 2. Choose 3 (2 < 8 < k) such that c(h, z) = {(pg — 1) (vy,(2) —

tg+1)}>0+ 1. (In general 3 is not unique.) Give {1,---,«} its natural ordering 1 < 2 <
-+ - < k. If P denotes a subset of {1,--- ,k},let (h—1)p = [] (ha—1). An easy induction
acP
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argument on k shows that (h—1) = ) ,(h—1)p where P sums over all nonempty subsets
of {1,--- ,k}. If & € P then z(h —1)p € AllPa=D(pa(2)~ta+1}>0+1 ((B)) by the paragraph
above. Thus z(h — 1) = Y., 2(h — 1)p € A3 ((h)). Suppose z(h — 1) € AcrA+1((R)).
Let ¢ : (h) — (hg), [[ ha — 1. The homomorphism ¢ induces a homomorphism
o#B
A ((h)) JALBDHE ((R)) — A2 ((hg)) AXMDH ((hg)) taking z(h — 1) to z(hs — 1)
and our supposition above implies that z(hg — 1) = 0 mod A“™*)+1 ((hg)). But since
c(h,z) = c(hg, z) and |hg| is a prime power, the last conclusion above contradicts the con-
clusion of the first paragraph of the proof. Il

We are now prepared to begin defining the 7" relations T™(h, g) for pairs of elements
h and g in a torsion abelian group G such that 3 < m < |g| + 1. These will be used in
turn to define all 7" relations. The whole process will take several pages.

Let g and m be as above. Let X denote an indeterminate and Z[X] the integral poly-
nomial ring in X. It is easy to see that for each m, the free Z-module of all polynomials
f(X) € Z[X] such that degree (f(X)) < |g| — 1 and f(1) = 0 has a Z-basis consisting of
the set

{(X=1) [1<i<m=2Uu{X'=1)(X-1)"2|1<i<|g|—-m+1}.

Let F|S‘n) (X) denote the polynomial

Fm () = (X972 1)(X —1)™2 = X9l 4 1.

This polynomial has degree |g| —1. Using the basis above, we define the integers agm) (1<
i<m—2)and bgm) (1 <i<|g|—m+1) such that

m—2 lg|—m+1
(3.3) FIx) =Y "a™ (X -1+ Y o™ (X 1) (X —1)m 2

gl

Let 8iF’|§]T) (X) denote the i-th derivative of Fgl”) (X). For 1 <4 < m — 2, one computes

that 9" Fi” (1) = —{gl(lg] = 1)+~ (lg] =i +1) = ™ (). Thus

(3
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We use the computation above of the agm) ’s to define further sequences a%), e “ET\T;L)|_1

of integers. The next proposition provides the tools for doing this. The sequences will be
needed in defining the T relation 7™ (h, g).

PROPOSITION 3.4 Let h generate a finite group (h) of order |h|. Factor h = hy - - - h,, such
that each |h,| (1 < a < k) is a prime power ple and p, # ps for o # (. Let g generate
a finite group (g) of order |g|. Let m be a natural number such that 3 < m < |g| + 1.

(3.4.1) Foreach & (1 < a<k)andeachi (1<i<m—2),define

— (141
e((xn?(h:g): {m (Z+ ) +tila—1—wp, <‘g|)} .
’ Do — 1 { >0

For each «, define

(m)
m eai (h'7 )
C( )(hag): | |p0€, g'

a

Then, in the notation of (3.2), c(h, c (h g)(|g|)) > m — i. Furthermore if z is an integer
such that c(h,z('é")) > m — i then c (h 9) |z

(3.4.2) For a finite set S of natural numbers, let 1.c.m(.S) denote the least common multiple
of the numbers in S. Define

™ (h,g) = Lem {™(h,g) | 1 <i<m—2}.

For each o (1 < o < k), define

e™ (h,g) = supremum {e%)(h, g9)|1<i<m-2}.

m h | | Ca m) h g

Our conclusions are: c(h, c™ (h, g) (|g|)) >m —i for all 1 < ¢ < m — 2. Furthermore

™ (h, g) is best possible for this result, i.e. if z is an integer such that c(h, z('f')) >m—i
for all 1 <4 < m — 2 then ™ (h, g) |2.
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PROOF (3.4.1) By definition

e(t2()) = inimun ({0 = (0, ) + 0 (*) ~ta + Dhsa+ 1 150 < ),

Thus c(h,z(‘f')) >m—i< foreach o (1 < a <k)

Upy (2) > w +to—1—vp, (“;”)

Do — 1
The assertions of (3.4.1) are an immediate consequence of the above.
(3.4.2) The proof of (3.4.2) is similar to that of (3.4.1). Details are left to the reader. O

DEFINITION 3.5 (T relations) Let G be a torsion abelian group. Let h,g € G and let
m be a natural number such that 3 < m < |g| + 1. Substituting g for X in the definition
of F‘(‘ )(X ) and using equation (3.3), we get the identity

m—2 lg|—m+1
(glgl—m+2 —1)(yg Z (|g|) i + Z bz('m) (gz’ ~1)(g - 1)m—2

i=1
in A(G). By (3.4.2) and (2.6), there are unique integers agf), e al™ (1<i<m-2)

i,|h|—1
such that

-1

™ (h,9) (|g|> Z a"( o

Multiplying both sides of the first identity above by (™ (h, g)(h — 1) and then applying
the second identity above, we get the equation

™ (h, g)(h — 1) (g2 = 1) (g — )" Z Z a; — )" g - 1)+
i=1 j=1
lg|—m+1 .
> ™ (b, )™ (h—1)(¢" — 1)(g — 1)™2
=1
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in A™(Q), i.e.

m—2 |h‘—1
(m) lgl—m+2 — (m)(y,4
c h’a h’7 Yt - a; ; h’aha"'ah’a y T +
ST 2, 2, af SELAGED
lg|l—m+1 -
Z ™) (h, 9)b™[h, ¢', g, - - - ]
c » g 7 »9,9, » 9]
=1 m—2
This is by definition the T relation
T™(h, g).
Let n > m. Let k£ > 0 be any nonnegative integer such that n > k+m. Let f1,:--, fx and
frtma1, -+, fn be sequences of elements in G. Multiplying the relation 7™ (h, g) above on

the left by [f1,-- -, fi] and on the right by [fximi1, -, fu], we get the T relation denoted
by

(351) [fla"' 1fk]Tm(h’g)[fk+m+1"" 7fn]

Whereas T™(h, g) is a relation in A™(Q), [fi, -, f&] T™(h, 9) [fetm+1," -, [n] s a rela-
tion in A™(G). For n > 3, set

Tn(G) :{[fla' e afk]Tm(h7g)[fk+m+17' t afn] | n>m 2> 3ak > 0,
n 2 m+k7 fla' o 7fk:7hvga fk+m+17" : 7fn ranges over
all sequences of elements in G such that |g| + 1 > m}.

Setting m = 3 and supposing in our relation 7™ (h, g) that |h| = |g| = 2, we get the
relation (7') in [2], in the equivalent form found in Lemma 3.1 of [2]. Setting m = 3
and supposing in our relation 7"™(h, g) that |h| = |g| = p is a prime number, we get the
relation denoted by (7)) in [4]. Our relation 7™(h,g) where 3 < m < p+ 1,p a prime
number, and |h| = |g| = p is just the relation (7,,) in [9].

It turns out that the set 7" (@) contains many more relations than are actually required
for a presentation of A"(G). The definitions which follow describe what is actually needed.
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A certain subset T7(G) C T™(@) depending on an ordered basis I of G will suffice. We
recall next the notion of an ordered basis for torsion abelian groups. It has been used
implicitly already in the definition of an N RS-generator in (2.2).

DEFINITION 3.6 Let G be a nontrivial torsion abelian group. An ordered basis for G
consists by definition of a totally ordered set I and a function g : I — G\(1),7 — g¢;,

such that G = [[(g;). Obviously any nontrivial finite torsion abelian group possesses an
i€l

ordered basis. A torsion abelian group G with a specified ordered basis (I,¢ : I — G\(1))

will be called an (I, g)- group or simply I-group. If G is an I-group and 7 € I, define

i.e. G<; is the subgroup of G' generated by all g; such that 7 < ¢. If ¢ € I is not the
smallest element of I, define

In order to define T relations, we need the concept of special NRS-generator. The
Main Lemma will show that the special N RS-generators in A"(G) are linearly in depen-
dent. Special N RS-generators are definded next.

DEFINITION 3.7 Let I denote the natural numbers. Let G be a torsion abelian group
and (I, g) an ordered basis for G. If k € I, let I(k) = {1,---,k}. Thus (I(k), g|rx)) is
an ordered basis for G<,. For each pair of natural numbers £ and n, we define by double
induction certain sets G"(k) of NRS-generators (see (2.2)) with respect to I(k), of degree
n as follows. If f € G, set

gn(f):{fe’f7"'af |1S€S|f|_1}

Define

G"(1) = G"(g1).

Suppose k£ > 1 and G" (k') has been defined for all n and all &' < k. We define now G"(k).
Define

G (k) ={lf11 f € G}
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Suppose n > 1 and G (k) has been defined for all n’ < n. If n < |gi|, let

{[‘T(l)’ ’x(n_j)agka"' agk] | [‘T(l)a ,.’B(’n—])] € gn—j(k_ 1)}’

G"(j, k) = if1<j<n-—2
{[haggagka"' agk] | h € Gf(k—l)al <e< |gk:| —TL+1}, ifj=n-1
—_—
n—1

If |gpl <nand 1 <j <|gx| — 1, let

gn(]’ k) = {[:E(l), T ’x(n _j)agka" * 5 0k | [x(l)a' e ’x(n _])] € gnij(k - 1)}

GM(ge) UG (k—1)U'D G k), ifn < g
g" (k) = Ijg;\—l

It is easy to check that each element of G"(k) is an NRS-generator (2.2) for I(k), of
degree n. The elements of G"(k) will be called special NRS-generators for I(k), of
degree n.

Let I denote now an arbitrary totally ordered set. Let G' be an I-group. An NRS-
generator [z(1),---,z(n)] with respect to I, of degree n is called special if it is special
for a finite subset J C I, under the ordering induced from I. The subgroup of A™(G)
generated by all special NRS-generators for I, of degree n is denoted by

SIA™(G).

DEFINITION 3.8 (Tj relations) Let G denote an (I, g)-group. For n > 3, let

7(G) c T7(G)

denote the subset of all relations [f1, -, f]T™(h, ¢')[ fkams1, -+, fu] such that the fol-
lowing holds.
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(3.8.1) Suppose k # 0. Then h = g;,, ., 9 = Gixrnrtb1 < Ikt2, M = |Gi,,,| (thus the
left hand side of the relation T™(g;,,,, 9,,,) is c(m)(gikH,gik+2)[gik+l,gik+2,--- s Giss))s
~—————

m—1

i, fo]l = [V, 65, 9iss -+ 93] 15 an NRS-generator of kind (2.2.2), 4 < ixqq, and
frtma1s 5 fu] = [Girpmrs> Gingmass "~ » Gin) 1S & generator satisfying (i) and (ii) below.

(i) If igyo < fktmer then [gi, 1) Girininr " Gin) IS @ special NRS-generator.

ii) If 4419 = tgymeo and r < n is the smallest number such that i, < %, then
+ +m+ +
(g, ,gi,] is a special NRS-generator.

(3.8.2) Suppose k = 0. Then ¢’ = g;, for some iy #1 € I,h € Gy, m = |g;,| — e + 2
(thus the left hand side of the relation T™(h, g;,) is ¢™ (h, g,)[h, 65,; Gir» -+ + Gin) ), and
—_——

m—2
fmtts s Sl = [Gimsrs Gimyas -+ Gin] is & generator satisfying (i) and (ii) above.

For fixed h and ¢', a relation of the form [f1, -, fe]T™(h, ¢')[fexm+1, - -, fu] € TT(G)
will be called a

T™"(h,g')-relation.

For n > 1, define

in An(@) ifn=1,2
AnG)THG) , ifn>3.

The subgroup of A?(G) generated by all special NRS-generators for I, of degree n is
denoted by

SA™(G) or S;A™G).

The purpose of the Main Construction below is to provide a filtration of the quotient
group A*(G)/S;A™(G). This filtration is then used in the Main Lemma to show that
the group is a torsion group. From this it follows of course that the quotient group
A™(G)/StA™(G) is also torsion. The Main Lemma will also show, as noted above already,
that the special N RS-generators in A"(QG) are linearly independent, from which it follows
trivially that the map S;A™(G) — S;A™(G) is bijective. Thus if A*(G) = S;A™(G) then
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the special N RS-generators in A"((G) are a Z-basis for A"(G) and A™(G) is presented
by the N, R, S and T} relations. The number n;(G) is defined in (3.11) and Theorem
3.15 will show that if n < n;(G) then A*(G) = S;A"(G). This will complete the proof
of Theorem (1.2.2).

MAIN CONSTRUCTION 3.9 Let (I, g) be an ordered basis for the torsion abelian group G.
Let z = [z(1),--- ,z(n)] be an NRS-generator (2.2) with respect to I, of degree n. Define

MI(z) = infimum {¢ € I | z(1) € G<}.

M I(z) is called the minimal index of z.

For 7 € I, define

Li(z) = |{j | 1 <j < n,2(j) € (g }-

L;(z) is called the length of « at 4. There are 2 kinds of NRS-generators according to
(2.2.1) and (2.2.2). If z is of kind (2.2.1), write x = [g{ , Gi,," -, gi,] Where 1 < e <
|9i,| — 1, and if x is of kind (2.2.2), write z = [h, g5, gi;,- - - , gi,] Where h € G;, and
1 <e < |gi,| — 1. Define

E(z)=ce.

E(z) is called the exponent of x. For i € I, define

( 0 : : i < MI(x)

(Liz) — |g:] + 1} 50 } if z of kind (2.2.1) and { i > MI(2)

Li(z) = 1 0 i < MI@)
{E(z) + Li(z) — |gi\}20 if z of kind (2.2.2) and 1= 19
L LX) = [gil + 1}>0 1> 1

L;(z) is called the reduced length of x at i. One checks straightforward that £;(z) =
0 for all 7+ € I < x is a special NRS-generator with respect to I. Moreover for any
z,L1(x) = 0 and for any ¢ and any z, £;(z) <n — 1.

Suppose now that |I| = k is finite and identify I = {1,--- ,k}. Let
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g" (k)
NRS— G (k)

denote respectively the set of all special NRS-generators, respectively NRS-generators, for

I of degree n. We construct a filtration bridging the gap between G"(k) and NRS-G™ (k).
For any pair (i,¢) € I x [0,n — 1] (where [0,n — 1] ={0,1,--- ,n — 1}), define

T(k) ={z € NRS = G"(k) | Li(z) =0V 7' >i,Li(z) < £},

Defining a total ordering on I x [0,n — 1] by

(i,0) < (", )ei<iori=iand £ < ¥,

we obtain a filtration
(3.9.1) G"(k) = Gzo(k) € G31(k) C--- C Gg,1(k) = NRS — G" (k).

This in turn determines a filtration

(3.9.2) SIA™(G) = S50A™(G) C S5 A™G) C --- C Sk 1A™(G) = AG)

where we define

SieA™(G) = { 1e(k) an(a)

and (Gi(k)) zn () denotes the subgroup of A7(@) generated by Gio(k).

MAIN LEMMA 3.10 Let (1, g) denote an ordered basis for the torsion abelian group G. Let
G"(I) denote the set of all special NRS-generators for I, of degree n. Then the elements of
G"(I) are Z-linearly independent in A?(G) and A"(G) and the quotients A%(G)/S;A™(G)
and A™(G)/S;A"™(G) are torsion. Moreover if [ is finite then |G"(I)| = |G| — 1.
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PROOF One reduces straigthforward as in the proof of Lemma 2.3 to the case [ is finite.
Identify I with an interval {1,2,---,u} and adopt the notation developed in (3.7) and
(3.9).

Let k € I. We show first by double induction on k£ and n that |G" (k)| = |G<x| — 1.
Suppose k = 1. By definition, G"(1) = G"(g1) and clearly |G"(g1)| = |G<1| — 1. Suppose
k > 1 and the result has been proved for all 1 < k' < k. Suppose n = 1. Trivially
Gl k) ={[f] | f € G<x\(1)}. Thus |G (k)| = |G<k| — 1. Suppose n > 1 and the result is
true for all 1 < n’ < n. According to the definition of G"(k), we can divide the proof into
2 cases, namely n < |gg| and |gx| < n.

n—1
Suppose n < |gk|. Then [G™(k)| = |G"(gx)| + |G"(k — 1)| + >_ |G"(j, k)|. Clearly
7j=1
|G™(gx)| = |gx|—1 and by our induction assumption, |G"(k—1)| = |G<—1)|—1,|G" (4, k)| =
|G5(k,1)‘ -1 (1 S ] S n — 2), and \Q"(n — 1,]47)‘ = (|G5(k,1)‘ — 1)(‘gk| —n—+ 1) ThUS
Gkl = (lgx] = 1) + (IG<w-1)| = Dlgkl = |G<e-1llgel =1 =[Gk — 1.

l9x|—1
Suppose |gx| < n. Then |G"(k)| = [G"(gx)| + [G"(k — 1) + Zl 670, k) = (lgx| —
j=

1)+ (1G] = Dlgel = |G<p—n)llgrl =1 =[G = 1.

Since we can take above k = u, it follows that |G"(I)| = |G| — 1.

The group A(G)/A™(G) is torsion by Proposition 3.2. Below it will be shown that
the group A"(G)/S;A™(G) is torsion. Thus |G| — 1 = rank A(G) = rank S;A"(G).
Since G"(I) has precisely |G| — 1 elements and generates S;A™(G), it follows that the
elements of G"(I) are Z-linearly independent in A"(G). Thus they are obviously Z-
linearly independent in A} (G).

To show that A™(G)/S;A™G) is torsion, it suffices to show that A%(G)/S;A™(G) is
torsion. We show this next.

It is enough to show that the quotient of any 2 consecutive members of the filtration
(3.9.2) is torsion. From the definition of the members S; ;A" (G) of the filtration, it follows
that if 4 > 2 then S;pA"™(G) = S; 1, 1A"(G). Thus it is enough to show that for any
(¢,£) such that ¢ > 0, the quotient S; /A™(G)/S;—1A™(G) is torsion.

Let z € G,(|1|). By definition, £;(z) < ¢. If there are no 2’s such that £;(z) = ¢
then G, (|1]) = G7*, 1 (|1]) and we are done. So we assume L;(z) = £. We must show that
some integral multiple zz € S; ,_; A™(G).

Suppose x is of kind (2.2.1). Thus x has the form = = [g{ , giy, - - , s, ]- Since L;(x) =
£ > 0, it follows that ¢ = 7, for some 2 < r < n. In general, r is not unique. If r is the
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smallest number such that i = 4, then by a Tl9I¥12(g; g, )-relation, c(9- 1 (g; _ g; )
is a sum of generators each of which can be written using (2.3) as a sum of generators in

i1 (I1])-

Suppose « is of kind (2.2.2). Thus z has the form z = [h, ¢, giy, -, 9i,]- Since
Li(x) = £ > 0, it follows that ¢ = i, for some 2 < r < n. Suppose 7 is the smallest
number such that ¢ = 4,. If 7 = 2 then by a T™"(h, g,)-relation where m = |g;,| — e +
2,c™ (h, g¢ )z is a sum of generators each of which can be written using (2.3) as a sum
of generators in G, (|1]). If r = 3 then by a Tloisl+1n(ge | g;,)-relation, (9!t (g¢ | g;.)z
is a sum of generators each of which can be written using (2.3) as a sum of generators in
G,y (I]). Finally if r > 3 then by a Tlowl*tn(g; g )-relation, el (g; g; )z is
a sum of generators each of which can be written using (2.3) as a sum of generators in
Gie 1 (1) O

DEFINITION 3.11 Let (I, g) denote an ordered basis for the torsion abelian group G.
Let 7y denote the smallest element of I, which might not exist. Let
M(G)= {meN| if1 <k< infimum {m—2,|g|—1|¢€ I\{io}}
then Vi€ I\{i}, V h € G\(1), and V natural primes p,
such that pa| [hl,m < (k+ 1) + (pa — 1)(tp, (41) — vy, (A]) + 1)}

It is a logical triviality that 1,2 € M;(G), because the inequality 1 < k£ < infimum {m —
2, |gi| — 1} is never satisfied for m = 1 and 2. Define

n(G) = supremum M;(QG).

Suppose now that GG is an arbitrary torsion abelian group. Define

n(G) = supremum {n’ | given a finite subgroup
H C G, 3 a finite subgroup H' O H and
an ordered basis (I', g) of H' such that
np(H') > n'}.

In view of Theorems 3.14 and 3.15 below, it is very useful knowing when the numbers
nr(G) and n(G) are large. The next two lemmas tell us when they are infinite.

LEMMA 3.12 Let (I, g) be an ordered basis for the torsion abelian group G. Let iy denote
the smallest element of I, which might not exist. If || = 1 then n;(G) = oo and if [I| > 2
then 2 < n;(G) < infimum {2 + (po — vy, (lgi]) | 2 € I\{io}, h € G<i\(1),pa prime
number, p, | |h|}.
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PROOF It is a logical triviality that N C M;(G) whenever |I| = 1, because I\{io} = 0.
Thus if |[7| = 1 then n;(G) = co. Suppose |I| > 2. It follows directly from (3.11) that 2 <
ni(G). Suppose 3+ (po—1)vp, (|¢i|) € M;(G) for some i € I\{ip}, h € G;\(1), and prime
number p, such that p, | |h|. We shall arrive at a contradiction. By definition, 3 + (p, —
Dy, (|gi]) < (k+1)+ (pa — 1) (vp, ('-‘Z') — up, (|h]) + 1) for all natural numbers k satisfying
1 <k < infimum {1+ (pa—1)v,,(|gi]),|g9:|—1}. Choosing k = 1 and keeping in mind that
Up,, (L‘;j‘) = vy, (|9i]) — vp, (k), we deduce from the inequality above that 3 < 2, an obvious
contradiction. g

Whereas the lemma above shows that n;(G) can be infinite only for finite cyclic groups
G, the next lemma shows that n(G) is infinite for a much larger class of groups.

LEMMA 3.13 Let F denote the family of all groups of the form S 1Z /Z where p denotes
an arbitrary natural prime number, S, the multiplicative set {p‘ | # > 0} in Z, and S, /4

the ring of Sp-fractions of Z. If G is an arbitrary direct sum of members of F then
n(G) = .

The proof of the lemma is left as an exercise.

THEOREM 3.14 If G is a torsion abelian group and n < n(G) or G is p-elementary then
the canonical homomorphism A™(G)/T"(G) — A™(G) is an isomorphism.

Theorem 3.14 is an immediate consequence of the following theorem.

THEOREM 3.15 If G is a torsion abelian group with an ordered basis (I,9) and n <
ni(G) or G is p-elementary then the canonical homomorphism A}(G) — A"™(G) is an
isomorphism and the set G"(I) of all special NRS-generators of degree n is a basis for

A™G).

PROOF By the Main Lemma 3.10, G*(I) is a basis for S;A"(G) and S;A"(G). Thus
the canonical homomorphism S;A™(G) — S;A"(G) is an isomorphism. To complete the
proof of the theorem, it suffices to show that A?(G) = S;A™(G). Reduce as in the proof
of Lemma 2.3 to the case I is finite. Let 1 denote the smallest element of I. It is enough
now to show that the quotient of any 2 consecutive members of the filtration (3.9.2) is
trivial. The proof of the Main Lemma 3.10 shows that this will be true, if the natural
numbers

C(|gi1“ H—l) (gir—l’ gir)’

(™) (h, g;,) where m = |g;,| — e + 2,
(

(

g}

3.15.1 | )
( ) C |9ig | +1) (gz’27 gi3)7

c |gir H’l) (girfl’ gZT)

occurring in the last 2 paragraphs of the proof are all 1.
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Suppose G is p-elementary. A natural number ¢{)( , ) in (3.15.1) is 1 if and only if
the integers e&,)i( , ) of (3.4.1), which are used to define ¢{)( , ), are all 0. It is easy to

check that the integers efx,g( , ) =0 when G is p-elementary.

Suppose that n < nr(G). By Theorem 3.5, we can assume that 3 < n. Consider the
natural numbers in (3.15.1). For the moment, leave aside the second number. Since the
indices 1i,, 13, and %, occurring respectively in the first, third, and fourth numbers, lie in
I\{1}, it follows respectively that n > |g;,| + 2,n > |g;;| + 2, and n > |g;,| + 2. But
n < n;(G) and by Lemma 3.12, we know that n;(G) < 2+ (p, — 1)v,, (|gi]) for any
i € I\{1} and any prime number p, such that p, | |h| for some h € G;\(1). This leads
immediately when ¢ = i,, 43, and 4, to the inequality pg”"‘(‘gi‘) < gl £n < (Pa—1)vp, (|gi])
which is false for any prime p,. Thus the first, third, and fourth cases in (3.15.1) do not
occur under the assumption n < n;(G). It remains to show that ¢™(h,g;,) = 1 where
m=|g,| —e+2.

By (3.4.2)

)(h, giy) H 19iz)

where p, runs through all prime numbers such that p, | |h| and
e™(h, g;,) = supremum {egflk) (h,g:,) | 1<k <m-—2}

where

m m — k+1 o
%jwym={——i——l—%(”'

e ) 0 0) = 1150

We must show for each o and each k (1 <k < m — 2) that e (h gi,) =0, i.e. that

m < b+ 1)+ (o= Do (5 = 0 )+ )

But m < n < n;(G). Thus m € M;(G) and therefore satisfies the inequality above for
any k such that 1 < k£ < infimum {m — 2, |g;,| — 1} = (because m = |g;,| —e+2) m —
2. O

Theorem 3.14 has the following immediate consequence for the Rees ring of ZG'.
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COROLLARY 3.16 Let G denote a torsion abelian group. Let Z & A(G) & A%(G) @ - - -
denote the Rees ring of A(G) in ZG. Let TX(G) denote the tensor algebra defined in
(2.14). Let N',R' and S’ denote the relations defined in (2.14). Define the following
relation in TX(G).

(T7) ¢"(h, 9)XnX

g‘gl

—m+2Xg"‘Xg:
——

lg|—m+1
S ™ (h, )™M X Xy X, X,
——

=1

for all h,g € G\(1) such that |h| # |g| and |h| | |g|, and all 3 < m < |g| + 1 where
™ (h, g) is defined as in (3.4) and az(;”) and ™ as in (3.5) and (3.3).

If n(G) = oo or G is p-elementary then the canonical graded surjective ring homomor-
phism TX(G) - Z & A(G) ® A*(G) @ --- , X, — (g — 1), has kernel the 2-sided ideal
generated by N', R, S', and T".

The proof of Corollary 3.16 is similar to that of Corollary 2.14 and will be omitted.

4 U relations and presenting A"

The goal of this section is to prove Theorems 1.1.3 and 1.2.3. Theorem 1.1.3 presents
A"™(G) for an arbitary torsion abelian group by adding to the relations N, R, S and T
used in Theorem 1.1.2, the new relation U. Theorem 1.2.3 presents A™(G) for an arbitray
torsion abelian group with ordered basis I, by adding to the relations N, R, S and 7T} used
in Theorem 1.2.2, the new relation U;. Since relations T D relations 77 and relations U D
relations Uy, one deduces by a straightforward direct limit argument that (1.1.3) follows
from (1.2.3).

We begin by defining the U; relations when I and therefore G is finite. Let A?(G) =
A™"(@)/TP(G). Let S;A™(G) and S;A™(G) denote respectively the subgroups of A%(G)
and A™(G) generated by the special NRS-generators. According to the Main Lemma
3.15, the special N RS-generators are a basis of S;A™(G) and S;A™(G) and the quotients
An(G)/S;A™(G) and A™(G)/S;A™(G) are torsion. The Uy relations are chosen so that
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they can be used in replacing the special NRS-generators by a set of elements which
generates AT(g)/UT(G) and is a basis of A"(G). This will be enough to prove Theorem
1.2.3.

Let G be a finite abelian group and (/, g) an ordered basis for G. Let NRS — G"(I)
denote the set of all NRS-generators of degree n for I and let G"(I) C NRS — G"(I)
denote the subset of all special NRS generators of degree n. Elements of G"(/) will
be denoted by z’s, elements of NRS — G"(I)\G"(I) by y’s, and a general element of
NRS — G™(I) by z. Totally order the elements of NRS-G"(I), which are only finite in
number, such that every element of NRS — G"(I)\G"(I) is greater then every element
of G"(I). If z € NRS — G(I), let z 4+ 1(resp. z — 1) denote the next bigger (resp. next
smaller) element of NRS — G™(I), provided such exists. For y € NRS — G"(I)\G"(I), let
A7 (G) denote the subgroup of A™(G) generated by all z € NRS —G"(I) such that z < y.
Letting #max denote the largest element of G"(I) and setting A? (G) = S;A™(G), we
get a filtration A} = (G) C A7 1(G) C--- CARG) C AY4(G) € --- € A™(G) such
that U AP(G) = A"(G) and AJ(G) = A} (G) + Zy for each y > Tmax. By the Main

Y>Tmax

Lemma 3.10, the quotient A7(G)/A7_,(G) is torsion. Let

¢y = smallest natural number such that ¢,y € Ay_, (G).

Obviously ¢,y can be written, not usually in a unique way, as an integral linear combi-
nation of elements z such that z < y. We shall develop below a systematic procedure
to write ¢,y in an unambiguous way as an integral linear combination of elements z as
above. Suppose this has been done. Write ¢,y as this integral linear combination

CylY = Z dy 2.

2<y

Denote this relation by

Uy-

It is called y-th derived relation of (NRS — G"(I),G"(I)) with respect to the given
total ordering of NRS — G"(I). Let

Ur(G) = {Uy | Y > Tmax}-
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Since A7(G) and A™G) have the same generators, the relations in U7 (G) make sense
in AT(G), although they are not in general satisfied in A7(G). We have the following
theorem.

THEOREM 4.1 Let G denote a finite abelian group and (/, g) an ordered basis for G.
Then U (G) generates Ker (A7(G) — A™(G)). Thus A?(G) /(TP (G),Ur(G)) =2 A™(Q).

The theorem will be proved towards the end of the section, along with extensions to
arbitrary torsion abelian groups with and without ordered bases, and to the Rees ring of
ZG.

The key to writing ¢,y unambiguously as an integral linear combination is the notion
of derived basis. This is a general concept which is not restricted to the current context
and will be developed below in steps. It should be useful also in the future in handling
nonabelian groups G.

DEFINITION 4.2 Let A denote an abelian group and B C A a subgroup. An element
y € A, which represents a torsion element in A/B, is called good over B, if the smallest
natural number ¢, such that ¢,y € B has the property that ¢,y ¢ ¢B for any natural
number ¢ > 1. It follows trivially that y is free.

Suppose that y € A is good over B. Suppose B is finitely generated and torsion free
and let G be an ordered basis for B. Suppose that ¢, = p’ is a power of a prime number

p. Write py as a Z-linear combination p‘y = Y d,x of elements z € G. Let zy denote
z€G
the smallest element of G such that p® and d,, are relatively prime. Choose integers u

and v such that the absolute value |u| of u is as small as possible with respect to the
property up® + vd,, = 1. The integers u and v are unique and the set G, = {z € G | = #
zo} U {uzy + vy} is a basis for By = B + Zy. Give G; the total ordering such that the
bijective map G — G; which sends every element z # x( to itself and zy — uzy + vy
is order preserving. The ordered basis G; is called the derived basis of G and y. It
has the property that each of its elements is expressed in a prescribed way as a Z-linear
combination of elements of G U {y}, namely if © # x¢ then £ = x and the remaining
element uxy + vy has the decomposition uxy + vy = uzy + vy. Note that if £ = 0 then
u =1 and v =0; thus G = G;.

k
In the case of a general c,, we factor ¢, = [] pfi as a product of prime powers pf”" such

=1
that p; < py < -+ < pp. Let Gy = G and for 1 < ¢ < k, define recursively G; = derived
basis of G;_; and (pfff e pi’“)y. Obviously each element of Gy, is expressed in a prescribed
way as a Z-linear combination of elements of G U {y}. Gi is called the derived basis of

G and {y}.
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Let Gen be a totally ordered finite set and let G C Gen be a nonempty subset such
every element of Gen\G is greater then every element of G. Elements of G will be denoted
by z’s, elements of Gen\G by y’s, and a general element of Gen by z. If z € Gen, let
z + 1(resp. z — 1) denote the next bigger (resp. smaller) element of Gen, provided it
exists. Let A be an abelian group. Fix an injective map Gen — A. For each y € Gen\G
let B, denote the subgroup of A generated by {z € Gen | z < y}. Let xyax denote
the largest element of G and let B = B, denote the subgroup of A generated by
{z € G} = {2 € Gen | 2 < Tmax}. The pair (Gen, G) is called a good set of ordered
generators for A or simply good in A, if Gen generates A, G is a Z-basis for B, and
for each y € Gen\G,y is good over B,_i. Set G,... = G and define recursively G, =
derived basis of G,_; and y. By definition, each element of G, is a prescribed Z-linear
combination of the element y and elements of G,_;. It follows that each element of G, is
a prescribed Z-linear combination of elements in {z | z < y}. Let ¢, denote the smallest
natural number such that c,y € B,_;. Then we can write ¢,y in a prescribed way as a

Z-linear combination ¢,y = > d,z. The difference
2<y—1

CylY — Z d,z is denoted by u,

z<y—1

and is called the y -th derived relation of (Gen,G). Let

U(Gen,G) = {uy | y € Gen\G}.

This is called the set of derived relations of (Gen, G).

Let A — A denote a homomorphism of abelian groups. Let Gen — A denote an
injective map such that its image generates A and the diagram

Gen

N

A A

commutes. Because~ Gen represents generators for both A and A~, each derived relation in
A makes sense in A, although it is not necessarily satisfied in A. We have the following
lemma.

LEMMA 4.3 In the context above, U(Gen, G) generates Ker (A — A). Thus A/(U(Gen, G))
= A
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PrROOF Let A = A/(U(Gen,G)). Define B = B, and B, analogously to B and B,,
respectively. Clearly the canonical homomorphism B — B is an isomorphism because G is
a basis for both B and B. Let y € Gen\G and suppose that the canonical homomorphism
B,_1 = B,_; is an isomorphism. Since the element y € A is good over B,_1, it follows
that the element y € A is good over By 1. Let G,_ denote the derived basis for By 1.
Since By 1 — By_1 is an isomorphism, we can declare G, ; an ordered basis for B,_;.
Trivially the canonical homomorphism B — B, maps bijectively the derived basis of
Gy—1 and y for By onto the derived basis of Gy_1 and y for B,. Thus the map B — By
is an isomorphism. Since U B,=Aand U B, =A, 1t follows that A — A is an

yeGen\g yEGen\G
isomorphism. Il
PROOF OF THEOREM 4.1 By definition, U}(G) = U(NRS — G"(I),G"(I)). Thus the
theorem follows immediately from Lemma 4.3. O

Theorem 4.1 has the following consequence for the Rees ring of ZG.

COROLLARY 4.4 Let G denote a finite abelian group with ordered basis (I,g). Let
Z 3 AG) ® A*(G) @ - - - denote the Rees ring of A(G) in ZG. Let TX(G) denote the
tensor algebra defined in (2.14). Let N', R, and S’ denote the relations defined in (2.14).
Define the following relations in T X (G).

(T") All relations

Cm(h, g)Xth|g\—m+2 Xg .. 'Xg =
2
m—2 |h|—1 ( )
Z Z X,”Xh Xh Xg---Xg—i—
i=1 j=1 ——
m—i—1 i
lg|l—m+1 (m)
Z c(m)(h g)b XhX X X
=1 m—2
such that
m—2 |h|—1
™ (h, ), lg|—m+2 = W h - . h.qg - q|+
g g ) 7g a’ ) ) ) 795 7g
R
lgl—m+1 o
Z (m)(h )b,m h P
c ' 9 7 » 9,9, )
i=1 m—2
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is a relation in 77"(G) and 3 < m < [g| + 1.

(U") All relations

Z d[glv'"vgm]Xgl U Xgm

(915 s9m]ENRS=G™(I)

such that

Z d[gla"';gm][glﬂ e agm] S U}n(G)

[glﬂ"' ,gm]ENRS—gm(I)

and 3 < m < supremum {|g;| + 1|7 € [}.

Then the canonical graded surjective ring homomorphism TX (G) —» Z&A(G)d A" (G) &
--+, Xy (g — 1), has kernel the 2-sided ideal generated by N’, R', S",T', and U’.

The proof of Corollary 4.4 is similar to that of Corollary 2.14 and will be omitted.
The next theorem is an immediate consequence of Theorem 4.1.

THEOREM 4.5 Suppose G is a torsion abelian group. Let H denote a directed system of
finite subgroups H C G such that the direct limit lim H = G. Suppose further that each

—H
H comes equipped with an ordered basis (I, h). Let T, (G) = HLEJHT}‘H (H) and U (G) =
HU%U}‘H (H). Then the canonical homomorphism A™(G)/(T%(G), UL (G)) — A™(G) is an
€
isomorphism.

There is a result analogous to Theorem 4.5, for Rees rings. Its formulation is left to
the reader.

5 Relation modules and Ker(A™(G) - A™(G/N))

Let G denote an abelian group or monoid and let A™(G) be defined as in §1. By (2.12),
there is an action of G on A™(G) such that the canonical homomorphism A”(G) — A™(G)
is a G-homomorphism. The Ker(A™(G) — A™(G)) is denoted by w"™(G) and will be called
the relation module of G of degree n. It is obviously a G-module. According to (2.5),
(2.7), (2.11), and (2.13), w™(G) = 0 whenever one of the following holds: n = 2 and G
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is either torsion free or torsion; n > 2 and G is either torsion free or a direct limit of
cyclic groups. Furthermore according to (3.14) and (4.5), if G is torsion then we know
generators for it namely the elements of w"(G) defined by the 7" and U relations.

The theorem below shows that whereas the functor A" is “exact” in an appropriate
sense, the funtor A” is not, but its failure to be exact is measured by the functor w".

THEOREM 5.1 Let G denote an abelian group and N C G a subgroup. Let A™(N)G (resp.
A"(N)G) denote the G-submodule of A"(G) generated by image(A"™(N) — A™(G)) ( resp.
image (A™(N) — A"™(G))). Then the sequence

A™(N)G — A™(@) - A™(G/N)

of G-modules is short exact and the homology of the sequence A"(N)G — A™(G) —
A™(G/N) of G- modules is computed by

H(AYN)G — AY(G) - AYG/N)) % w™(G/N) /" (G).

Moreover if G is finite, resp. torsion, then so is w"(G/N)/w™(QG).

PROOF There is a canonical homomorphism A™(G)/A"(N)G — A™(G/N) and the rule
A"(G/N) = A™(G)/A"(N)G, [g1,- - , gn] = [G1,- - , Gn] + A*(N)G where §; € G is any
lifting of ¢g; € G/N (1 < i < n), is well defined and yields a homomorphism which is
inverse to the one above.

From the sequence of canonical homomorphisms w™(G) — w™(G/N) — A"(G/N) —
A™(@)/A"(N)G — A™(G)/A™(N)G and the observation that w"(G) vanishes in A"(G)/
A™(N)G, we obtain an induced homomorphism A"(G/N)/w™(G) — A™G)/A™(N)G.
On the other hand the canonical homomorphism A™(G)/A™(N)G — A™(G/N) induces a
homomorphism A™(G)/A"(N)G — A™(G/N)/w™(G) which is mutually inverse to the one
above. It follows that Ker(A™(G)/A™(N)G — A"(G/N)) = Ker(A™(G/N)/w™(G) —
A"(G/N)) = w™"(G/N)/w"(G).

To prove the last assertion of the theorem, it suffices to consider the case G is finite.
Since w"(G/N) is finitely generated, so is w"(G/N)/w"™(G). Thus it suffices to show
that Q ® (w"(G/N)/w™(G)) = 0. But this follows from the fact that the functor Q®__

commutes with taking homology and by Mashke’s theorem, the sequence QRA"(N)G —
QRA"G - Q®A™(G/N) is short exact. O

We draw some easy consequences of the theorem above, using results in previous
sections. Further consequences could be drawn by analyzing and computing the quotients
w"(G/N)/w"™(G), but this is a topic in itself which is not undertaken in the current paper.

38



COROLLARY 5.2 Let GG denote an abelian group and N C G a subgroup. If n = 2 and
G/N is either torsion free or torsion or if n > 2 and G/N is either torsion free or a direct
limit of cyclic groups then the sequence

A™(N)G — AMG) — A™G/N)

of G-modules is short exact.
PROOF The result is an immediate consequence of (5.1), (2.5), (2.7), and (2.13). O

COROLLARY 5.3 Let G denote a torsion free or torsion abelian group and N C G a
subgroup. If n =2 or if n > 2 and G is either torsion free or a direct limit of cyclic groups

then the homology H(A™(N)G — A™(G) - A"(G/N)) =2 w"(G/N).
PROOF The result is an immediate consequence of (5.1), (2.5), (2.7), and (2.13). O

COROLLARY 5.4 Let G denote an abelian group and N C G a subgroup. Then any set
theoretic section s : (G/N) x ---x (G/N) — G x ---x G to the canonical homomor-
~—_———

- o
'

n

phism G x --- x G — (G/N) x X (G/N) defines an isomorphism
AMG/N)[w"(G) = A™(G) /A" (N)G

of G-modules. In particular, if n = 2 and G is torsion or if n > 2 and G is either torsion
free or direct limit of cyclic groups then A*(G/N) = A™(G)/A"(N)G.

PROOF The first isomorphism was established in the proof of (5.1) and the second isomor-
phism follows now from (2.5), (2.7), and (2.13). O

DEFINITION-LEMMA 5.5 Let G denote an arbitrary group or monoid. Let A™(G) denote
the free abelian group on the set of all standard generators [z(1),---,z(n)] of A™(G)
modulo the relations N and R in §1. Let ¢ € G. Then the rule [z(1),---,z(n)lg =
[z(1),--- ,z(n)g] — [z(1), -+ ,z(n — 1), g] defines an action of G on A"(G) such that the
canonical homomorphism A"(G) — A™(G) is one of G-modules.

The proof is similar to that of (2.12) and will be omitted.

For an arbitrary group G, let Q"(GQ) = ker(A"(G) — A"(G)). Q"(G) will be called
the nonabelian relation module of G of degree n. It is obviously a G-module.

The following result is the analog of (5.1) for arbitrary groups. Its proof is similar to
that of (5.1) and will be omitted.
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THEOREM 5.6 Let G denote an arbitrary group and N < GG a normal subgroup. Let
A™N)G (resp. A™(N)G) denote the G-submodule of A" (G) generated by image(A™(N) —
A"™(@)) ( resp. image (A"(N) — A™(G))). Then the sequence

A™(N)G — AMG) — A™(G/N)

of G-modules is short exact and the homology of the sequence A"(N)G — A™(G) —
A™(G/N) of G-modules is computed by

H(AMN)G — A™G) — A"(G/N)) = Q"(G/N)/Q(G).

Moreover if G is finite then so is Q"(G/N)/Q™(G).

For an arbitrary monoid G, the relation S in §1 makes sense in A™(G), i.e. defines
elements of A"(G), such that if G is abelian, the elements live in Q"(G). The next lemma
records an obvious relationship between 2" and w". Its proof is omitted.

LEMMA 5.7 Let G denote an abelian monoid. Let (S)qn(e) denote the G-submodule
of Q"(G) generated by the elements of Q"(G), which are defined by the relation S in
§1. Then the canonical G-homomorphism Q"(G) — w™(G) induces an isomorphism
Q"(G)/{S)ana) = w™(G).

The lemma above allows one to translate computations above for w"(G) into ones for
Q0"(@), when G is abelian. For arbitrary groups G, sets of generators for Q"(G) will be
strongly tied to presentations of G. General results are not available here, although easy
examples can be worked out by hand. If F is free, we anticipate that Q"(F) = 0. This
would show analogously to (5.4), that if G is an arbitrary group and N — F' — G an
exact sequence presenting G where F is free then A"(G) & A™(F)/A"(N)F.

We conclude the paper by investigating the notion of higher relation module. Specif-
ically we construct a functor A" : ((abelian groups)) — ((pointed topological spaces)), a
surjective natural transformation 7 : w" — 7 A", and generators for Ker (7). It is unclear

whether or not all the generators are zero.

Let G denote an abelian group. For each (n — 2)-tuple fi,---, fu 2 € G, there
are G-homomorphisms dy, ... 1., : A*(G) = A™(G), [g1,92) — [f1,** , fa—2, 91, 2], and
5f1,---,fn72 : A2(G) - AR(G)’ [glagQ] = [fb e afn—?agla.gQ]- Let A21,...,fn_2(G) = image
(84, 1,_,) and A% ;. ,(G) = image (df,,.. 5, ,). Define an abstract simplicial com-
plex V*(G) as follows. As usual, if p € Z=° then V"*(G), will denote the p-simplices

40



of V*(G). Let V*(G)y = A™G). If p # 0,2, define V*(G), = {{zo,---,2,} C
A"Q) |zi—xj € A?f(i,j))l;"';(f(i,j))n—2(G) for some (n—2)-tuple (f )1, , (fij)n—2 € G}.
Define V*(G)q = {{zo, 21,22} C A™(G) | 30 < ¢ < 2 such that for any k£ # ¢ (0 < k <

2),x;—xy € A?fk)l,"',(fk)n—2(G) for some (n—2)-tuple (fx)1, -, (fx)n_2 € G}. Let é"(G)

denote the geometric realization of V"(G).

Call an element a € A™(G), a A2- element, if a € Afch_",fﬂ_z (G) for some (n—2)-tuple
fiooo  faa € G. Let 07(GQ) = {a+b+c+d e A*GQ) | a,b,c,d are A%-elements, a +
b+c+de w(G)}. Let én(G) denote the universal connected covering of A™(G). One
establishes straightforward a functorial one to one correspondence between the elements
of A"(G)/0"(G) and the fixed end point contiguity classes of edge paths in V"(G) start-
ing at the origin, such that the fundamental group 7 (A"(G)) = Ker(A™(G)/0"(G) —
A™(G)) = w"(G)/0™(G). This raises the question: When is §"(G) = 07 One could also
ask: When is the canonical homomorphism Azl,___,fnﬂ(G) — A?ﬁ,---,fnq(G) an isomor-
phism? Obviously a positive answer to the former implies a positive answer to the latter.

It is also interesting to ask: When is the canonical homomorphism w™(G/N)/w™(G) —
w™(G/N)/0"(G/N)w™(G) an isomorphism?
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