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1 Introduction

Root systems and their Weyl groups of automorphisms appear naturally in the
description of semi-simple Lie algebras and their linear representations and in
the classification of semi-simple algebraic groups. In terms of root systems
one can answer many questions concerning the structure of Lie algebras and
Chevalley groups.

For example, connected overgroups of a split maximal torus in a Cheval-
ley group and regular subalgebras of a Lie algebra are parametrized by closed
subsets of a root system.

In case of the root system A;, closed subsets are related to topologies on
a finite set. By reduction first to Tp-topologies and then to V-topologies,
Z.1.Borevich [?] counted the number of closed sets in the systems A, for I < 11.

Other classical root systems — Bj, Cj, and D; — are more complicated,
so that questions about classifying their closed subsets and even about the
reduction to special closed sets is unsolved. Partial results in this direction were
obtained by F.M.Malyshev, see for instance [?].

The question of classifying closed subsets of exceptional root systems of type
Eg, E7, and Eg is also interesting.

The goal of the present paper is to describe the structure of closed sets. To
do this we introduce a new invariant of a closed set, the sum vector. It is a
generalization of the construction used in [?] for classifying closed sets such that
their supplements are closed. The sum vector indicates important properties of
the structure of a closed set, such as the disposition of its symmetric part, the
disposition and size of its special part, and its stabilizer in the Weyl group.
In terms of the notion "sum vector" we define the concept of the associated
base. A closed set has the simplest form in such bases. Using these notions
we obtain a new elementary proof of Chevalley’s theorem on parabolic subsets.
The main theorem of the current paper is the determination of the set of all
possible values of a sum vector. The last section of the paper is devoted to
"assembling" a closed set from a closed subsystem and a special set.



2 Preliminaries

Let ® denote a root system, [ its rank, and W (®) its Weyl group. If a base II
of fundamental roots of ® is fixed, then &t will denote the set of all positive
roots of ® with respect to II. In this situation C(®*) denotes the fundamental
Weyl cell.

We denote the inner product of vectors z and y by (z,y). If the angle
between roots a and £ is more than 7/2 (in the other words (a, ) < 0), then
a + B is a root.

The Weyl group W (®) is by definition the group generated by the reflections
w,, for all roots a € ®. It is known that the Weyl group acts simply transitively
on the set of all bases of fundamental roots (or on the set of all Weyl cells).
Moreover, the closure C(®7) of the Weyl cell is a fundamental domain for the
action of the Weyl group on the span R' of ®. In particular, this implies that
the stabilizer in the Weyl group W (®) of a vector is the Weyl group of the root
system of all roots in ® which are orthogonal to the given vector.

Definition. A subset S of a root system @ is called closed, if for any two
roots a,3 € Ssuchthat a+ € ®,a+ B € S.

Examples. 1. The set &1 of all positive roots is closed.
2. The intersection of ® and any linear subspace of R! is closed.

Any closed set S is a disjoint union of its symmetric part S™ = {a € S|—a €
S} and its special part S* ={a € S|—a ¢ S}.

The following lemma is well-known.

Lemma 1. 1. S” is a closed subsystem of ®.

2. For any two roots oo € S* and B € S such that o+ 3 is a root, o+ f lies
in SY.

In particular, the second assertion of Lemma 1 implies S* is a closed.

If S = S7, equivalently S* = (), the structure of S is quite simple and well
explored. In particular, all closed subsystems have been classified by Borel, de
Siebental and Dynkin in [?] and [?]. Namely, any closed subsystem of & can
be obtained from ® as a result of multiple applications of the following pair of
operations on subsystems, starting with the entire system & :

1) for every irreducible component of a subsystem choose any base and a
maximal root;

2) choose an arbitrary subset of the chosen collection of roots and form the
minimal closed set containing all these roots and their opposites (the set will be
a subsystem automatically).

Definition. Closed subsets S and S’ of a system ® are conjugate, if there
exists an element w € W(®) such that w(S) = 5'.

The problem of classifying closed subsets — all or all up to conjugacy — is
unsolved.



3 Sum vector: definition and basic properties

Definition. The vector £(S), which is equal to the sum of the roots of a closed
set S, is called the sum vector of S.

The definition implies directly the following lemma.

Lemma 2. 1. £(S) = £(S").
2. All coordinates of the vector £(S) in a base of fundamental roots are
integral.

Example. Consider the closed set ®* consisting of all positive roots. For
this set we have £(®1)/2 = p. Moreover p lies in a fundamental Weyl cell,
wa(p) = p— «, and {p,a) = (a,a) for any fundamental root a. A detailed
proof can be found in [?].

Proposition 1. 1. £(S) is orthogonal to any root of S.
2. The inner product of £(S) and any root of S¥ is positive.

Proof. 1. Let a be a typical root of S”. Note that S is invariant under
the corresponding reflection w,. Indeed, the reflection w, takes any root 8 € S
to a root wy(B) that is equal to a sum of 8 and a few (possibly zero) copies of
the root @ and lies in S. Since S is invariant under w,, its sum vector £(5) is
invariant under w, and orthogonal to a.

2. Let a be a typical root of S”. For each root 8 € S such that (58, a) < 0 the
root wy(B) lies in S, since wq(B) is equal to a sum of 8 and a few copies of the
root a. Note that (3,a) + (wa(8),a) = 0. Let us say that 8 € S corresponds
to wa(B) € S, if {(B,a) < 0. Then the sum of any two roots that correspond
to each other is orthogonal to a. The root a does not correspond to any root
since wy(a) = —a does not lie in S. So the sum £(S) of the roots of S satisfies
(&(S), ) > (a,a) > 0.

Proposition 2. Let S and T be closed sets such that S* C T%. Then
£(S)] < [€(T)]-

Proof. Using the first assertion of Lemma 1 we can assume that § = S
and T = T*. Consider a root a € T\S such that the inner product of o and
&(S) is maximal.

Note that the set S' = S U {a} is closed. Indeed, the set S is closed. For
each root B € S such that o + 8 is a root, a + 3 lies in T, because T is closed.
If o+ 3 € T\S then (£(S5),a + B) = (£(S5), ) + (£(S),8) > (£(S), @) which
contradicts the maximality of a. So S’ is closed.

We have [£(S")]? — [€(S)[” = (£(5"),£(S")) — (£(S),€(S)) = (€(S"),€(5") —
(€(S") — o, &(S") — a) = 2(£(S"), a) — (a, @) > {a,a) > 0. So the sum vector of
S’ is longer then the sum vector of S.

By adding vectors a, one at a time to S, we obtain that [£(T")| > |£(S)].



4 Conjugacy and associated bases

The following lemma is obvious.

Lemma 3. 1. If S and S’ are closed sets such that w(S) = S for some
w € W then w(&(S)) = &£(5").
2. Since 8™ C £(S)t N ® we have

W(S") < X(S) < X(£(9)) = W(E(S)" n @),

where X (S) denotes the normalizer in W (®) of S, i.e. the subgroup of W(®)
that leaves S invariant.

Definition. A base of fundamental roots is called associated with a closed
set S, if £(S5) € C(DT).

It is well-known that for any closed set S there exists a base II such that
all roots of S* are positive with respect to II. The inductive proof of this fact
which is given in [?], is more complicated than the following proof in terms of
the sum vector.

Proposition 3. IfII is a base associated with a closed set S then all roots
of S* are positive with respect to TI.

Proof. Since £(S) is in the closure of the fundamental Weyl cell, the inner
product of £(S) and each of the fundamental roots is non-negative. So the inner
product of £(S) and each positive root is non-negative and the inner product
of £(S) and each negative roots is non-positive. Using the second assertion of
Proposition 1, we conclude that S* consists of positive roots.

Corollary. Coordinates of £(S) in an associated base are non-negative and
do not exceed the corresponding coordinates of £(®7T).

The shape of a closed set in an associated base is “canonical” in a certain
sense. For example, if a closed subset of an irreducible root system consists of a
unique root « then « is the maximal root in each associated base. In the next
proposition we show that any parabolic set is determined by its sum vector and
contains all positive roots in any associated base. Moreover the parabolic set
has the same shape in any associated base. In general, a closed set has different
shapes in different associated bases.

Example. The closed set consisting of the pair of orthogonal roots ag + as
and ay + a3 in a root system of type As has the shape {2, 81 + 82 + 83} in the
base 81 = a1, B2 = as + az, B3 = —as.

Two closed sets S and S’ are conjugate by w € W(®) if and only if S
has the same shape in some base IT as S’ has in the base w(II). For any
wy € W(®) such that wi(£(S)) = £(S”) the element w decomposes as waw,
where wy € W(® NE(S")L).

In terms of sum vectors, we can give an elementary proof of the following
proposition which is known as Chevalley’s theorem.

Proposition 4. Any two closed sets containing ®t coincide or are not
conjugate.



Proof. Note if S contains &+ then £(9) lies in C'(®1). Indeed, each funda-
mental roots lies in S* or S”. If a fundamental root « lies in S™, then the inner
product of @ and £(S) is equal to zero by the first assertion of Proposition 1. If
a fundamental root « lies in S® then the inner product of a and £(S) is positive
by the second assertion of Proposition 1.

So we can use the first assertion of Lemma 3 and note that since C'(®+) is a
fundamental domain, if two closed set contain ®+ and are conjugate, then their
sum vectors coincide. Thus their special parts consisting of the roots having
a positive inner product with the sum vector coincide. And the special parts
consisting the roots which are orthogonal to the sum vector coincide. So these
parabolic sets coincide.

Since a parabolic set is determined by its sum vector, the set has the same
shape in all associated bases.

5 Theorem on values of a sum vector

In this section we ascertain which values the sum vector £(5) takes when S runs
over the closed subsets of the system &.

Consider a closed set S in some associated base II. Then the sum vector £(S)
lies in C(®1), the coefficients of £(S) in II are integral (by the second assertion
of Lemma 1), non-negative and do not exceed the corresponding coefficients of
&(®T). We shall show that any such vector is the sum vector of some closed set
S.

Theorem Let £ be a vector lying in the closure C(®T) of the fundamental
Weyl cell. Suppose that £ has integral non-negative coordinates which do not
exceed the corresponding coordinates of £&(®) in the base of fundamental roots.
Then there exists a closed subset S in ® such that £ is the sum vector of S.

Proof. Consider a finite family 7" of roots. We define a following procedure
which we call “contraction”:

(a) if & and 8 lie in T and a + § is a root which does not lie in T' then we
replace a and 8 by a + f;

(b) if @ and —a lie in T we take a and —a away;

repeat (a) and (b) as long as possible. The process will end since the number
of roots in T' decreases.

We will use the following trivial properties of contraction.

I. Contraction preserves the sum of the roots of the family 7.

II. The multiplicity of a root does not increase after contraction.

III. A subset T of &7 is closed if and only if contraction leaves T invariant.

Since the coordinates of ¢ in the base of fundamental roots are integral and
do not exceed the coordinates of £(®1), we can decompose £ as a sum of roots
of a family T, where T consists of all positive roots and some opposites of
fundamental roots. The numbers of copies, i.e. multiplicity, of each positive
root in T is equal to one and the opposites to the fundamental roots can have
different multiplicities.



Apply contraction to T and denote the result by S. The sum of the roots of
S is the same as the sum of the roots of T and equals €. Note that each multiple
root of S must be negative. In fact we shall show that S consists of positive
roots and thus S is a closed subset of ®+.

Assume to the contrary that S contains negative roots. Choose a minimal
root z of such roots.

Note that the inner product of z and each multiple root a of S is non-
negative. Otherwise their sum a + x is a root lying in S and less then x since a
is the opposite of a fundamental. This contradicts the minimality of .

Consider the set S’ consisting of roots lying in S (i.e. S’ consists of the same
roots as S, but there is no multiple root in S'). S’ is closed, since contraction
leaves S fixed. By the first assertion of Proposition 1 we have (z,£(S")) > 0.

We have

(€ z) = (£(5),2) + (o — Dar, ) + - + (t- — 1){ar, 2),

where t; is the multiplicity of the root a;. Thus (£,z) > 0. On the other hand
since z is a negative root and ¢ lies in C'(®71), we have (£,z) <0.

This contradiction shows that all roots of S are positive, distinct and form
a closed set, whose sum vector is equal to £. The theorem is proved.

Remark. Two absolutely different closed sets can have one and the same
sum vector.

Examples. 1. In the system of type A; the closed sets {a1 + a2,a0 + a3}
and {a1, a1 + az + a3} have one and the same sum vector. They are conjugate.
(Compare with the previous example.)

2. In the root system of type A4 the closed sets a1, aq,a3 + a4, a1 + as +
a3, + a3+ as,00 + s + s +aq} and {oq + @, a3 + s, 1 + @2 + az, a2 +
a3 + as, a1 + az + as + a4} have the same sum vector, but different numbers
of roots.

6 Assembling

The following proposition concerns “assembling”, i.e. the problem whether the
union of a given closed subsystem and a given special closed set form a closed
set. Although the result is quite natural, we could not find it in the literature.

Proposition 5. For any special closed set S* there is a unique mazximal
closed set T such that S is the special part of T'.

Proof. Note that a root «a lies in the symmetric part T" of some closed
set T such that 7" = S* if and only if « is orthogonal to £(S*) and the set
S* U {a} U {—a} is closed. In view Lemma 1 it is sufficient to prove that all
such roots form a closed subsystem. In the other words it suffices to prove that
if two roots a and 8 are orthogonal to £(S%), a + 3 is a root and

(¥) S*U{a}U{—a}and S*U{B} U{—pB} are closed,

then a + f is orthogonal to £(S*) and S* U {a + 8} U {—a — B} is closed.



It is obvious that a + 3 is orthogonal to £(S*), so we have to prove only the
second assertion.

Assume to the contrary that there is a root v € S* such that v+ a + 3 is
a root and does not lie in S*. Consider the closed subsystem A of & generated
by the roots «, # and «. The rank of A is equal to 3, because a, 8 and v are
linearly independent. Since a + 8 and a + 3 + « are roots the system A is
irreducible. Thus it is of type Az, Bz or Cj.

Let S’ be a closed set equal to S* N A. The set S’ contains vy and does
not contain v + a + §. Note that a + v (and similarly 8 + 7) cannot be a
root. Otherwise (x) implies a ++v € S* and (a + ) + 3 € S*, and we get a
contradiction.

We know that if the inner product of two roots is negative then their sum is
a root. And if the inner product of two roots in a system of type Az, B3 or Cs
is positive then their sum is not a root. So we have the inequalities (@, ) > 0,
(B,7) > 0 and {(a + B,v) < 0. Thus they must be equalities.

If the sum of two orthogonal roots is a root then these two roots are short.
So a + f and « are short. If the sum of two roots is a short root then one of
these two roots is short. So « or 8 is a short. We may assume that « is short.

Thus « and « are short orthogonal roots in a system of type Bs or Cj.
Thus a + 8 is a root which contradicts the statement above. This contradiction
completes the proof.
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