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Introduction

In this series of papers we intend to systematically study subgroups of hy-
perbolic unitary groups U(2n, R, Λ) over a form ring (R, Λ), corresponding to
a symmetry λ (see [B1] – [B3], [Ba3], [HO’M]). Our primary objectives are
two-fold. On one hand we plan to update the foundational results from [B1],
[Ba3], removing whenever possible stability conditions, or replacing them by
weaker commutativity or finiteness conditions. The excellent recent exposi-
tion [HO’M] concentrates on Steinberg groups, the structure of unitary groups
over division rings and isomorphism theory, but does not contain proofs of
structure results in full generality. We fill this gap. In particular, we carry
over to unitary groups over form rings the main structure theorems of the
past 30 years for general linear groups over associative rings and their ex-
tensions to the usual classical groups: [A3], [A4], [B4], [B5], [BV3], [CK],
[Go1] – [Go5], [GM1], [GM2], [Hb1], [Kh1] – [Kh3], [Ko1], [Ko3], [L1], [L2],
[LL], [Md3], [Su1], [SK], [Ta1] – [Ta3], [Tu], [V2] – [V8], [Va1], [Va3] – [Va8],
[VPS], [Wi] Furthermore we generalize to unitary groups over form rings more
specialized structure results, related to the description of various classes of
subgroups. In particular, we carry over results of [BV1] – [BV3], [Va1], [Va4],
[Go4] (see [Va8], [Va6], [Za] for many further references).

In the first half of this first article we fix the general framework for the rest
of the series. In the second half, we study elementary subgroups EU(2n, R, Λ)
of hyperbolic unitary groups U(2n, R, Λ), as well as relative elementary groups
EU(2n, I, Γ) corresponding to form ideals (I, Γ) in (R, Λ). In particular we
prove the following result (recall that a ring R is called almost commutative
if it is finitely generated as a module over its centre).

Theorem. Let (R, Λ) be an almost commutative form ring, n ≥ 3. Then for

any form ideal (I, Γ) the corresponding elementary subgroup EU(2n, I, Γ) is

normal in the hyperbolic unitary group U(2n, R, Λ). Moreover,

EU(2n, I, Γ) = [EU(2n, R, Λ), CU(2n, I, Γ)],

where CU(2n, I, Γ) is the full congruence subgroup of level (I, Γ).

The concept of a form ideal and its application to describing and analyzing
normal subgroups of unitary groups appears for the first time in [B1]. Here
the conclusion of the theorem above, as well as the sandwich classification of
normal subgroups of unitary groups, which shall appear in the second paper
of this series, was obtained under the condition that R is almost commutative
and n ≥ supremum(3, dimension (center(R)) + 2). Unfortunately, [B1] was
a thesis that was never published and was not easily available, especially in
Russia and China. This did a lot of harm. In fact, many works appearing up
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till the late 80-ies, were proving structure theorems for classical groups over
rings covered in [B1], such as zero-dimensional ones. We do not cite these
publications in our bibliography, see for example references in [HO’M] and
also in [CK], [V5], [V6], [Va8].

In [BV] we give another proof of the theorem above, based on a variant of
“localization and patching”. There we show also that the theorem remains
true for n ≥ 2 under the additional assumption RΛ + ΛR = R. However in
the current paper we give a direct global proof developing ideas of A.A.Suslin
[Su1], [Tu], [Kh1], [Kh3]. Of course, here we also must use “patching”, but
in the ring R itself. The proof requires very little information about the local
case, in fact one assumes only some transitivity properties of the elementary
unitary group. This provides lots of room for generalizations in the style of
[V2] or [Kh1] – [Kh3]. As we shall see in § 7 the proof embraces wider classes
of rings than just the almost commutative ones. Another advantage is that
unlike localization methods, the global approach gives explicit formulae for
decomposing a transvection into elementaries (incidentally, the formulae from
sections §§ 4 – 7 play an important role in subsequent parts of this paper).

The theorem above was known in many special cases. First, as mentioned
above, i.e. when n is large relative to some sort of dimension on the ring R,
the result was established by A.Bak [B1] – [B2], compare also [Ba3] (for the
general linear group GL(n, R) the analogous result was discovered by H.Bass
[Ba1], [Ba2], for some hyperbolic classical groups by L.N.Vaserstein [V1]; we
refer to the surveys [Va5], [Va8] for a systematic bibliography).

A.A.Suslin [Su1], [Tu] has proven that the elementary subgroup E(n, R) is
normal in the general linear group GL(n, R) whenever n ≥ 3 and R is almost
commutative (see also [BV3], [GMi2], [HO’M], [Kh1] – [Kh3], [Md2], [Sv],
[SK], [V2], [Va5], [Va8] for various proofs of this resulort and its generaliza-
tions to wider classes of rings). For the commutative case the original proof
[Su1] of A.A.Suslin is based on solving linear equations over rings, see [SK] for
a very elegant reformulation in terms of anti-symmetric matrices. A particu-
larly simple direct proof of Suslin’s result based on decomposing unipotents
was found in 1987 by A.V.Stepanov (see [Sv], [VPS] and the expositions in
[Va5], [Va8] and [SV]).

The proof in [Tu] of the normality of E(n, R) requires “patching”. The
author states explicitly that the result and proof are due to A.A. Suslin.The
paper [Kh1] improves the result slightly (pushing it to rings algebraic over
their centres). It also corrects some misprints from [Tu] and organizes the
proof in a better way. However many ring theoretical arguments are omitted
in [Kh1] as well. To the best of our knowledge the most systematic exposition
of these ideas is contained in the thesis of S.G.Khlebutin [Kh3]. Another
version of this method was proposed by L.N.Vaserstein [V2] and was
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christened “localization and patching”. It consists of throwing in polyno-
mial variables, passing to localizations with respect to central multiplicative
subsets and using corresponding local results. In general the relationship of
the patching method of A.A.Suslin to the localization and patching method
of L.N.Vaserstein is the same as the relationship of the solution of Serre’s
problem by A.A.Suslin to that by D.Quillen [La].

For historical accuracy one may note that the first application of Quillen’s
method to linear groups is also due to A.A.Suslin. It appeared in his re-
markable paper [Su1] dedicated to the K1 analogue of Serre’s problem. Many
authors seem to ignore that Suslin’s proof of “Quillen’s Theorem” (see § 3
of [Su1], especially Lemma 3.3 and proofs of Lemmas 3.4 and 3.7) con-
tained already all the ingredients of localization and patching. This method
was successfully used in late 70-ies by Suslin’s students V.I.Kopeiko and
M.S.Tulenbaev and later by E.Abe, D.Costa and others.

The methods above operate essentially in terms of the centre of the ground
ring, as do the published works of the Moscow school. In order for this to
work one has to impose some commutativity or finiteness conditions on the
rings considered. On the other hand, I.Z.Golubchik has successfully used non-
commutative localizations (more specifically Ore localizations, in particular
in [GM]) to describe normal subgroups [Go1] – [Go5]. He and A.V.Mikhalev
told us that they had applied non-commutative localization to also establish
the normality of elementary subgroups, but we have not seen any written
proofs.

Observe that some conditions on n and R are necessary here since the
subgroup E(2, R) is not necessarily normal in GL(2, R) even for some very
good rings R, like Dedekind rings (compare [Co1], [Su2], [Sw]). On the other
hand using universal localizations V.N.Gerasimov [Ge] (see also [Va8]) has
shown that for any given n there exist some very nasty rings R for which
E(n, R) is not normal in GL(n, R). Of course, these rings furnish also counter-
examples to the corresponding results for unitary groups. These rings are
very far from being commutative. In fact some of their factor-rings are not
weekly finite (recall that a ring R is called weakly finite, if any one-sided
invertible square matrix over R is two-sided invertible, see [Co2], [BV3], [Va8]
for a discussion of this condition and its role in the theory of linear groups).
Observe that normality fails in SO(4, R) (see [Ko2]) by the same reasons as
for the group GL(2, R).

Suslin’s result on the normality of E(n, R) in GL(n, R) was generalized
almost immediately by A.A.Suslin and V.I.Kopeiko [SK], [Ko1] from linear
groups to hyperbolic symplectic groups Sp(2n, R), n ≥ 2, and orthogonal
groups SO(2n, R), n ≥ 3, over a commutative ring R (in our terminology
these groups correspond to the cases when the involution on R is trivial and,
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respectively, λ = −1 and Λ = R, or λ = 1 and Λ = Λmin). The result for the
symplectic group has been partially reproven in [Ta1]. Compare also [GM1],
[HO’M], [Ko3], [L1], [L2], [V5], [V6], [Va1], [Va4], [Va5], [SV] where one can
find other proofs of these results and some generalizations to not necessarily
hyperbolic groups.

The results for split classical groups fall under the umbrella of Chevalley
groups. The normality of absolute elementary subgroups of simple Chevalley
groups of rank at least 2 over an arbitrary commutative ring R was first proven
by G.Taddei [Ta2], [Ta3], who used “localization and patching”, compare also
[V4], [A3], [A4]. Another approach to prove this result, based on Stepanov’s
idea of decomposition of unipotents, was proposed in [VPS], [Va5], [PV],
[Va7], [SV].

The most general published result for automorphisms groups of forms is
due to I.Z.Golubchik and A.V.Mikhalev [GM1] (compare also [Ko3], [HO’M]).
They use a version of Suslin’s patching method. The proof is not easy to
follow. In 4.3 the existence of certain elements λ, s and t is claimed, but
these elements are never displayed. The formulae at the end of proof of 4.3
suggest that 1 + λ = (1 + λ2)(1 + λ1)(1 + λ1), but then it is not clear why
the condition in the next paragraph is satisfied. Their results are phrased in
terms of arbitrary rings with involution (not just the ring M(n, R), as we do),
and assume that the Witt index is at least 2 (in their setting it is expressed in
terms of the behaviour of idempotents under the involution). In our setting
their main result applies to the groups where λ = −1, Λ = Λmax and n ≥ 2.
Actually their restrictions on λ and Λ are explained by the fact that in their
proof they consider only elements of long root type. As noted above, for
λ 6= −1 this result simply does not hold for Witt index 2. Analogous results
were announced by L.N.Vaserstein [V7], but a proof never appeared.

The commutator formula in the theorem above was discovered at the stable
level by H.Bass and A.Bak. For classical groups over commutative rings it was
obtained independently by L.N.Vaserstein, Z.I.Borevich, N.A.Vavilov and Li
Fuan [BV2], [BV3], [L1], [L2], [V2], [V5], [V6], [Va1], [Va4]. After the work
of M.R.Stein [St] it is a common understanding that questions about relative
groups may be reduced to ones for absolute groups by an appropriate change
of rings. The first applications of this idea to demonstrating the normality of
relative elementary subgroups were given by J.Milnor [Mi] and by A.A.Suslin
and V.I.Kopeiko [SK] (compare also [Hb1], [HO’M], [V3], [Va5], [Va8]).

The rest of this paper is organized as follows. In §§ 1, 2 we reproduce
fundamental definitions and notation concerning unitary groups over form
rings and their elementary subgroups. Most of the material comes from [B1] –
[B3], [Ba3], [Hb1], [HO’M], but is updated and adapted to our needs. In §§ 3, 4
we discuss form ideals and the corresponding relative groups. In particular



6 a.bak, n.a.vavilov

we prove the usual results about the generation of relative elementary groups
and reduce the relative case of the theorem above to the absolute one. In § 5
we introduce and study a notion of ESD-transvections, which is slightly more
general than the usual one. In § 6 we prove certain Whitehead-type lemmas,
which guarantee that an ESD-transvection lies in EU(2n, R, Λ) if it is defined
by columns containing zero elements. Finally in § 7 we use Suslin’s patching
method to prove the theorem above in the absolute case.

The paper is essentially self-contained since we prove all the subsidiary re-
sults we need. In fact, we have to do so, since we define the group U(2n, R, Λ)
with respect to the ordered basis e1, . . . , en, e−n, . . . , e−1 where ei is orthog-
onal to each ej except e−i and the inner product of e−i and ei is 1. In all
previously published works, where hyperbolic unitary groups over form rings
were considered, either the ordered basis e1, e−1, . . . , en, e−n, or the ordered
basis e1, . . . , en, e−1, . . . , e−n is used. The ordering in this paper is inspired
by [Ca] and is more natural in many respects than the alternatives since,
for example, under this ordering the standard Borel subgroup is represented
by upper triangular matrices. We pay a price for this convenience though
– namely we have to restate many of the foundational results. This paper
presents a common background for subsequent papers by the authors, dedi-
cated to the study of the normal structure of U(2n, R, Λ) and its Steinberg
group.

§ 1 Hyperbolic unitary groups

In this section we recall the definition of the hyperbolic unitary groups,
etc.

10. Λ-quadratic forms. This notion was invented by A. Bak and ap-
peared first in [B1]. Let R be a (not necessarily commutative) associative
ring with 1. For natural numbers m, n we denote by M(m, n, R) the additive
group of m×n matrices with entries in R. In particular M(n, R) = M(n, n, R)
is the ring of matrices of degree n over R. For a matrix x ∈ M(m, n, R) we
denote by xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, its entry in the position (i, j). Let
e = en be the identity matrix and eij , 1 ≤ i, j ≤ n, be a standard matrix
unit, i.e. the matrix which has 1 in the position (i, j) and zeros elsewhere.
For x ∈ M(m, n, R) we denote by xt the naive transpose of x, i.e. the matrix
x ∈ M(n, m, R) which has xij in the position (j, i). When the ring R is not
commutative, this transposition does not have good properties and will al-
ways be used in combination with an involution on R (see [Ba2] for a correct
definition of transpose).

Let α 7→ α be an involution on R, i.e. an anti-automorphism of order two.
In other words, for any α, β ∈ R one has α + β = α+β, αβ = βα and α = α.
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The ingredient which distinguishes Λ-quadratic forms from ordinary qua-
dratic forms is the notion of a form parameter Λ, which we define next.

Fix an element λ ∈ Cent(R) such that λλ = 1. Set

Λmin = {α − λα, α ∈ R} , Λmax = {α | α ∈ R, α = −λα} .

A form parameter Λ is an additive subgroup of R such that

1) Λmin ⊆ Λ ⊆ Λmax,

2) αΛα ⊆ Λ for all α ∈ R.

The pair (R, Λ) is called a form ring . Sometimes when the choice of Λ is
clear from the context, we use the shortcut R for (R, Λ) and call R a form
ring. For example, in many cases Λmin = Λmax, so that there is a unique
choice of Λ for a given involution and λ. This is so, for instance, when there
exists a central element ε ∈ Cent(R) such that ε+ε ∈ R∗ (in particular, when
2 ∈ R∗).

Consider a free right R-module V ∼= R2n of rank 2n. Fix a base e1, . . . , e2n

of the module V . We may think of elements v ∈ V as columns with compo-
nents in R. In particular, ei is the column whose i-th coordinate is 1, while
all other coordinates are zeros. Following [Ca] we will usually number the
base as follows: e1, . . . , en, e−n, . . . , e−1. According to this choice of base we
write v = (v1, . . . , vn, v−n, . . . , v−1)

t, where vi ∈ R.
Denote by p = pn the matrix in M(n, R) which has 1’s along the second

(skew) diagonal and zeros elsewhere. In other words, p has the following
matrix form: 


0 . . . 1
... . .

. ...
1 . . . 0


 .

Now we consider the sesquilinear form f on V which has (with respect to
the fixed base e1, . . . , e−1) the Gram matrix

(
0 p
0 0

)
.

In other words

f(u, v) = ut

(
0 p
0 0

)
v = u1v−1 + . . . + unv−n.

Now this form defines two other forms: an even λ-hermitian form h =
f + λf , where f(u, v) = f(v, u), and a Λ-quadratic form q : V → R/Λ by
q(v) = f(u, u) mod Λ. In other words, h is the form with the Gram matrix

(
0 p
λp 0

)
,
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or, what is the same,

h(u, v) = f(u, v) + λf(v, u) = u1v−1 + . . . + unv−n + λu−nvn + . . . + λu−1v1.

This form is in fact λ-hermitian, i.e. for any u, v ∈ V one has

h(u, v) = λh(v, u).

This fact will be used in the subsequent calculations without any reference.
We will often omit h in the expression h(u, v) and write simply (u, v) for the
inner product of u, v with respect to the form h.

In turn, q is defined as follows:

q(u) = u1u−1 + . . . + unu−n mod Λ.

We refer to the module V equipped with the λ-hermitian form h and the
Λ-quadratic form q as the hyperbolic Λ-quadratic module of rank 2n over R
(with respect to the symmetry λ and the form parameter Λ).

The following easy fact immediately follows from the definition of h and q.
It is crucial for our calculations in § 3.

Lemma 1.1. For any u, v ∈ V one has

q(u + v) − q(u) − q(v) = h(u, v) + Λ.

Proof. In fact,

f(u + v, u + v) − f(u, u)− f(v, v) = f(u, v) + f(v, u) =

=
(
f(u, v) + λf(v, u)

)
+

(
f(v, u)− λf(v, u)

)
,

where the first summand is equal to h(u, v), whereas the second one belongs
to Λ.

20. Hyperbolic unitary groups. These groups were discovered by A.
Bak and appeared first in [B1]. As usual we denote by GL(n, R) the group of
all two-sided invertible matrices of degree n with entries from R. For a matrix
g ∈ GL(n, R) we denote by g−1 its inverse. For any matrix g ∈ M(n, R) we
denote by g∗ the “hermitian transpose” of g, i.e. the matrix which has gji

in the position (i, j). Clearly the map g 7→ g∗ is an anti-automorphism of
GL(n, R), i.e. (xy)∗ = y∗x∗ for any x, y ∈ GL(n, R). We consider the set of
Λ-antihermitian matrices AH(n, R, Λ) which is defined as follows:

AH(n, R, Λ) = {a ∈ M(n, R) | a = −λa∗ and aii ∈ Λ for all i = 1, . . . , n} .
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Now we define our principal object of study. Let U(2n, R, Λ) be the group
consisting of all elements from GL(V ) ∼= GL(2n, R) which preserve the λ-
hermitian form h and the Λ-quadratic form q. In other words g ∈ GL(2n, R)
belongs to U(2n, R, Λ) if and only if h(gu, gv) = h(u, v) and q(gu) = q(u)
for all u, v ∈ V . The following result provides a matrix description of the
elements of U(2n, R, Λ) and is due to Bak [B1]. Write a matrix g of degree
2n in the block form with respect to the partition (n, n):

g =

(
a b
c d

)
,

where a, b, c, d are matrices of degree n over R.

Lemma 1.2. A necessary and sufficient condition for a matrix g ∈ M(2n, R)
to belong to U(2n, R, Λ) is that

1) g−1 =

(
pd∗p λpb∗p
λpc∗p pa∗p

)
,

2) a∗pc, b∗pd ∈ AH(n, R, Λ).

Proof. To belong to U(2n, R, Λ) a matrix g should preserve the forms h and
q. the condition that g preserves h means that h(gu, gv) = h(u, v). Since this
holds for arbitrary u, v ∈ V , one should have g∗hg = h, or, in other words,

(
a b
c d

)∗(
0 p
λp 0

) (
a b
c d

)
=

(
0 p
λp 0

)
.

This means that

(
a b
c d

)−1

=

(
0 λp
p 0

) (
a∗ c∗

b∗ d∗

) (
0 p
λp 0

)
.

Multiplying the factors on the right hand side we get the condition in 1).
Now suppose that g already stabilizes h. What does it mean that g pre-

serves q? Clearly g preserves q if and only if the Λ-quadratic form associated
with the sesquilinear form f(gu, gv)− f(u, v) is zero, or, what is the same,

z =

(
a b
c d

)∗(
0 p
0 0

) (
a b
c d

)
−

(
0 p
0 0

)
=

=

(
a∗pc a∗pd − p
b∗pc b∗pd

)
∈ AH(2n, R, Λ).
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Now the condition in 1) implies that this last matrix is Λmax-antihermitian,
i.e. belongs to AH(2n, R, Λmax). Indeed, the equality

(
pd∗p λpb∗p
λpc∗p pa∗p

) (
a b
c d

)
=

(
e 0
0 e

)

implies that
d∗pa + λb∗pc = p,

d∗pb + λb∗pd = 0,

λc∗pa + a∗pc = 0,

λc∗pb + a∗pd = p.

The second and third equalities under the implication amount precisely to
the fact that a∗pc and b∗pd belong to AH(n, R, Λmax), while the last one says
that a∗pd − p = −λb∗pc. In other words z ∈ AH(2n, R, Λmax).

To belong to AH(2n, R, Λ) the matrix z has to satisfy the additional con-
dition that zii ∈ Λ for all i = 1, . . . ,−1. In view of the preceding paragraph
this condition amounts precisely to saying that a∗pc, b∗pd ∈ AH(n, R, Λ).

The proof shows that the second condition in the lemma may be replaced
by the following condition: the diagonal coefficients of the matrices a∗pc and
b∗pd lie in Λ. In fact the above lemma may be stated in an equivalent but
slightly different form.

Lemma 1.3. A necessary and sufficient condition for a matrix g ∈ M(2n, R)
to belong to the U(2n, R, Λ) is that

1) g′ij = λ(ε(j)−ε(i))/2g−j,−i for all i, j = 1, . . . ,−1,

2)
∑

gijg−ij ∈ Λ, 1 ≤ i ≤ n, for all j = 1, . . . ,−1.

Clearly in view of 1) condition 2) may be replaced by an analogous condi-
tion imposed on rows rather than on columns.

30. Polarity map. Sometimes it is convenient to express conditions from
Lemmas 1.2 and 1.3 in terms of columns.

A vector u ∈ V is called isotropic, if q(u) = 0, or, in other words, if
f(u, u) ∈ Λ. Obviously, for an isotropic vector one has h(u, u) = 0. Vectors
u, v ∈ V are called orthogonal if they are orthogonal with respect to h, i.e.
if (u, v) = 0. Since the form h is λ-hermitian, it is reflexive and thus the
orthogonality relation is symmetric.

The definition of the unitary group implies that any column u of a matrix
g ∈ U(2n, R, Λ) is isotropic. Let u and v be the i-th and the j-th columns
of a matrix g ∈ U(2n, R, Λ) respectively, where i 6= −j. Then u and v are
orthogonal.
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Lemma 1.4. If v = (v1, . . . , v−1)
t, where vi ∈ R, is the i-th column of a

matrix g from U(2n, R, Λ), then the (−i)-th row ṽ of the inverse matrix g−1

is expressed as follows:

ṽ =

{
(λv−1, . . . , λv−n, vn, . . . , v1), if i = 1, . . . , n,

(v−1, . . . , v−n, λvn, . . . , λv1), if i = −n, . . . ,−1.

Proof. Calculate explicitly the (−i)-th row of the matrix on the right hand
side of the formula in 1) of the previous lemma.

The formulae for ṽ in this lemma differ only by a scalar factor (the second
one of them is obtained from the first one by multiplication by λ). Thus
we can define the ‘polarity’ map from R2n to the free left module of rank
2n. Following [Co2] we denote this module by 2nR. We can identify 2nR
with the module consisting of all rows of length 2n with components from R.
Then the polarity map ˜ : R2n −→ 2nR is defined as follows: for a column
u = (u1, . . . , un, u−n . . . , u−1)

t ∈ R2n we define the row ũ ∈ 2nR as

ũ = (λu−1, . . . , λu−n, un, . . . , u1).

In other words if u = (x, y)t, where x and y are columns of height n, then
ũ = (λytp, xtp). Clearly one has h(u, v) = ũv.

It is clear that the polarity map is involutory linear , i.e.

ũ + v = ũ + ṽ, ũξ = ξũ,

for all u, v ∈ V , ξ ∈ R. This property is often used in the sequel without
explicit reference. Now we can reformulate Lemma 1.3 in yet another form.
Let ei be the dual base of the module 2nR. We may think of ei as the row of
length 2n whose i-th coordinate is 1, while all other coordinates are zeros.

Lemma 1.5. For any vector v ∈ V and any g ∈ U(2n, R, Λ) one has g̃v =
ṽg−1.

Proof. Since the polarity map is involutory linear, it is sufficient to prove
the lemma only for the base vectors v = ei. By definition ˜ maps ei to
e−i if i = 1, . . . , n and to λe−i if i = −n, . . . ,−1. Now gei is precisely the

i-th column of g, while ẽ−ig−1 is the (−i)-th row of g−1 multiplied by λ if
i = −n, . . . ,−1. It remains to apply the previous lemma.
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§ 2 Elementary hyperbolic unitary group

In this section we recall the definition of the elementary unitary group.

10. Elementary unitary transvections. We consider the two follow-
ing types of transformations in U(2n, R, Λ) which we call elementary unitary
transvections. Denote the set {1, . . . , n,−n, . . . ,−1} of indices by Ω. Then
Ω = Ω+ ∪ Ω−, where Ω+ = {1, . . . , n} and Ω− = {−n, . . . ,−1}. For an
element i ∈ Ω we denote by ε(i) the sign of Ω, i.e.

ε(i) =

{
1, if i ∈ Ω+,

−1, if i ∈ Ω−.

The transvections Tij(ξ) correspond to the pairs i, j ∈ Ω such that i 6= j.
If moreover i 6= −j, then for any ξ ∈ R we set

Tij(ξ) = e + ξeij − λ(ε(j)−ε(i))/2ξe−j,−i.

We will refer to these elements as the “elementary short root elements”.
On the other hand for j = −i and α ∈ λ−(ε(i)+1)/2Λ we set

Ti,−i(α) = e + αei,−i.

We will refer to these elements as the “elementary long root elements”. Note
that Λ = λΛ. In fact, for any element α ∈ Λ one has α = −λα and thus
Λ coinicdes with the set of products λα, α ∈ Λ. This means that in the
definition above α ∈ Λ when i ∈ Ω+ and α ∈ Λ when i ∈ Ω−.

A straightforward calculation shows that these elements actually do belong
to U(2n, R, Λ). Now we describe these matrices explicitly, depending on the
signs of i and j.

First of all, if the signs of i and j coincide, then the power of λ which
appears in the definition of Tij(ξ) is 1. Thus, the corresponding transvections
have the shape

e + ξeij − ξe−j,−i.

They are in the image of the hyperbolic embedding of the general linear
group GL(n, R) in the unitary group U(2n, R, Λ). More precisely for any
a ∈ GL(n, R) we set

H(a) =

(
a 0
0 p(a∗)

−1
p

)
.

A straightforward calculation shows that H(a) ∈ U(2n, R, Λ). With this
notation the transvection Tij(ξ), i, j ∈ Ω+, above is just the image H(tij(ξ))
of the ordinary linear transvection tij(ξ) = e + ξeij under the hyperbolic
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embedding. It is clear that Tij(ξ) = T−j,−i(−ξ) when i, j ∈ Ω− gives the
same set of transvections.

Let, next, i ∈ Ω+ and j ∈ Ω−. If i 6= −j then the corresponding transvec-
tion has the shape

Tij(ξ) = e + ξeij − λ ξe−j,−i.

Clearly T−j,−i(ξ) = Tij(−λ ξ). These transvections may be considered to-
gether with the transvections Ti,−i(α), i ∈ Ω+, as follows. The transvection
Ti,−i(α) may be viewed as the usual linear transvection ti,−i(α) = e + αei,−i,

where α runs over Λ. The transvections of both types above come from the
unipotent embedding of the (additive) group AH(n, R, Λ) of Λ-antihermitian
matrices into U(2n, R, Λ). This embedding is defined as follows. For b ∈
AH(n, R, Λ) set

X+(b) =

(
e bp
0 e

)
.

A direct calculation shows that X+(b) ∈ U(2n, R, Λ). Clearly both types of
the transvections above are in the image of X+. Namely, they are the images
of the matrices ξei,−j − λ ξe−j,i, ξ ∈ R, and αeii, α ∈ Λ, respectively.

Let, finally, i ∈ Ω− and j ∈ Ω+. If i 6= −j then the corresponding
transvection has the shape

Tij(ξ) = e + ξeij − λξe−j,−i.

Clearly T−j,−i(ξ) = Tij(−λξ). These transvections may be considered to-
gether with the transvections Ti,−i(α), i ∈ Ω−, as follows. The transvection
Ti,−i(α) is the usual linear transvection ti,−i(α) = e + αei,−i, where α runs
over Λ. The transvections of both types above come from the unipotent em-
bedding of the (additive) group AH(n, R, Λ) of Λ-antihermitian matrices into
U(2n, R, Λ). This embedding is defined as follows. For c ∈ AH(n, R, Λ) set

X−(c) =

(
e 0
pc e

)
.

A direct calculation shows that X−(b) ∈ U(2n, R, Λ). Clearly both types of
the transvections above are in the image of X−. Namely, they are the images
of the matrices ξe−i,j − λξej,−i, ξ ∈ R, and αe−i,−i, α ∈ Λ, respectively.

20. Elementary relations. In this subsection we list the obvious rela-
tions among the elementary unitary transvections.

It immediately follows from the definition, that

(R1) Tij(ξ) = T−j,−i(λ
(ε(j)−ε(i))/2ξ).
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The maps Tij : R+ → U(2n, R, Λ) are additive, i.e.

(R2) Tij(ξ)Tij(ζ) = Tij(ξ + ζ).

Recall that for any two elements x, y of a group G one denotes by [x, y] =
xyx−1y−1 their commutator. For h 6= j,−i, k 6= i,−j, one has

(R3) [Tij(ξ), Thk(ζ)] = e.

Finally we have three remaining elementary relations, corresponding to the
case of two short roots whose sum is a short root, two short roots, whose sum
is a long root, and short and long roots, whose sum is a root respectively.

First we consider the case of two short roots whose sum is a short root.
Let i, h 6= ±j, i 6= ±h. Then

(R4) [Tij(ξ), Tjh(ζ)] = Tih(ξζ).

Applying relation (R1) to one or both transvections on the right hand side of
this relation, we can get three equivalent forms of this relation:

[Tij(ξ), Th,−j(ζ)] = Ti,−h(−λ(ε(−j)−ε(h))/2(ξζ),

[T−j,i(ξ), Tjh(ζ)] = T−i,h(−λ(ε(i)−ε(−j))/2ξζ),

[Tji(ξ), Thj(ζ)] = Thi(−ζξ).

The last of these relations is also obtained from (R4) by applying the following

obvious formula: [x, y]
−1

= [y, x]. In what follows we refer to these relation
also as (R4)

Now we consider the case of two short roots whose sum is a long root. Let
i 6= ±j. Then

(R5) [Tij(ξ), Tj,−i(ζ)] = Ti,−i(ξζ − λ−ε(i)ζ ξ).

As before we will use the following versions of this relation, also referring to
them as (R5):

[Tij(ξ), Ti,−j(ζ)] = Ti,−i(λ
(ε(−j)−ε(i))/2ξζ − λ(ε(j)−ε(i))/2ζξ),

[T−j,i(ξ), Tji(ζ)] = T−i,i(−λ(ε(i)−ε(−j))/2ξζ + λ(ε(i)−ε(j))/2ζξ),

[Tji(ξ), T−i,j(ζ)] = T−i,i(−ζξ + λε(i)ξ ζ).
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Finally, we turn to the case of a long and a short root. If i 6= ±j, then

(R6) [Ti,−i(α), T−i,j(ξ)] = Tij(αξ)T−j,j(−λ(ε(j)−ε(−i))/2ξαξ).

This equation may be given also the following alternative forms, to which
we also refer as (R6):

[Ti,−i(α), T−j,i(ξ)] = Tij(−λ(ε(i)−ε(−j))/2αξ)T−j,j(λ
(ε(i)−ε(−j))/2ξαξ),

[Tji(ξ), Ti,−i(α)] = Tj,−i(ξα)Tj,−j(λ
(ε(i)−ε(j))/2ξαξ).

The relations (R1) – (R6) define the unitary Steinberg group. Thus the
calculations where only these relations are used hold in fact already for the
Steinberg group and not just for the elementary unitary group. Compare
with (3.16) and (3.17) of [B3].

30. Elementary unitary group. In this subsection we introduce the
subgroup of U(2n, R, Λ) which will be the main object of our study in the
rest of the paper. Namely, the subgroup generated by all elementary unitary
transvections Tij(ξ), i 6= ±j, ξ ∈ R, and Ti,−i(α), α ∈ Λ, is called the elemen-
tary unitary group and is denoted by EU(2n, R, Λ). It was first constructed
in [B1].

Lemma 2.1. For any b ∈ AH(n, R, Λ) and any c ∈ AH(n, R, Λ) one has

X+(b), X−(c) ∈ EU(2n, R, Λ).

Proof. Indeed, one has

X+(b) =
∏

Ti,−j(bij), X−(c) =
∏

T−i,j(cij),

where the first product is taken over all i, j ∈ Ω+ such that i ≤ j, while the
second one is taken over all i, j ∈ Ω+ such that i ≥ j.

As usual E(n, R) denotes the elementary subgroup of the general linear
group GL(n, R), i.e. the subgroup generated by all elementary transvections
tij(ξ), 1 ≤ i 6= j ≤ n, ξ ∈ R. Then by definition the image H(g) of any ma-
trix g ∈ E(n, R) under hyperbolic embedding lies in EU(2n, R, Λ). Actually,
unless n = 2 it lies already in the subgroup of EU(2n, R, Λ), generated by the
images of X+ and X−. The following result is essentially proposition 5.1 of
[Ba3].

Lemma 2.2. Suppose that either n 6= 2, or R = ΛR + RΛ. Then

EU(2n, R, Λ) =
〈
X+(b), b ∈ AH(n, R, Λ); X−(c), c ∈ AH(n, R, Λ)

〉
.



16 a.bak, n.a.vavilov

Proof. Denote the right hand side of this formula by G. We have to prove
that Tij(ξ) belongs to G for any i, j ∈ Ω+, i 6= j, and any ξ ∈ R. If n = 1,
there is nothing to prove, thus we may assume that n ≥ 2. If n ≥ 3, we
may choose h ∈ Ω+, h 6= i, j. Then relation (R4) implies that Tij(ξ) =
[Ti,−h(ξ), T−h,j(1)], where the factors on the right hand side belong to G.
Assume finally that n = 2. Then relation (R6) implies that

Tij(ξα) = [Ti,−j(ξ), T−j,j(α)]Ti,−i(−λ(ε(−j)−ε(i))/2ξαξ) ∈ G.

By the same relation

Tij(αξ) = [T−i,j(ξ), Ti,−i(α)]T−j,j(−λ(ε(j)−ε(−i))/2ξαξ) ∈ G.

These two inclusions show that Tij(ΛR + RΛ) ⊆ G.

By definition EU(2n, R, Λ) is generated by both the long and the short
root unipotents. However under some assumptions on Λ only the short root
unipotents or the long root unipotents would suffice.

Lemma 2.3. Suppose Λ = Λmin and n ≥ 2. Then the group EU(2n, R, Λ) is

generated by elementary short root unipotents.

Proof. Let Ti,−i(α) be an elementary long root unipotent. Since Λ = Λmin,

there exists ξ ∈ R such that α = ξ − λ−ε(i)ξ. Pick up an index j 6= ±i. Then
by the relation (R5) one has

Ti,−i(α) = [Tij(ξ), T−j,i(1)].

Of course the group EU(2n, R, Λ) for n ≥ 2 is never generated by ele-
mentary long root unipotents. But under certain assumptions it might be
generated by their conjugates. Recall that a conjugate of an elementary
long/short root element is called a long/short root element or a long/short
root unipotent .

Lemma 2.4. Assume that ΛR + RΛ = R. Then the group EU(2n, R, Λ) is

generated by long root unipotents.

Proof. Take any i 6= ±j, ξ ∈ R and α ∈ Λ. Then one can rewrite the formulae
appearing in the proof of Lemma 2.2 as follows:

Tij(ξα) =
(
Ti,−j(ξ)T−j,j(α)Ti,−j(−ξ)

)
T−j,j(−α)Ti,−i(−λ(ε(−j)−ε(i))/2ξαξ),

Tij(αξ) =
(
T−i,j(ξ)Ti,−i(α)T−i,j(−ξ)

)
Ti,−i(−α)Tj,−j(−λ(ε(j)−ε(−i))/2ξαξ),

where all factors on the right hand side are long root elements. This proves
the lemma.
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§ 3 Congruence groups

In this section we recall the definitions of form ideals and their corre-
sponding relative groups, see [B1] – [B3], [Ba3], which play a crucial role in
describing the normal subgroups of unitary groups.

10. Form ideals. Let (R, Λ) be a form ring. Let I be a (two-sided) ideal
in R, which is invariant with respect to the involution, i.e. such that I = I.
Set Γmax = I ∩ Λ and

Γmin =
{
ξ − λξ | ξ ∈ I

}
+

{
ξαξ | ξ ∈ I, α ∈ Λ

}
.

By definition Γmin and Γmax depend both on the absolute form parameter Λ
and an ideal I in R. The form parameter Λ is fixed and will not be accounted
for in the notation. Sometimes it is necessary to stress the dependence of
Γmin and Γmax on I. In such cases we write Γmin(I) and Γmax(I).

A relative form parameter Γ in (R, Λ) of level I is an additive subgroup of
I such that

1) Γmin ⊆ Γ ⊆ Γmax,

2) αΓα ⊆ Γ for all α ∈ R.

Again when we deal with various ideals we write Γ(I) to indicate that Γ is a
form parameter of level I.

A form ideal in (R, Λ) is a pair (I, Γ), where I is an involution invariant
ideal in R and Γ is a relative form parameter of level I.

Form ideals play the same role in the category of form rings as (two-sided)
ideals in the category of rings. The notion of a form ideal was introduced by
A.Bak [B1] – [B3]. It is crucial for the description of normal subgroups of
U(2n, R, Λ), n ≥ 3. It was used by H.Bass [Ba3] under the name of a unitary
ideal . For commutative rings with trivial involution, the notion of special
submodule is essentially equivalent to the notion of relative form parameter
and was introduced independently by E.Abe [A1],[A3], [A4], [AS]. In the
book [HO’M] of A.Hahn and O.T.O’Meara they are called simply ideals of
form rings. L.N.Vaserstein [V7] christened form ideals ‘quasi-ideals’, which
does not seem a good choice, since this term is overcharged already. Finally
in a very important recent paper [CK] D.Costa and G.Keller introduce the
notion of a radix and discuss the interrelations of form ideals, Jordan ideals
of M(n, R) with transpose as the involution (R is commutative) and radices.
It turns out that for n ≥ 3 form ideals, Jordan ideals and radices coincide and
correspond to Abe’s special submodules. However for n = 2 not all radices
are form ideals. This is precisely why it is much more difficult to describe the
normal subgroups of U(4, R, Λ) than the normal subgroups of U(2n, R, Λ),
n ≥ 3.
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20. Doubling a form ring. To treat the relative groups corresponding
to form ideals we have to recall some notation related to Stein’s relativization
[St].

Let first I be any ideal of a ring R. Then we can define the double R×I R
of a ring R along an ideal I ≤ R by the Cartesian square

R ×I R
π1−→ Ryπ2

yπ

R −→
π

R/I .

In a more down to earth language R ×I R consists of all pairs (a, b) ∈ R × R
such that a ≡ b (mod I),

R ×I R =
{
(a, b) ∈ R × R | a − b ∈ I

}
,

with the component-wise operations of addition and multiplication and π1

(a, b) = a, π2(a, b) = b. Clearly Ker π1 = (0, I) and Ker π2 = (I, 0). The
diagonal embedding δ : R → R ×I R given by δ(a) = (a, a) splits both π1

and π2.
One can define embeddings ι1, ι2 : I → R ×I R by ι1(c) = (c, 0) and

ι2(c) = (0, c) respectively. Clearly the image of ι2 coincides with the kernel
of π1. In other words, the sequence

1 → I
ι2−→R ×I R

π1−→R → 1

is exact. Moreover, it is split by δ. We can rewrite the above in a slightly
different form.

For a pair (R, I) one can define the semidirect product R n I of R and I
as the set of pairs (a, c), a ∈ R, c ∈ I, with component-wise addition and
multiplication given by the following formula: (a, c)(b, d) = (ab, ad+ cb+ cd).

Lemma 3.1. The ring R×I R is isomorphic to the semidirect product Rn I
of δ(R) ∼= R and Ker π1

∼= I.

Proof. Define a map from R×I R to RnI by (a, b) 7→ (a, b−a). The definition
of multiplication in R n I implies that this is a homomorphism. The inverse
homomorphism is defined by (a, c) 7→ (a, a + c).

Of course if we write the Cartesian squares above in terms of semidirect
products, rather than doubles, we must define π1, π2 and δ by π1(a, c) = a,
π2(a, c) = a + c and δ(a) = (a, 0).

In the sequel we identify I with Im ι2 = Ker π1. Usually relative questions
for the ideal I in R can be reduced to absolute ones for the ring R ×I R.
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Let now (I, Γ) be a form ideal in a form ring (R, Λ). Then we can define
the double of Λ along Γ by exactly the same formula, as above:

Λ ×Γ Λ =
{
(a, c) ∈ Λ × Λ | a − c ∈ Γ

}
.

It is easy to observe that Λ×Γ Λ is a form parameter in R×I R (see [HO’M],
Lemma 5.2.15).

Lemma 3.2. (RnI, ΛnΓ) is a form ring with respect to the component-wise

involution and λ = (λ, 0).

Another form ring which can be associated with this form ideal is the factor
ring (R/I, Λ/Γmax) (see [HO’M], Lemma 5.2.12). Then we have a commutative
square of form rings:

(R ×I R, Λ ×Γ Λ)
π1−→ (R, Λ)yπ2

yπ

(R, Λ) −→
π

(R/I, Λ/Γmax)

analogous to the Cartesian square above. This commutative square is actu-
ally Cartesian when Γ = Γmax. Since the functor U2n from rings to groups
commutes with limits the commutative/Cartesian squares of form rings above
lead to commutative/Cartesian squares of groups U2n. This will be amply
used in the rest of this section and the next one.

30. Principal congruence subgroups. These groups were introduced in
[B1]. Let (I, Γ) be a form ideal of (R, Λ). The principal congruence subgroup
U(2n, I, Γ) of level (I, Γ) in U(2n, R, Λ) consists of those

g =

(
a b
c d

)
∈ U(2n, R, Λ),

which are congruent to e = e2n modulo I and preserve f(u, u) modulo Γ:

f(gu, gu) ∈ f(u, u) + Γ, u ∈ V.

One can give the following characterization of U(2n, I, Γ) analogous to
Lemma 1.2.

Lemma 3.3. Let (I, Γ) be a form ideal in (R, Λ). A necessary and sufficient

condition for a matrix g ∈ U(2n, R, Λ) to belong to U(2n, I, Γ) is that

1) g ≡ e (mod I),
2) a∗pc, b∗pd ∈ AH(n, R, Γ).
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Proof. Replace Λ with Γ in the second part of the proof of Lemma 1.2.

Clearly ι2 : I → RnI, ξ 7→ (0, ξ), defines an embedding of the correspond-
ing groups. In fact it is easy to see (see [HO’M], Lemma 5.2.17) that we get
the following split exact sequence of groups:

1 → U(n, I, Γ)
ι2−→U(n, R ×I R, Λ ×Γ Λ)

π1
−→
←−

δ
U(n, R, Λ) → 1.

This is precissely the Stein’s definition of a relative group.

By definition U(2n, I, Γ) is a subgroup of U(2n, R, Λ). In fact it is a nor-
mal subgroup of U(2n, R, Λ). This was first shown by A.Bak in [B2], Theo-
rem 4.1.4 by direct computation. However there is a more elegant approach
based on a variant of Stein’s relativization. Below we reproduce the argument
(compare also [OM’H], § 5.2 and [Hb1], Lemma 2.6).

Lemma 3.4. For any form ideal (I, Γ) in (R, Λ) the corresponding principal

congruence group U(2n, I, Γ) is a normal subgroup of U(2n, R, Λ).

Proof. By the previous subsection we have a commutative square of groups:

U(2n, R ×I R, Λ ×Γ Λ)
π1−→ U(2n, R, Λ)yπ2

yπ

U(2n, R, Λ) −→
π

U(2n, R/I, Λ/Γmax) .

Clearly, the kernel of π1 is a normal subgroup of U(2n, R ×I R, Λ ×Γ Λ).
Since π2 is split surjective, this implies that the image of Ker π1 under π2 is
a normal subgroup of U(2n, R, Λ). But Ker π1 = U(2n, ι2(I), ι2(Γ)) and its
image under π2 coincides with U(2n, I, Γ).

40. Full congruence subgroups. Let first G be any group, and F and
H subgroups of G. One can define

CG(F, H) = {g ∈ G | [g, f ] ∈ H for all f ∈ F} .

In general CG(F, H) is just a subset of G. However if H is a normal subgroup
of G, then the standard equalities for commutators imply that CG(F, H) is
a subgroup of G. We will use the notation CG(F, H) only when H E G.
If, moreover, F is also a normal subgroup of G, then CG(F, H) is a normal
subgroup of G. The normal subgroup CG(G, H) will be denoted by CG(H),
or, when the group G is clear from the context, simply by C(H).
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Return to the case when G = U(2n, R, Λ). Let further (I, Γ) be a form
ideal in (R, Λ). We can define a normal subgroup CU(2n, I, Γ) of G as
C

(
U(2n, I, Γ)

)
. In other words,

CU(2n, I, Γ) = {g ∈ U(2n, R, Λ) | [g, U(2n, R, Λ)] ⊆ U(2n, I, Γ)} .

This group is called the full congruence subgroup in G of level (I, Γ). Although
it is not reflected in the notation, this group depends not only on (I, Γ), but
also on (R, Λ). This definition of the full congruence group is that given in
[B1]. Later this group (denoted also by U′(2n, I, Γ) or by U (̃2n, I, Γ))) has
been defined in a slightly different way. For example, [HO’M] defines the full
congruence subgroup setting

U (̃2n, I, Γ) = {g ∈ U(2n, R, Λ) | [g, EU(2n, R, Λ)] ⊆ EU(2n, I, Γ)} .

But in interesting situations these groups coincide, as we shall see in the next
part of this work.

For the general linear group GL(n, R) the full congruence subgroup of
level I is the full preimage of the centre of the group GL(n, R/I) under the
reduction homomorphism modulo I. This is also true in our case, when
the relative form parameter is maximal . Namely CU(2n, I, Γmax) is the full
preimage of the centre of the group U(2n, R/I, Λ/Γmax) under the reduction
homomorphism U(2n, R, Λ) −→ U(2n, R/I, Λ/Γmax).

§ 4 Relative elementary groups

In this section we define the relative elementary groups of A. Bak [B1].
They are the key to establishing the sandwich classification theorem for
EU(2n, A, Λ)-normal subgroups of U(2n, AΛ), which will appear in the second
paper of this series. Below we prove a standard result about their generators
and show that the standard commutator formulae follow from the normality
of the absolute elementary subgroup.

10. Relative elementary subgroups. An elementary unitary transvec-
tion Tij(ξ), i 6= j is called elementary of level (I, Γ) if ξ ∈ I and, moreover,
ξ ∈ Γ if i = −j. Denote the subgroup generated by all (I, Γ)-elementary
transvections by FU(2n, I, Γ):

FU(2n, I, Γ) =
〈
Tij(ξ) | i 6= j, ξ ∈ I with ξ ∈ Γ if i = −j

〉
.

By definition FU(2n, I, Γ) is a subgroup of the absolute elementary sub-
group EU(2n, R, Λ). However the subgroup FU(2n, I, Γ) is very seldom nor-
mal in EU(2n, R, Λ). The elementary subgroup EU(2n, I, Γ) of level (I, Γ) is
defined as the normal closure of FU(2n, I, Γ) in EU(2n, R, Λ):

EU(2n, I, Γ) = FU(2n, I, Γ)
EU(2n,R,Λ)

.
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Although it is not reflected in the notation, the group EU(2n, I, Γ) depends
also on R and Λ. Since the principal congruence subgroup U(2n, I, Γ) is nor-
mal in U(2n, R, Λ), and contains all elementary transvections of level (I, Γ),
it follows that EU(2n, I, Γ) ≤ U(2n, I, Γ).

The following result is a relative analogue of Lemma 2.2.

Lemma 4.1. Suppose that either n 6= 2, or I = ΛI + IΛ. Then

EU(2n, I, Γ) =
〈
X+(b), b ∈ AH(n, I, Γ); X−(c), c ∈ AH(n, I, Γ)

〉EU(2n,R,Λ)
.

Proof. For n 6= 2 the proof of Lemma 2.2 carries over without any changes.
For n = 2 one takes ξ ∈ I, α ∈ Λ and observes that ξαξ ∈ Γmin ≤ Γ. Now
the same argument as in Lemma 2.2 shows that Tij(ΛI + IΛ) is contained in
the right hand side for any i, j ∈ Ω+, i 6= j.

The following result does not hold for n = 2 without some additional
assumptions on the ring R.

Lemma 4.2. Suppose that either n 6= 2, or I = ΛI + IΛ. Then

EU(2n, I, Γ) = [EU(2n, I, Γ), EU(2n, R, Λ)].

Proof. By definition the right hand side is contained in the left hand side.
Indeed, setting ξ = 1 in (R4) we get that Tij(ζ), i 6= ±j, ζ ∈ I, belongs to
the right hand side. Now (R6) (again with ξ = 1) implies that

Tj,−j(α) = [Ti,−i(−λ(ε(−j)−ε(−i))/2α), T−i,−j(1)]Tij(λ
(ε(−j)−ε(−i))/2α)

belongs to the right hand side for α ∈ Γ or α ∈ Γ, depending on the sign of j.
Thus all the generators of EU(2n, I, Γ) as a normal subgroup of EU(2n, R, Λ)
are contained in the right hand side. But it is itself normal in EU(2n, R, Λ).

The following obvious fact will be often used without reference.

Lemma 4.3. Suppose that EU(2n, I1, Γ1) ≤ U(2n, I2, Γ2). Then I1 ≤ I2

and Γ1 ≤ Γ2.

20. Generation of relative elementary subgroups. As we know
from the preceding subsection, it is not true in general that EU(2n, I, Γ) is
generated by elementary transvections of level (I, Γ). In fact, fix i 6= j and
consider matrices

Zij(ξ, ζ) = Tji(ζ)Tij(ξ)Tji(−ζ),
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where ξ ∈ I, ζ ∈ R if i 6= −j and ξ ∈ Γ, ζ ∈ Λ otherwise1. These matrices do
not in general belong to FU(2n, I, Γ). However this is essentially the unique
counter-example. The following result is a unitary version of a result by
A.A.Suslin and L.N.Vaserstein [VS] (see also [V2], [B5], [Va8]).

Proposition 1. Let n ≥ 3. For any form ideal (I, Γ) the corresponding

relative elementary group EU(2n, I, Γ) is generated by all matrices Zij(ξ, ζ) =
Tji(ζ)Tij(ξ)Tji(−ζ), where either ξ ∈ I, ζ ∈ R and i 6= ±j, or ξ ∈ Γ, ζ ∈ Λ,

i = −j.

Proof. Since Zij(ξ, 0) = Tij(ξ) is a usual elementary unitary transvection,
the subgroup generated by all Zij(ξ, ζ) contains FU(2n, I, Γ). By defini-
tion EU(2n, I, Γ) is generated by matrices xTij(ξ) = xTij(ξ)x

−1, where x ∈
EU(2n, R, Λ), ξ ∈ I and i 6= j. We shall proceed by induction on the length
t of a shortest expression of x as a product of elementary matrices. When
t ≤ 1 there is nothing to prove. If t ≥ 2, we can write x in the form Thk(ζ)y,
where y ∈ EU(2n, R, Λ), ζ ∈ R and h 6= k. Now we may apply the formula
abc = a[b, c]ac valid for any three elements a, b, c of a group. Thus

Thk(ζ)yTij(ξ) = Thk(ζ)[y, Tij(ξ)]
Thk(ζ)Tij(ξ).

If (h, k) 6= (j, i) we can apply (R3) – (R6) and the definition of a relative form
parameter to conclude that z = Thk(ζ)Tij(ξ) belongs to FU(2n, I, Γ), and if
(h, k) = (j, i), then z = Zij(ξ, ζ). On the other hand, since y is shorter, than
x, the commutator [y, Tij(ξ)] is a product of factors of the form Zlm(ω, ϑ),

ω ∈ I, ϑ ∈ R, l 6= m. Now for w = Thk(ζ)Zlm(ω, ϑ) we have three options:

If (h, k) 6= (l, m), (m, l), then w ∈ Zlm(ω, ϑ) FU(n, I, Γ) by (R3) – (R6).

If (h, k) = (m, l), then w = Z1m(ω, ϑ + ζ).

Finally, let (h, k) = (l, m). If l 6= −m, we can argue exactly as in the case
of the general linear group. Namely, take an index p 6= ±h,±k and express
Tlm(ω) as Tlm(ω) = [Tlp(1), Tpm(ω)]. Then

Tlm(ζ)Zlm(ω, ϑ) = Tlm(ζ)Tml(ϑ)Tlm(ω) =

= Tlm(ζ)Tml(ϑ)[Tlp(1), Tmp(ω)] =

= [Tlm(ζ)Tml(ϑ)Tlp(1), Tlm(ζ)Tml(ϑ)Tpm(ω)] =

= [Tmp(ϑ)Tlp(1 + ζϑ), Tpl(−ωϑ)Tpm(ω(1 + ϑζ))].

1Starting from this point we usually do not destinguish between the cases
i 6= −j and i = −j. We simply write ξ ∈ I or ζ ∈ R assuming that automat-
ically ξ ∈ Γ and ζ ∈ Λ when i = −j.
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Now decomposing the last commutator into four factors using the formula
[ab, cd] = a[b, c] · ac[b, d] · [a, c] · c[a, d] we see that all these factors are products
of transvections from FU(2n, I, Γ) and factors of the form Zij(ξ, ζ) belonging
to the EU(2n, I, Γ) (see [B5] or [Va8] for a detailed calculation).

The proof for the case l = −m is similar and even easier. Pick up a p 6= ±l
and express Tl,−l(ω) as in Lemma 4.2:

Tl,−l(ω) = [Tp,−p(−µω), T−p,−l(1)]Tpl(µω),

where µ = λ(ε(−l)−ε(−p))/2. Then

Tl,−l(ζ)Zl,−l(ω, ϑ) = Tl,−l(ζ)T
−l,l(ϑ)Tl,−l(ω) =

= Tl,−l(ζ)T
−l,l(ϑ)[Tp,−p(−µω), T−p,−l(1)]Tpl(µω).

This expression is a product of a matrix from FU(2n, I, Γ) and the commu-
tator

[Tl,−l(ζ)T
−l,l(ϑ)Tp,−p(−µω), Tl,−l(ζ)T

−l,l(ϑ)T−p,−l(1)] =

= [Tp,−p(−µω), T−p,−l(1 + ϑζ)T−p,l(−ϑ))].

Decomposing this commutator according to the formula [a, bc] = [a, b]b[a, c]
one gets a product of a matrix from FU(2n, I, Γ) with the commutator

T
−p,−l(1+ϑζ)[Tp,−p(−µω), T−p,l(−ϑ))]

which in turn is a product of a matrix from FU(2n, I, Γ) and a matrix of the
form Zpl(ξ, ζ). This finishes the proof.

30. Relativization. In this subsection we show how relative results follow
from the results for the absolute case. In particular the theorem in the intro-
duction follows from the special case (I, Γ) = (R, Λ), i.e. from the normality
of the absolute elementary subgroup. This idea is due to M.R.Stein [St] and
was applied to establish the normality of relative elementary subgroups by
J.Milnor [Mi], A.A.Suslin and V.I.Kopeiko [SK] and others.

Everything said above about the congruence groups modulo a form ideal
applies also to the relative elementary groups. In particular, we have the
following split exact sequence of groups (see [HO’M], Lemma 5.3.22):

1 → EU(n, I, Γ)
ι2−→EU(n, R ×I R, Λ ×Γ Λ)

π1
−→
←−

δ
EU(n, R, Λ) → 1.

As above we may identify ι2(EU(2n, I, Γ)) with EU(2n, ι2(I), ι2(Γ)). The
following easy observation (see [Mi], Lemma 4.2 for the linear case) reduces
questions about relative elementary subgroups to ones about absolute ele-
mentary subgroups.
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Lemma 4.4. Let (I, Γ) be a form ideal of a form ring (R, Λ). Then one has

ι2(U(2n, I, Γ))∩ EU(2n, R ×I R, Λ ×Γ Λ) = ι2(EU(2n, I, Γ)).

Proof. Clearly the right hand side is contained in the left hand side. Con-
versely, let (a, b) be an element from

ι2(U(2n, I, Γ)) ∩ EU(2n, R ×I R, Λ ×Γ Λ) =

U(2n, ι2(I), ι2(Γ)) ∩ EU(2n, R ×I R, Λ ×Γ Λ).

Then (a, b) ∈ U(2n, ι2(I), ι2(Γ)) implies that a = e and b ∈ U(2n, I, Γ). On
the other hand, since (e, b) ∈ EU(2n, R×I R, Λ×Γ Λ), it can be expressed in
the form

(e, b) = (c1, c1d1) . . . (ct, ctdt)

where ci ∈ EU(2n, R, Λ) and di ∈ EU(2n, I, Γ) are some elementary unitary
transvections. Clearly, c1 . . . ct = e. Now we may rewrite b in the form

b = (c1d1c
−1
1 )(c1c2d2c

−1
2 c−1

1 ) . . . (c1 . . . ctdtc
−1
t . . . c−1

1 ) ∈ EU(2n, I, Γ),

and thus, clearly, (e, b) ∈ U(2n, ι2(I), ι2(Γ)).

Corollary. Normality of the absolute elementary subgroup implies all other

statements of the Theorem above.

Proof. First we prove that all relative elementary subgroups are normal. In-
deed, let a ∈ U(2n, R, Λ), β ∈ EU(2n, I, Γ). Since EU(2n, R×I R, Λ ×Γ Λ) is
normal in U(2n, R ×I R, Λ ×Γ Λ), one has

(e, aba−1) = (a, a)(e, b)(a, a)
−1

∈ EU(2n, R ×I R, Λ ×Γ Λ).

On the other hand clearly aba−1 ∈ U(2n, I, Γ). Thus by the above lemma
aba−1 ∈ EU(2n, I, Γ).

Now we prove the second commutator formula. Let a ∈ EU(2n, R, Λ) and
b ∈ CU(2n, I, Γ). Then normality of EU(2n, R ×I R, Λ ×Γ Λ) in U(2n, R ×I

R, Λ ×Γ Λ) implies that

(e, [a, b]) = [(a, a), (e, b)] ∈ EU(2n, R ×I R, Λ ×Γ Λ).

On the other hand [a, b] ∈ U(2n, I, Γ) by the definition of CU(2n, I, Γ). Again
by the above lemma this implies that [a, b] ∈ EU(2n, I, Γ).
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§ 5 Eichler–Siegel–Dickson transformations

In this section we introduce transformations which play a crucial role in
what follows.

10. ESD-transvections. Let u, v be two orthogonal vectors in V such
that u is isotropic. Let further ξ ∈ R and α ∈ Λ. We introduce the following
matrix:

Tuv(ξ, α) = e + uξṽ − vλ ξũ − uλξ
(
f(v, v) + α

)
ξũ.

As we shall see now, this matrix always belongs to the unitary group.

Lemma 5.1. For any orthogonal vectors u, v such that u is isotropic and

any ξ ∈ R, α ∈ Λ one has Tuv(ξ, α) ∈ U(2n, R, Λ).

Proof. Denote Tuv(ξ, α) by g. We have to prove that g preserves both h and
q. Start with h. Let x, y be arbitrary vectors from V . Recall that we write
simply (x, y) instead of h(x, y). Then clearly

(gx, gy)− (x, y) = (gx − x, gy − y) + (gx − x, y) + (x, gy − y).

Here

gx − x = uξ(v, x)− vλ ξ(u, x) − uλξ
(
f(v, v) + α

)
ξ(u, x),

and the same holds for y. Since the vectors u and v are orthogonal and u is
isotropic, one has

(gx − x, gy − y) = (−vλξ(u, x),−vλξ(u, y)) = (u, x)ξ(v, v)ξ(u, y).

One the other hand,

(gx − x, y) = (v, x)ξ(u, y)− (u, x)λξ(v, y)− (u, x)λξ(f(v, v) + α)ξ(u, y),

(x, gy − y) = (x, u)ξ(v, y)− (x, v)λξ(u, y)− (x, u)λξ(f(v, v) + α)ξ(u, y).

Since h is λ-hermitian, the first summand of (gx − x, y) cancels with the
second summand of (x, gy − y) and vice versa. Thus, finally,

(gx − x, y) + (x, gy − y) = −(u, x)λξαξ(u, y) − (x, u)λξαξ(u, y) =

= −(u, x)ξ
(
λ
(
f(v, v) + α

)
+ f(v, v) + α

)
ξ(u, y).

Since α ∈ Λ, this sum cancels with f(gx − x, gy − y) and the preservation of
h is established.
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Now we pass to the Λ-quadratic form q. Take an arbitrary vector x ∈ V .
Lemma 1.1 asserts that

q(gx) − q(x) = q(gx − x) + (x, gx− x) + Λ.

Thus it remains only to show that f(gx − x, gx − x) + (x, gx − x) ∈ Λ. The
first summand equals

f(gx− x, gx− x) = (u, x)ξf(v, v)ξ(u, x),

while the second summand equals

(x, gx− x) = (x, u)ξ(v, x)− (x, v)λξ(u, x) − (x, u)λξ(f(v, v) + α)ξ(u, x).

Finally,

f(gx−x, gx−x)+(x, gx−x) = (x, u)ξ(v, x)−(x, v)λξ(u, x)−(x, u)λξαξ(u, x).

The last summand in this expression has the form ζαζ for ζ = (x, u)ξ and
thus belongs to Λ by definition (recall that α ∈ Λ). On the other hand

(x, u)ξ(v, x)− (x, v)λξ(u, x) = (x, u)ξ(v, x)− λ(v, x)ξ(x, u) ∈ Λ,

again by definition of Λ. Thus the form q is also preserved by g, which finishes
proof of the lemma.

20. Basic properties of ESD-transvections. In this subsection we
state some obvious properties of the elements Tuv(ξ, α). The definition of
ESD-transvections and Lemma 1.4 immediately imply that a conjugate of an
ESD-transvection by an element of U(2n, R, Λ) is again an ESD-transvection:

Lemma 5.2. For any g ∈ U(2n, R, Λ) one has

gTuv(ξ, α)g−1 = Tgu,gv(ξ, α + f(v, v)− f(gv, gv)).

Notice that the expression α + f(v, v) − f(gv, gv) on the right hand side
belongs to Λ by definition of U(2n, R, Λ).

Lemma 5.3. For any ξ, ζ ∈ R one has

Tuv(ξζ, α) = Tuξ,v(ζ, α) = Tu,vζ(ξ, ζαζ).

In particular this lemma shows that the parameter ξ in the definition of
ESD-transvections is optional and can be concealed either in u or in v, for
example Tuv(ξ, α) = Tuξ,v(1, α). However we think that it’s not advisable to
do so, especially when one wants to speak about one-parameter subgroups of
ESD-transvections, etc. In some situations it is convenient to assume that u
or v enjoy some special properties, for example, are unimodular. This can be
done only if we explicitly keep the parameter ξ.

The following lemma establishes the additivity property of Tuv(ξ, α) in v
when u is fixed.
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Lemma 5.4. For any two vectors v, w orthogonal to an isotropic vector u,

for any ξ, ζ ∈ R and for any α, β ∈ Λ one has

Tuv(ξ, α)Tuw(ζ, β) = Tu,vξ+wζ(1, ξαξ + ζβζ − ζf(w, v)ξ + λξf(w, v)ζ).

The formulae expressing additivity in the first argument are more com-
plicated. We state them in the next subsection for elements of short root
type.

30. Elements of long and short root types. Now we introduce two
special types of ESD-transvections. These are really the only ones which
appear in the analysis of conjugates of elementary unitary transvections. For
an isotropic vector u ∈ V and an element α ∈ Λ we denote the element
Tu0(1,−α) by Tu(α) and call it an element of long root type. One has

Tu(α) = e + uλαũ.

For two orthogonal vectors u, v ∈ V such that u is isotropic and an element
ξ ∈ R we denote the element Tuv(ξ, 0) by T •uv(ξ). One has

T •uv(ξ) = e + uξṽ − vλ ξũ − uλξf(v, v)ξũ.

If v is also isotropic, we denote the element Tuv(ξ,−f(v, v)) by Tuv(ξ).
Clearly

Tuv(ξ) = e + uξṽ − vλ ξũ.

We call the elements T •uv(ξ) and Tuv(ξ) elements of short root type. Clearly
the elementary unipotents introduced in the previous section may be inter-
preted as elements of root type. More precisely,

Lemma 5.5. For any i 6= ±j and any ξ ∈ R, α ∈ Λ, one has

Ti,−i(α) = Tei
(λ(ε(i)+1)/2α),

Tij(ξ) = Tei,e−j
(λ−(ε(j)+1)/2ξ) = T •ei,e−j

(λ−(ε(j)+1)/2ξ).

In particular Lemma 5.2 implies that a conjugate of an elementary uni-
tary transvection is an ESD-transvection. More precisely, a conjugate of an
element Ti,−i(α) is an element of long root type, while a conjugate of Tij(ξ),
i 6= ±j, is an element of short root type.

Remark. The reader may ask, why Tuv(ξ, α) depends on two parameters?
Well, because of extra-short roots. In U(2n, R, Λ) there are no extra-short
roots, but there are extra-short root subgroups. Indeed, look at the group
U(2n + 1, R). It is well-known that the corresponding root system is not
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reduced, and has roots of three different lengths: long, short and extra-short ,
the last ones being halves of the long ones. The extra-short root subgroups
are not abelian, see, for example, [Ca], [A2]. The extra-short roots disappear
when one passes to U(2n, R) – but the corresponding root subgroups survive.

Actually any ESD-transvection may be presented as a product of commut-
ing short and long root type elements. This essentially reduces the study of
the ESD-transvection to these two cases.

Lemma 5.6. One has

Tuv(ξ, α) = T •uv(ξ)Tu(−ξαξ).

If v is also isotropic, then

Tuv(ξ, α) = Tuv(ξ)Tu(−ξ(f(v, v) + α)ξ).

40. Basic properties of elements of root type. Some of the formulae
for ESD-transvections simplify considerably when restricted to the elements
of root type. For example for elements of long root type Lemma 4.4 becomes:

Lemma 5.7. Let u be an isotropic vector. Then for any α, β ∈ Λ, ξ ∈ R one

has

Tu(α)Tu(β) = Tu(α + β), Tuξ = Tu(ξαξ).

The analogous additivity formula holds for elements of long root type.

Lemma 5.8. Let u, v be orthogonal isotropic vectors. Then for any ξ, ζ ∈ R
one has

Tuv(ξ)Tuv(ζ) = Tuv(ξ + ζ).

The following additivity property of elements of long root type (compare
with the proof of Lemma 2.4) plays a crucial role in the second part of the
work.

Lemma 5.9. Let u, v be orthogonal isotropic vectors. Then for any α ∈ Λ
one has

Tu(α)Tv(α) = Tu+v(α)Tu,v(−λα).

The following lemma (compare with Lemma 1.7 of [SK]) establishes the
additivity property of elements of short root type Tuv(ξ) in u when v is fixed.

Lemma 5.10. Let u, v be orthogonal isotropic vectors which are both or-

thogonal to w. Then for any ξ, ζ ∈ R one has

T •uw(ξ)T •vw(ζ) = T •uξ+vζ,w(1)Tuξ,vζ(f(w, w)).

The following lemma (compare with Formula (h) on page 214 of [HO’M],
although the involution seems to be missing there) expresses symmetry of
Tuv(ξ) with respect to u and v when both of them are isotropic.
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Lemma 5.11. Assume that both u and v are isotropic. Then Tuv(ξ) =
Tv,−u(λ ξ).

§ 6 Whitehead type Lemmas

In this section we prove that a unitary transvection Tu,v(ξ, α) belongs to the
elementary subgroup EU(2n, R, Λ) if u or v (or both) have zero components.

10. Heisenberg group. In this subsection we describe the explicit shape
of elements from the unipotent radical of the standard parabolic subgroup
P1. This will be used in subsequent subsections.

Lemma 6.1. Let v = (v2, . . . , vn, v−n, . . . , v−2)
t be any vector of length

2n − 2. Then the matrices

Y +
• (v) =




1 −λṽ −λf(v, v)
0 e v
0 0 1


 , Y −• (v) =




1 0 0
v e 0

−f(v, v) −ṽ 1


 ,

belong to EU(2n, R, Λ). Moreover, one has

Y +
• (v)

−1
=




1 λṽ −f(v, v)
0 e −v
0 0 1


 , Y −• (v)

−1
=




1 0 0
−v e 0

−λf(v, v) ṽ 1


 .

Proof. Direct calculation shows that

Y +
• (v) =

∏
Ti,−1(vi), Y −• (v) =

∏
Ti1(vi),

where both products are taken over i = 2, . . . ,−2 in the natural order. It re-
mains to observe that all factors on the right hand side belong to EU(2n, R, Λ).
The formulae for the inverse matrices are verified by a straightforward calcu-
lation.

Lemma 6.2. Let v = (v2, . . . , vn, v−n, . . . , v−2)
t be an isotropic vector of

length 2n − 2. Then the matrices

Y +(v) =




1 −λṽ 0
0 e v
0 0 1


 , Y −(v) =




1 0 0
v e 0
0 −ṽ 1


 ,

belong to EU(2n, R, Λ). Moreover, Y +(v)−1 = Y +(−v) and Y −(v)−1 =
Y −(−v).

Proof. Since v is isotropic, one has f(v, v) ∈ Λ. Clearly

Y +(v) = T1,−1(λf(v, v))Y +
• (v), Y −(v) = T−1,1(f(v, v))Y −• (v),
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where the factors on the right hand sides belong to EU(2n, R, Λ). The last
statement of the lemma follows from the fact that since u is isotropic, one
has ũu = (u, u) = 0.

The following two lemmas are straightforward. They will be used in the
sequel of this paper.

Lemma 6.3. For any u, v ∈ R2n−2 one has

[Y +
• (u), Y +

• (v)] = T1,−1(λṽu − λũv),

[Y −• (u), Y −• (v)] = T−1,1(ṽu − ũv).

In fact the matrices Y +
• (v), . . . , Y −(v) introduced above are ESD-trans-

vections, corresponding to the case when the first of the vectors u, v is a
standard base vector, namely:

Y +
• (v) = T •e1,v(−λ), Y −• (v) = T •e

−1,v(−1),

and, respectively,

Y +(v) = Te1,v(−λ), Y −(v) = Te
−1,v(−1).

Now we start proving that an ESD-transvection is elementary if u and/or
v has enough zeros in one sense or another.

20. Whitehead-Vaserstein lemma for P1: long root type. In this
subsection we consider the elements of the form Tu(α) = Tu0(1,−α), where
u is an isotropic vector and α ∈ Λ. Recall that Tu(α) = e + uλαũ.

Lemma 6.4. Suppose that ui = u−i = 0 for some i ∈ I. Then for all α ∈ Λ
one has Tu(α) ∈ EU(2n, R, Λ).

Proof. Since the group EU(2n, R, Λ) is normalized by all permutation matri-
ces H(π), where π ∈ Sn, we may without loss of generality assume that i = 1.
Let v be the column of height 2n − 2 which is obtained from u by dropping
the coordinates with indices ±1. Then v is isotropic. A direct calculation
using the fact that ṽv = 0, shows that

Tu(α) = T−1,1(α)Y +(v)T−1,1(−α)Y −(vα)Y +(−v),

where all factors on the right hand side belong to EU(2n, R, Λ) by the previous
lemma.
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Lemma 6.5. Suppose ui = 0 for some i ∈ I. Then Tu(α) ∈ EU(2n, R, Λ)
for all α ∈ Λ.

Proof. By the same reason as in the previous lemma and since EU(2n, R, Λ)
is normalized by the matrix (

0 p
λp 0

)
,

we may without loss of generality assume that u−1 = 0. Present u in the
form u = v + e1u1, where v is the column obtained from u by changing its
1-st coordinate to 0. Since u−1 = 0, the vector v is isotropic. Then

Tu(α) = Tv(α)Y +(vλαu1)T1,−1(λu1αu1),

where the two first factors belong to EU(2n, R, Λ) by the two preceding lem-
mas and the third one by the definition of Λ.

30. Whitehead-Vaserstein lemma for P1: general case. In this
subsection we consider the elements of the form T •uv(ξ) = Tuv(ξ, 0), where
u, v are orthogonal vectors, u is isotropic and ξ ∈ R. Notice that for the time
being we do not assume v to be isotropic. Recall that T •uv(ξ) = e + uξṽ −
vλ ξũ − uλξf(v, v)ξũ.

Lemma 6.6. Suppose that ui = u−i = vi = v−i = 0 for some i ∈ I. Then

T •uv(ξ) ∈ EU(2n, R, Λ) for all ξ ∈ R.

Proof. As in the previous lemma we may without loss of generality assume
that u1 = u−1 = v1 = v−1 = 0. Let x and y be the columns of height 2n − 2
which are obtained from u and v respectively by dropping the coordinates
with indices ±1. Then x, y are orthogonal, and x is isotropic, in particular,
x̃x = x̃y = ỹx = 0. On the other hand , f(y, y) = f(v, v), and thus ỹy =

f(v, v) + λf(v, v). Now a direct calculation using these equalities shows that

T •uv(ξ) = Y −(xλξ)Y +
• (−y)Y −(−xλξ)Y +

• (y − xλξf(v, v)),

where the right hand side belongs to EU(2n, R, Λ) by Lemmas 6.1 and 6.2.

Lemma 6.7. Suppose that ui = vi = 0 for some i ∈ I. Then T •uv(ξ) ∈
EU(2n, R, Λ) for all ξ ∈ R.

Proof. As in the previous lemmas we may without loss of generality assume
that u1 = v1 = 0. Present u and v in the form u = x + e1u1, v = y + e1v1,
where x and y are the columns obtained from u and v respectively by changing
their 1-st coordinates to 0. Since u−1 = v−1 = 0, the vectors x and y are
orthogonal and x is isotropic. Thus

T •uv(ξ) = T •xy(ξ)Y +
• (xξv1 − yλ ξ u1)T1,−1(u1ξv1 − λv1ξu1),
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where the first two factors belong to EU(2n, R, Λ) by Lemmas 6.5 and 6.1
respectively and the last one by definition of Λ.

Assume now that the vector v is also isotropic. Then the following version
of the preceding lemma holds.

Lemma 6.8. Suppose that ui = vi = 0 for some i ∈ I. Then Tuv(ξ) ∈
EU(2n, R, Λ) for all ξ ∈ R.

Proof. Recall that
Tuv((ξ) = T •uv(ξ)Tu(ξf(v, v)ξ).

But the factors on the right hand side belong to EU(2n, R, Λ) by Lemmas 6.6
and 6.4 respectively.

Of course this could be proven directly, because, for example, the formula
in the proof of Lemma 6.5 may be simplified to the following commutator
relation:

Tuv(ξ) = [Y −(xλξ), Y +(−y)].

Now we can prove the ‘Whitehead-Vaserstein Lemma’ which says in partic-
ular that the Eichler subgroup TU(2n−2, R, Λ) is contained in the elementary
group EU(2n, R, Λ) of larger degree.

Proposition 2. Let u, v be any orthogonal vectors such that u is isotropic.

Assume that ui = vi = 0 for some i. Then Tuv(ξ, α) ∈ EU(2n, R, Λ) for all

ξ ∈ R and α ∈ Λ.

Proof. From the previous section we know that

Tuv(ξ, α) = Tuv(ξ, 0)Tu0(ξ, α).

But the factors on the right hand side belong to EU(2n, R, Λ) by Lemmas 6.7
and 6.4 respectively.

40. Kopeiko-Taddei Lemma. Here we show that the addition formu-
lae for ESD-transformations from § 5 (see Lemmas 5.4 and 5.9) imply that
Tuv(ξ, α) belongs to the elementary group if u has two zeros in symmetric
positions. As is known from [Ko1], [Ta1], this already suffices to prove nor-
mality in the classical symplectic case (when λ = −1 and the involution is
trivial).

Lemma 6.9. Suppose that ui = u−i = 0 and v = eivi + e−iv−i. Then

Tuv(ξ, α) ∈ EU(2n, R, Λ) for all ξ ∈ R and α ∈ Λ.

Proof. As always we may without loss of generality assume that i = 1. By
Lemmas 5.6 and 6.4 it’s enough to prove that Tuv(ξ, α) ∈ EU(2n, R, Λ) for
some α ∈ Λ, for example, for α = 0. But in this case one easily sees that

Tuv(ξ) = Y +(λxξv1)Y
−(xξv−1).
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Lemma 6.10. Suppose ui = u−i = 0 for some i, and let v be any vector

orthogonal to u. Then Tuv(ξ, α) ∈ EU(2n, R, Λ) for all ξ ∈ R and α ∈ Λ.

Proof. Express v in the form v = x+z, where x = e1v1+e−1v−1 and y = v−x.
Then by Lemmas 5.3 and 4.3 one has

Tuv(ξ, α) = Tux(ξ, β)Tuy(ξ, γ),

for appropriate β, γ ∈ Λ. Now the first factor on the right hand side belongs
to EU(2n, R, Λ) by Lemma 6.6 and the second one by the previous Lemma.

§ 7. Normality of the elementary subgroup: Suslin’s approach

In this section we prove normality of EU(2n, R, Λ) in U(2n, R, Λ) for the
case when R is almost commutative and n ≥ 3. We do it following the Suslin
approach in [Su1], [Tu], [SK]. For long root elements in the case λ = −1 and
Λ = Λmin this approach was used also in [GM]. For short root elements in
the symplectic group it was used in [Ko1], [Ta1]. Here we show how it works
in the general case.

10. Unitary Suslin Lemma. The original Suslin proof [Su1] of normality
of the elementary subgroup E(n, R) in the general linear group GL(n, R), n ≥
3, over a commutative ring R was based on the following observation, which
is sometimes referred to as Suslin’s lemma (compare [Md2], [BV], [HO’M]).
Recall that a row u = (u1, . . . , un) ∈ nR is called unimodular , if u1R + . . . +
unR = R, i.e. the (right) ideal generated by the components of u coincides
with R. It is equivalent to saying that there exists a column w ∈ Rn such
that uw = 1. Suslin’s lemma asserts that if u ∈ nR is a unimodular row of
length n ≥ 2 then any solution v ∈ Rn of the homogeneous linear equation
uv = 0 is a linear combination of solutions ujei − uiej , i 6= j, which have at
most two non-zero coordinates.

First we state a unitary analogue of this Lemma for the commutative case.
Note that unimodularity of a column u is equivalent to the unimodularity of
the corresponding row ũ. It is clear that if u is unimodular, there exists a
column w such that h(u, w) = 1. We are interested in decomposing columns
orthogonal to u into sums of columns having enough zero coordinates.

Lemma 7.1. Suppose u ∈ R2n is a unimodular column of height n ≥ 2
over a commutative ring R. Then any vector v ∈ R2n orthogonal to u, i.e.

such that h(u, v) = 0, may be expressed as a linear combination of vectors

uij = λ(ε(i)−1)/2u−jei − λ(ε(j)−1)/2u−iej , i 6= j, which are all orthogonal to u
and have at most two non-zero coordinates.

Proof. It is clear that that all the vectors uij are orthogonal to u. Now
the lemma is proven by essentially the same formula as the original Suslin’s
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lemma. Namely, fix a w ∈ R2n such that h(u, w) = 1. Then a direct calcu-
lation using the definition of h and the equalities h(u, v) = 0, h(u, w) = 1,
shows that

v =
∑

(wjvi − wivj)uij ,

where the sum is taken over all i < j in our sense, i.e. by such pairs (i, j)
that either the signs of i and j coincide and i < j in the usual sense, or else
i ∈ I+, j ∈ I−.

Now we state a non-commutative version of this lemma (compare [Tu],
[Kh1]). Let R0 = Cent(R) be the centre of the ring R. For an element ξ ∈ R
we denote by O(ξ) the ideal in R0, generated by all central multiples of ξ,
i.e. by all elements from R0 which have the form ξζ = ζξ for some ζ ∈ R.
Notice we do not assume below that u is unimodular: the price we pay is that
we express only certain multiples of the vector v as a linear combination of
vectors orthogonal to u with at most 2 nonzero coordinates.

Lemma 7.2. Suppose u ∈ R2n is a column of height n ≥ 2 and θ = uiζ =
ζui, ζ ∈ R, be a central multiple of ui for a fixed i = 1, . . . ,−1. Then for any

vector v ∈ R2n orthogonal to u its multiple vθ may be expressed as a sum

vθ =
∑

wj,−i, j 6= i, where each of the vectors wj,−i is orthogonal to u and

has at most two nonzero coordinates.

Proof. Set

wj,−i = vjθej − λ(1−ε(i))/2λ(ε(j)+1)/2ζu−jvje−i.

Every wj,−i is orthogonal to u and if one lets w =
∑

wj,−i, j 6= −i, then,
clearly, wj = vjθ for all j 6= −i. Finally,

w−i = λ(1−ε(i))/2
∑

j 6=−i

λ(ε(j)+1))/2ζu−jvj = ζuiv−i = v−iθ.

The decompositions of root type elements in the following subsections are
based on this lemma. In the next subsection we shall apply the lemma to an
isotropic vector v = u. In this case we want our summands to be isotropic as
well. However, clearly wi,−i is not isotropic. But actually we do not need to
decompose vθ into summands which have only two non-zero elements. It is
usually enough that each summand has one zero element. Therefore we are
usually done simply by presenting vθ in the form vθ = wj,−i + (vθ − wj,−i)
for some j 6= ±i.

20. Decomposition of long root unipotents. In this subsection we
decompose a long root unipotent Tu(α) under the assumption that α ∈ θΛθ
for some θ ∈ O(ui), i = 1, . . . ,−1.
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Proposition 3. Let u ∈ R2n be an isotropic column, α ∈ Λ. Assume that

n ≥ 3 and α ∈ θΛθ for θ ∈ O(ui), i = 1, . . . ,−1. Then Tu(α) ∈ EU(2n, R, Λ).

Proof. Without loss of generality we may assume that α = θβθ, where θ ∈
O(u−1), β ∈ Λ. By Lemma 5.7 one has Tu(θβθ) = Tuθ(β). On the other
hand, the column uθ may be decomposed as uθ = v + w, where v and w are
orthogonal isotropic vectors of the form

v = (ζ, u2θ, 0, . . . , 0, 0)t, w = (u1θ − ζ, 0, u3θ, . . . , u−2θ, u−1θ)t.

Indeed, let ξ ∈ R be such that u−1ξ = ξu−1 ∈ R0. Then one may take
ζ = −ξu2u−2. A direct check using the fact that u is isotropic and ζ central
shows that v and w are indeed orthogonal and isotropic. Now by Lemma 5.10
one has

Tuθ(β) = Tv(β)Tw(β)Tvw(β),

where all there factors on the right hand side are elementary: the first two by
the Whitehead–Vaserstein lemma (Lemma 6.4), the last one by the Kopeiko–
Taddei lemma (Lemma 6.9).

30. Decomposition of short root unipotents. In this subsection
we decompose a short root unipotent Tuv(ξ) under the assumption that ξ ∈

O(ui)O(uj)R for some j 6= ±i.

Proposition 4. Let u ∈ R2n be an isotropic vector, v ∈ R2n be any vector

orthogonal to u, and ξ ∈ R. Assume that n ≥ 3 and ξ ∈ O(ui)O(uj)R for

some i 6= ±j. Then Tuv(ξ) ∈ EU(2n, R, Λ).

Proof. Without loss of generality we may assume that ξ = ηθρ, where η ∈
O(u−1), θ ∈ O(u−2) and ρ ∈ R. By Lemma 5.3 one has Tuv(ηθρ) = Tu,vη(θρ).
On the other hand by Lemma 7.2 the column vη may be decomposed into a
sum of columns wj,−i all of which are orthogonal to u and have at most two
non-zero coordinates. By Lemmas 5.4 and 5.6 one has

Tu,vη(θρ) = Tu,wi,−i
(θρ)Tu(∗)

∏
Tu,wj,−i

(θρ),

where the product is taken over all j 6= ±i. The second factor on the right
hand side is elementary by the previous section, every factor in the product
is elementary by the Kopeiko-Taddei lemma (since all wj,−i, j 6= ±i, are
isotropic). It remains only to consider the first factor.

We cannot apply the Kopeiko–Taddei lemma to the element Tu,wi,−i
(θρ)

since wi,−i is not isotropic. But we can repeat arguments from the previous
section to apply the Whitehead–Vaserstein lemma. Namely, by Lemma 5.3
one has Tu,wi,−i

(θρ) = Tuθ,wi,−i
(ρ). Now, precisely as in the proof of the
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preceding proposition, we can decompose the column uθ as uθ = w + z,
where w and z are orthogonal isotropic vectors of the form

w = (0, ζ, u3θ, 0, . . . , 0, 0)
t
, z = (u1θ, u2θ − ζ, 0, u4θ, . . . , u−2θ, u−1θ)

t
.

Moreover, since u and w are orthogonal to wi,−i, z also is. Now by Lemma 5.10
one has

Tuθ,wi,−i
(ρ) = Tw,wi,−i

(ρ)Tz,wi,−i
(ρ)Tw,z(∗).

Here the first two factors on the right hand side are elementary by the White-
head–Vaserstein lemma (w−2 = z3 = 0 together with the corresponding ele-
ments in wi,−i) and the last one by the Kopeiko–Taddei lemma (w is isotropic
and w1 = w−1 = 0). This finishes the proof of the proposition.

40. Partitions of 1. In this subsection it is shown that when a sin-
gle unimodular column u is replaced by all columns cu, where c ranges over
EU(2n, R, Λ) then the elements appearing in the propositions 3 and 4 actually
generate the whole ring R0. Our argument reproduces – with an obvious com-
plication due to the presence of an involution – the original one of A.A.Suslin
(see [Tu], Lemma 1, [Kh1], Lemma 3, or [Kh3], pp. 18–20).

The only divergence from the proof of the linear case consists in the follow-
ing. Maximal ideals of the ring R0 are not necessarily invariant with respect
to the involution. As a result it is possible that θ does not belong to a maxi-
mal ideal m ∈ Max(R0), whereas θ does. It is technically more convenient to
pass to a subring A of R0, in which the involution is trivial and to prove a
formally stronger fact, that already products of multiples of (cu)i lying in A
generate the whole ring A as c ranges over EU(2n, R, Λ).

Let A be the subring, generated by the norms of elements from R0, i.e.
by all θθ, where θ ∈ R0. Clearly A contains also the traces of elements from
R0. Indeed, θ + θ = (1 + θ)(1 + θ) − θθ − 1 ∈ A. Clearly there are at most
two maximal ideals m1, m2 ∈ Max(R0), m1 = m2, lying over a given maximal
ideal m ∈ Max(A). For a maximal ideal m ∈ Max(A) we denote by Am,
Rm, etc. the localizations of A, R, etc. with respect to the multiplicative set
Sm = A\m: Am = Sm

−1A, Rm = Sm

−1R, etc. As usual we denote by Rad(R)
the Jacobson radical of a ring R.

Lemma 7.3. Let (R, Λ) be an almost commutative form ring. Then for

every maximal ideal m ∈ Max(A) the ring Qm = Rm/ Rad(Rm) is classically

semisimple and the canonical morphism φ = φm : R −→ Qm is surjective.

Proof. First observe that Rm is algebraic over Am. Indeed, being a root of
the equation x2 − (θ + θ)x + θθ = 0 with the coeffitients in A, every element
θ ∈ R0 is algebraic over A. Since R is a finitely generated module over R0, it
is also algebraic over A and our claim follows.
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Next we prove that m is contained in Rad(Rm). Indeed, take an arbitrary
µ ∈ m and ξ ∈ Rm. We have to prove that 1 + µξ is invertible in Rm. Since
Rm is algebraic, the subalgebra Am(ξ) ⊆ Rm is finite dimensional. Since
Rad(Am) = mAm, Nakayama’s lemma implies that m is contained in every
maximal ideal of Am(ξ) and thus µ ∈ Rad(Am(ξ)). Thus 1 + µξ is invertible
already in Am(ξ).

Now it is easy to prove that φ is surjective. In fact, let ξ/θRm, where ξ ∈ R,
θ ∈ Sm. Since θA+m = A, there exist η ∈ A and µ ∈ m, such that θη+µ = 1.
Multiplying this equality by ξ/θ we get ξ/θ = ηθ + µξ/θ ∈ ηθ + Rad(Rm).

Finally observe that Qm = Rm/ Rad(Rm) is a finitely generated module
over (R0)m

/ Rad((R0)m
). The latter ring is either a field (R0)m

/m(R0)m
, or

a direct sum of two fields (R0)m
/m1(R0)m

⊕ (R0)m
/m2(R0)m

. Thus the ring
Rm/ Rad(Rm) is both semisimple and artinian.

We set Γm = φm(Λm). Then the homomorphism of form rings φm :
(R, Λ) −→ (Qm, Γm) is surjective. Thus we get an epimorphism of the corre-
sponding elementary unitary groups

φm : EU(2n, R, Λ) −→ EU(2n, Qm, Γm).

Since Qm is semisimple, the elementary unitary group EU(2n, Qm, Γm)
has very strong transitivity properties, see [B1], [V1], [MKV], [HO’M]. In
particular for all n ≥ 3 the group acts transitively on the set of all isotropic
unimodular vectors (see [HO’M], Theorem 9.1.3 or [MKV], Theorem 8.1 for
much stronger results).

Lemma 7.4. Let u ∈ R2n be a unimodular isotropic column over an almost

commutative ring R. Then the ideal in R0 generated by all θθ, where θ ∈
O((cu)−1) and c runs over EU(2n, R, Λ), coincides with R0.

Proof. Let m ∈ Max(A) be any maximal ideal of A. Then the vector φm(u)
is an isotropic unimodular vector over a classically semisimple ring Qm. The
transitivity of EU(2n, Qm, Γm) and the surjectivity of φm imply that there
exists c ∈ EU(2n, R, Λ) such that φm((cu)−1) ∈ Qm

∗, or, in other words,
(cu)−1 is invertible in Rm. This means that ((cu)−1)

−1 = ξ/θ, where ξ ∈ R,
θ ∈ Sm. Thus (cu)−1ξ = ξ(cu)−1 = θ ∈ Sm ∩ O((cu)−1). Clearly also θθ =
θ2 ∈ Sm∩O((cu)−1). Thus for every m ∈ Max(A) there exist c ∈ EU(2n, R, Λ)
and θ ∈ O((cu)−1) such that θθ /∈ m.

Lemma 7.5. Let u ∈ R2n be a unimodular isotropic column over an almost

commutative ring R. Then the ideal in R0 generated by all ηθ, where η ∈
O((cu)−1), θ ∈ O((cu)−2), and c runs over EU(2n, R, Λ), coincides with R0.

Proof. We argue as in the preceding lemma. Let m ∈ Max(A) be any maximal
ideal of A. Again the transitivity of EU(2n, Qm, Γm) and the surjectivity of φm
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imply that there exists c ∈ EU(2n, R, Λ) such that φm((cu)−1), φm((cu)−2) ∈
Qm

∗, or, in other words, (cu)−1, (cu)−2 are invertible in Rm. This means
that ((cu)−1)

−1 = ξ/η, ((cu)−2)
−1 = ζ/θ, where ξ, ζ ∈ R, η, θ ∈ Sm. Then

(cu)−1ξ = ξ(cu)−1 = η ∈ Sm ∩ O((cu)−1) and (cu)−2ζ = ζ(cu)−2 = θ ∈

Sm∩O((cu)−2). Clearly ηθ = ηθ ∈ Sm∩O((cu)−1)O((cu)−2). Thus for every

m ∈ Max(A) there exists c ∈ EU(2n, R, Λ) such that O((cu)−1)O((cu)−2) 6⊆
m.

Notice that actually we used very little about the ring Qm. Nothing changes
in the proof of the last two lemmas if only EU(2n, Qm, Γm) acts transitively
on the set of isotropic unimodular columns. This is the case, for example,
when n ≥ asr(Qm) + 2, see [MKV], Theorem 8.1, or even better when n ≥
ΛS(Qm) + 1, see [BT], section 3 and proof of Lemma 4.1. One may impose
various other ring theoretic conditions on R to guarantee the validity of the
last two lemmas. For example, the proof works when R is algebraic over R0

and satisfies some further finiteness conditions, as in [Kh1] – [Kh3], or when
R is von Neumann regular, etc.

50. Proof of the theorem in the absolute case. The corollary of
Lemma 4.4 shows that we have only to prove the theorem in the absolute
case. In view of Lemmas 5.2 and 5.5 this amounts to proving that the elements
Tu(α) and Tuv(ξ), where u and v are the i-th and the j-th columns of a matrix
g ∈ U(2n, R, Λ), α ∈ Λ, ξ ∈ R, belong to EU(2n, R, Λ). In fact we will prove
the stronger statement that these elements belong to EU(2n, R, Λ) whenever
u is a unimodular isotropic column and v is orthogonal to u.

First we prove that unipotent elements of long root type Tu(α) belong to
EU(2n, R, Λ) whenever u is unimodular. Indeed, if θ ∈ O((cu)−1), where
c ∈ EU(2n, R, Λ), then

Tu(θαθ) = c−1Tcu(θαθ)c ∈ EU(2n, R, Λ)

by Proposition 3. But since u is unimodular Lemma 7.4 shows that θθ gen-
erate the unit ideal in R0 as c ranges over EU(2n, R, Λ). Choose c1, . . . , ct ∈
EU(2n, R, Λ) such that there exists a partition of 1 of the form θ1θ1 + . . . +
θtθt = 1, θh ∈ O((chu)−1). Then

Tu(α) =
∏

Tu(θhαθh) =
∏

ch
−1Tchu(θhαθh)ch,

where all the factors on the right hand side belong to EU(2n, R, Λ).
Now we prove that unipotent elements of short root type Tuv(ξ) belong

to EU(2n, R, Λ) whenever u is unimodular. Indeed, if η ∈ O((cu)−1), θ ∈
O((cu)−2), where c ∈ EU(2n, R, Λ), then

Tuv(ηθξ) = c−1Tcu,cv(ηθξ)c ∈ EU(2n, R, Λ)
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by Proposition 4. But since u is unimodular Lemma 7.5 shows that θη gen-
erate the unit ideal in R0 as c ranges over EU(2n, R, Λ). Choose c1, . . . , ct ∈
EU(2n, R, Λ) such that there exists a partition of 1 of the form θ1η1 + . . . +
θtηt = 1, ηh ∈ O((chu)−1), θh ∈ O((chu)−2). Then

Tuv(ξ) =
∏

Tuv(θhξηh) =
∏

ch
−1Tchu,chv(θhξηh)ch,

where all the factors on the right hand side belong to EU(2n, R, Λ).
This finishes the proof of the theorem 1 for the absolute case and thus, in

view of § 4, for all cases.

Remark. In fact nothing changes in the proof for all other situations
mentioned in the preceding subsection. In particular, we have proven the
following result. Let (R, Λ) be an form ring. Assume that n ≥ 3 is such that
for all maximal ideals m ∈ Max(A) the group EU(2n, Rm, Λm) acts transitively
on the set of all unimodular isotropic columns of height 2n over Rm. Then
for any form ideal (I, Γ) the corresponding elementary subgroup EU(2n, I, Γ)
is normal in U(2n, R, Λ) and

EU(2n, I, Γ) = [EU(2n, R, Λ), CU(2n, I, Γ)].

As mentioned after the proof of Lemma 7.5, the condition of the corollary
following Lemma 4.4 is satisfied, for example, when n ≥ asr Rm + 2 for all
m ∈ Max(A), see [MKV], or even better, when n = ΛS(Rm) + 1 for all
m ∈ Max(A), see [BT]. One could state many further generalizations like
this, in the style of [V2], or [Kh1] – [Kh3].
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