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1 Introduction

This article discusses the foundations for recent developments introducing a general con-
cept of deformation and homotopy theory into pure algebra. Homotopy theory has a long
tradition in analysis and geometry and is grounded in the concepts of topological space,
continuous map, path, and deformation of continuous maps. Wherever these notions oc-
cur in a natural and meaningful way, one can endevour to apply homotopical concepts
and methodology to formulate and solve problems.

The algebraic counterpart of a topological space is a global action. It has a very natural
and intuitive notion of path which is easy to formalize and it has a good concept of
deformation for morphisms, based on the notion of path. In terms of these concepts, one
can develop in a purely algebraic setting the entire spectrum of homotopy theory. This
article describes the notion of a global action, several kinds of morphisms between global
actions, the notion of path in a global action and the notion of deformation of a morphism.

The body of the paper is organized as follows. We begin by defining a global action and
giving a few examples including that of the line L. Next various concepts of morphism
between global actions are introduced. A natural, intuitive notion of path in a global
action A is described and then formalized as a certain kind of morphism from L to A.
The next goal is defining a global action structure on the set of all morphisms from
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one global action to another and establishing the exponential law. The global action
on morphism spaces plays the role of the compact open topology on function spaces in
topology. Finally we define when two morphisms are homotopic.

2 Global actions

A group action consists by definition of a group G, a set X and a map G×X → X, (σ, x) 7→
σx, of the Cartesian product G × X to X such that for all elements σ, ρ ∈ G and x ∈
X, (σρ)x = σ(ρx) and 1x = x. If G acts on X then we write G y X. A morphism
G y X → H y Y of group actions conists of a group homomorphism f : G → H and a
function f ′ : X → Y such that for all σ ∈ G and x ∈ X, f ′(σx) = f(σ)f ′(x).

A global action is formed by fitting together a set of group actions, according to a few
simple principles. Each of the group actions making up the global action is then called a
local action.

Definition 2.1 A global action A consists of a set XA together with a set {(GA)α y

XA | α ∈ ΦA} of group actions (GA)α y (XA)α such that each (XA)α j XA. The set
of group actions is structured by equipping the index set ΦA with a reflexive relation 5
and imposing the condition that if α 5 β then (GA)α leaves (XA)α ∩ (XA)β invariant and
there is a group homomorphism (GA)α5β : (GA)α → (GA)β such that if σ ∈ (GA)α and x ∈
(XA)α ∩ (XA)β then σx = (GA)α5β(σ)x.

The index set ΦA of a global action A is called the coordinate system of A and each
element of ΦA is called a coordinate. It is possible that for distinct coordinates α and
β, (XA)α = (XA)β, but (GA)α 6= (GA)β. This allows one to have distinct groups acting
on the same subset of XA. The function GA : ΦA → ((groups)), α 7→ (GA)α, is called the
global group of A and each group (GA)α is called a local group of A. Thus a global
group is a group valued function on a coordinate system. Each set (XA)α is called a local

set of A and each group action (GA)α y (XA)α is called a local action of A. The set
XA is called the enveloping set of A. The function ΦA → subsets (XA), α 7→ (XA)α, is
denoted also by XA : ΦA → subsets (XA). When confusion might arise, we write |XA| for
the enveloping set XA. The notation |A| will also be used for the enveloping set XA.

A global action A is called covariant if the relation 5 on ΦA is transitive and if the
global group GA : ΦA → ((groups)) is a covariant functor. In this case, the global group
is called covariant also. A global action A is called contravariant if the relation 5 on
ΦA is transitive and if α 5 β ⇒ (XA)α k (XA)β. This condition is equivalent to requiring
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that the function XA : ΦA → subsets (XA), α 7→ (XA)α, is a contravariant functor. A
global action is called bivariant of functorial if it is both covariant and contravariant.

An important example of a functorial action, which arises in several contexts, is the
following.

Example 2.2 Let G y X be a group action. Let Φ be a set which indexes a set
{Gα|α ∈ Φ} of subgroups Gα of G. Assume that Gα = Gβ ⇔ α = β. Partially order
the set{Gα|α ∈ Φ} by inclusion and give Φ the induced partial ordering. Clearly the rule
α 7→ Gα defines a functor G : Φ → ((groups)). Set |X| = X and define the function
X : Φ → subsets |X|, α 7→ Xα, by Xα = |X| for all α ∈ Φ. Then one obtains a functorial
global action (Φ, G, X).

If U is a set, let

Perm(U) =Group of all bijections of U onto itself,

fPerm(U) ={σ ∈ Perm(U)|σ fixes all but a finite number of elements of U}.

If U is a well ordered nonempty finite set, let

cPerm(U) = cyclic subgroups of Perm(U) generated by the cyclic

permutation which sends each element of U,

except for the last, to its successor and

sends the last element to the first.

The next example is important for the homotopy theory of global actions.

Example 2.3 This example is called the line action and is denoted by L. Let ΦL =
Z∪{∗}. Give ΦL the partial ordering such that there is no relation between elements of Z

and such that ∗ 5 n for all n ∈ Z. Let |XL| = Z and define the function XL : Φ → subsets
|XL|, α = n 7→ {n, n + 1} and α = ∗ 7→ |XL|. Define GL : ΦL 7→ ((groups)),α = n 7→
(GL)α = Perm({n, n + 1}) and α = ∗ 7→ (GL)α = {1}. Then the triple L = (ΦL, GL, XL)
is a functorial action.

The next example extends in several ways the one above, to arbitrary abstract simplicial
complexes.

Example 2.4 Let S denote an abstract simplicial complex and let |XS| denote the set
of vertices of S. If α is a subcomplex of S, let (XS)α denote the set of its vertices. Call a
subcomplex α simple, if (XS)α has a partition into subsets U such that any finite subset
of U is a simplex in α and such that any simplex of α is a subset of some U . Clearly if α
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is simple then the partition above of (XS)α is unique; let Part(XS)α denote this partition.
Let ΦS denote the set of all simple subcomplexes of S. Partially order ΦS by defining
α 5 β ⇔ (XS)α k (XS)β and every member of Part(XS)β is a union of members of the
Part(XS)α. Clearly the subcomplex whose vertices are |XS| and whose simplices are the
singleton subsets of |XS| is the smallest element of ΦS . For α ∈ ΦS, define

(GS)α =
∏

U∈Part(XS)α

Perm(U)

(fGS)α =
∏

U∈Part(XS)α

fPerm(U).

There is a canonical action of (GS)α (resp. (fGS)α) on (XS)α defined by the action of
each permutation group Perm(U) (resp. fPerm (U)) on U . Define

gl(S) = (ΦS , GS, XS)

fgl(S) = (ΦS , fGS, XS).

Then gl(S) and fgl(S) are global actions called simplicial actions. They are not in
general functorial.

Well order now the vertices |XS| of S and let cΦS denote the subset of ΦS of all simple
subcomplexes α such that Part(XS)α contains only finite sets. The smallest element of
ΦS, say ∗, clearly lies in cΦS . Give cΦS a new partial ordering such that α 5 β ⇔ α = ∗.
Thus if α 6= ∗ 6= β then either α = β or there is no relation between α and β. For
α ∈ cΦS , define (cXS)α = (XS)α and

(cGS)α =
∏

U∈Part(XS)α

cPerm(U).

Define

cgl(S) = (cΦS , cGS, cXS).

Then cgl(S) is a global action called a cyclic simplicial action. It is not in general
functorial.
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There are three kinds of morphisms for global actions. There is first of all a general con-
cept. Then there is a structural concept which gives rise to so-called regular morphisms.
Global actions which are regularly isomorphic are essentially the same. Finally there is a
concept lying between the two above, which leads to the definition of normal morphism.
The set Mor(A, B) of all morphisms from a global action A to a global action B will be
given the structure of a global action such that the assignment (A, B) 7→ Mor(A, B) is
functorial in A over all morphisms and functorial in B over precisely normal morphisms.

We define first the general concept of morphism. This concept is geometric in flavor and
depends on the notion of local frame. A local frame at a point p ∈ |XA| signifies a range
of possible moves available at p . It is defined as follows.

Definition 2.5 Let A be a global action.Let x ∈ (XA)α. A local frame at x in α or
simply an α-frame at x is a sequence x = xo, · · · , xp of points in (XA)α, with the property
that for each i (1 5 i 5 p) there is a gi ∈ (GA)α such that gix = xi. (Clearly x0, x1, · · · , xp

is an α-frame at x0 ⇔ x0, · · · , xi, · · · , xp is an α-frame at xi.) A morphism f :A → B

of global actions is a function f :|A| → |B| which preserves local frames. Specifically
if x0, · · · , xp is an α-frame at x0 then f(x0), · · · , f(xp) is an β-frame at f(x0) for some
β ∈ ΦB.

A path in a global action A is intuitively a sequence x0, · · · , xp of points in |A| such that
there are coordinates α0, · · · , αp ∈ ΦA and group elements σi ∈ (GA)xi

(i = 0, · · · , p − 1)
such that σixi = xi+1. The figure below illustrates a path when p = 3.
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|A|

(XA)α2(XA)α1(XA)α0

x0 x1 x2 x3

• • ••
σ0 σ1 σ2

The notion is formalized as follows.

Definition 2.6 A path in a global action A is a morphism ω : L → A, where L is the
line action in (2.3), such that there are integers n ≤ N ∈ Z = |L| with the property that
ω(l) = ω(n) for all l ≤ n and ω(l) = ω(N) for all N 5 l. Thus a path is stably constant
on the left and on the right.

Definition 2.7 A regular morphism η : A → B of global actions is a triple (ηΦ, ηG, ηX)
satisfying the following conditions.

(2.7.1) ηΦ : ΦA → ΦB is a relation preserving function.

(2.7.2) ηG : GA → (GB)ηΦ( ) is a natural transformation of group valued functions on ΦA

where (GB)ηΦ( ) denotes the composition of ηΦ with GB. This means by definition that if
α 5 α′ ∈ ΦA then the diagram
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(GA)α

��

(ηG)(α)
// (GB)ηΦ(α)

��

(GA)α′
ηG(α′)

// (GB)ηΦ(α′)

commutes

(2.7.3) ηX : |A| → |B| is a function such that ηX((XA)α) j (XB)ηΦ(α) for all α ∈ ΦA.

(2.7.4) For each α ∈ ΦA, the pair (ηG, ηX) : (GA)α y (XA)α → (GB)ηΦ(α) y (XB)ηΦ(α) is
a morphism of group actions. Clearly a regular morphism is one in the general sense of
(2.7).

A regular isomorphism η : A → B is a regular morphism such that there is a regular
morphism η′ : B → A called the regular inverse of η with the property that η ′

Φ is inverse
to ηΦ, η′

X is inverse to ηX , and for each α ∈ ΦA, η′
G(ηΦ(α)) is inverse to ηG(α).

It is of course not true in general that a regular morphism which is an isomorphism in
the general sense is a regular isomorphism.

Example 2.8 Let G y X and G′
y X ′ be group actions. Let {Gα | α ∈ Φ} be a

set of subgroups of G such that Gα = Gβ ⇔ α = β. Let {G′
α′ | α′ ∈ Φ′} be a set of

subgroups of G′ sucht that G′
α′ = G′

β′ ⇔ α′ = β ′. Let (Φ, G, X) and (Φ′, G′.X ′) denote
the global actions constructed in (2.2). Let f : G → G′ be a group homomorphism and
g : X → X ′ be a function such that (f, g) defines a morphism (f, g) : G y X → G′

y X ′

of ordinary group actions. Let ϕ : subgroups (G) → subgroups (G′) be a function
such that if K ⊆ L ⊆ G are subgroups of G then K ⊆ ϕ(K) ⊆ ϕ(L). Suppose that
{ϕ(f(Gα)) | α ∈ Φ} = {G′

α′ | α′ ∈ Φ′}. Then (f, g) defines in an obvious way a regular
morphism (Φ, G, X) → (Φ′, G′, X ′).

Example 2.9 Let f : S → T be a morphism of abstract simplicial complexes. Then f
defines morphisms gl(f) : gl(S) → gl(T ), fgl(f) : fgl(S) → fgl(T ), and clg(f) : cgl(S) →
cgl(T ) of global actions which do not in general have a regular structure. Moreover each
of the assignments S 7→ gl(S), S 7→ fgl(S), and S 7→ cgl(S)’ defines a functor ((abstract
simplicial complexes)) → ((global actions)).

Next we define the concepts of chart and frame and then use them to define the notion
of normal morphism.

Definition 2.10 Let A and B be global actions. Let f : A → B be a morphism of global
actions. A framing of f is a function β : |A| → ΦB such that the following conditions
hold.
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(2.10.1) f(x) ∈ (XB)β(x) for all x ∈ |A|.

(2.10.2) If x, x1, · · · , xp is a local frame in A then f(x), f(x1), · · · , f(xp) is a local frame in
b ∈ ΦB for some b = β(x), β(xp), · · · , β(xp).

An A-chart in B is a pair (f, β) consisting of a morphism f : A → B of global actions
and a framing β : |A| → ΦB of f.

Definition-Lemma 2.11 Let (f, β) be an A-chart in B.

If

σ = (σx) ∈
∏

x∈|A|

(GB)β(x)

define

σf : |A| → |B|.

x 7→ σxf(x)

Then σf is a morphism A → B of global actions and (σf, β) is an A-chart in B.

PROOF Since σx ∈ (GB)β(x), it follows that σf(x) ∈ (XB)β(x). Thus the pair (σf, β)
satisfies (2.10.1). To show that σf is a morphism of global actions and that (σf, β) is an
A-frame in B, it suffices to show that (2.10.2) is satisfied. Let xo, · · · , xp be a local frame at
xo ∈ |A|. By definition f(xo), · · · , f(xp) is a b-frame at f(xo) for some b ≥ β(xo), · · · , β(xp).
Let ρxo

, · · · , ρxp
denote respectively the images of σxo

, · · · , σxp
in (GB)b under the canon-

ical homomorphisms (GB)β(xi) → (GB)b (0 5 i 5 p). Clearly ρxo
f(xo), · · · , ρxp

f(xp) is
a b-frame at ρxo

f(xo). But ρxi
f(xi) = σxi

f(xi). Thus σf(xo), · · · , σf(xp) is a b-frame at
σf(xo) and b = β(xo), · · · , β(xp). �

Definition 2.12 Let (f, β) be an A-chart in B. An A-frame at f on (f, β) is a set
f = fo, f1, · · · , fp : A → B of morphisms for which there are elements σ1, · · · , σp ∈

∏
x∈|A|

(GB)β(x) such that σif = fi (1 5 i 5 p). (In view of Lemma (2.11), f = fo, f1, · · · , fp is also
an A-frame at fi on (fi, β) for any i (0 5 i 5 p).)

The next lemma is very useful.

Local-Global Lemma 2.13 Let (f, β) be an A-chart in B. Then f = fo, f1, · · · , fp is an
A-frame at f on (f, β) ⇔ for each x ∈ |A|, f(x), f1(x), · · · , fp(x) is a local frame at f(x) in
β(x).
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PROOF The assertions are trivial consequences of Lemma (2.11).

Definition 2.14 Let A, B and C be global actions. An A-normal morphism g : B → C

of global actions is one which preserves A-frames, i.e. if f, f1, · · · , fp is an A-frame at f on
(f, β) then there is a framing γ : |A| → ΦC of gf such that gf,gf1, · · · , gfp is an A-frame on
the A-chart (gf, γ). A normal morphism g : B → C is one which preserves A-frames for
any global action A. An A-normal (resp. normal) isomorphism is an A-normal (resp.
normal) morphism which has an A-normal (resp. normal) inverse.

It is not true in general that an A-normal (resp. normal) morphism which is an isomor-
phism in the usual sense is an A-normal (resp. normal) isomorphism.

Lemma 2.15 A regular morphism is normal.

PROOF Let η : B → C be a regular morphism. If (f, β) is an A-chart in B then
it follows straightforward that (ηX f, ηΦβ) is an A-chart in C. Let f, f1, · · · , fp be an A-
frame at f on (f, β) and let σ1, · · · , σp ∈

∏
x∈|A|

(GB)β(x) such that σif = fi (1 5 i 5 p).

If σ = (σx) ∈
∏

x∈|A|

(GB)β(x), define ηG(σ) = (ηG(β(x))(σx)) ∈
∏

x∈|A|

(GC)ηΦ(β(x)). Then

ηG(σi)(ηX f) = ηX fi (1 5 i 5 p), by (2.7.4). Thus ηX f, ηX f1, · · · , ηX fp is an A-frame at ηX f
on (ηX f, ηΦβ). �

Next we use the concept of framing to give the set of all morphisms from a global action
A to a global action B the structure of a global action.

Definition 2.16 Let A and B be global actions. Let |Mor(A, B)| denote the set of all
morphisms from A to B. Define a global action

Mor(A, B) = (Φ(A,B), G(A,B), X(A,B))

as follows. Its enveloping set is |Mor(A, B)|. Define

Φ(A,B) = {β : |A| → ΦB}.

Give Φ(A,B) the reflexive relation defined by β 5 β ′ ⇔ β(x) 5 β ′(x) ∀x ∈ |A|. For
β ∈ Φ(A,B), define

(G(A,B))β =
∏

x∈|A|

(GB)β(x).
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If β 5 β ′, there is for each x ∈ |A| a canonically defined homomorphism (GB)β(x) →
(GB)β′(x) and therefore a homomorphism (G(A,B))β −→ (G(A,B))β′. For β ∈ Φ(A,B), define

(X(A,B))β = {f : A → B | f ∈ |Mor(A, B)|, β is a framing of f}.

By (2.11), if σ ∈ (G(A,B))β and f ∈ (X(A,B))β then σf ∈ (X(A,B))β and so there is an action
of (G(A,B))β on (X(A,B))β. All the conditions for a global action are obviously satisfied.
Moreover the global action Mor(A, B) is covariant, contravariant, or functorial whenever
the same holds for B.

Proposition 2.17 As a functor in two variables with values in global actions, Mor(, )
is contravariant and regular over all morphisms in the first variable and covariant over all
normal morphisms in the second variable. More precisely the following holds.

(2.17.1) Let C be a global action and let f : A → B be a morphism of global actions.
Then f defines a regular morphism

η = Mor(f, 1C) : Mor(B, C) → Mor(A, C)

as follows. Define the relation preserving morphism

ηΦ : Φ(B,C) → Φ(A,C).

β 7→ βf

Define the natural transformation

ηG : G(B,C) → G(A,C)

by

ηG(β) : (G(B,C))β
// (G(A,C))ηΦ(β)

∏
y∈|B|

(GC)β(y)

∏
x∈|A|

(GC)βf(x)

where
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ηG(β)|(GC)β(y)
is the diagonal homomorphism

(GC)β(y) →
∏

x∈|A|, f(x)=y

(GC)βf(x),

under the convention that the empty product of groups, which can occur on the right
hand side of the arrow above, is the trivial group. Define

ηX : |Mor(B, C)| → |Mor(A, C)|.

g 7→ gf

Then η = (ηΦ, ηG, ηX) is a regular morphism of global actions.

(2.17.2) Let A be a global action and let g : B → C be a morphism of global actions.
Then the function

Mor(1A, g) : |Mor(A, B)| → |Mor(A, C)|

is a morphism Mor(A, B) → Mor(A, C) of global actions ⇔ g is A-normal.

PROOF (2.17.1) Straightforward and routine. Details are left to the reader.

(2.17.2) Let (f, β) be an A-chart in B and let f = f0, f1, · · · , fp be an A-frame on (f, β).
By definition of the term local frame, f0, · · · , fp is also a local β-frame in the global action
Mor(A, B) and conversely, any local frame in Mor(A, B) is an A-frame on some A-chart
in B. Thus the function Mor(1A, g) : |Mor(A, B)| → |Mor(A, C)| is a morphism of global
actions ⇔ it preserves A-frames ⇔ g is A-normal.�

The next lemma is needed to show that the exponential map on global actions is regular.

Lemma 2.18 If g : B → C is a regular morphism then for any global action A, the
morphism Mor(1A, g) : Mor(A, B) → Mor(A, C) is regular.

PROOF By (2.15) and (2.17.2), the morphism Mor(1A, g) : Mor(A, B) → Mor(A, C)
exists. Let (ηΦ, ηG, ηX = g) be the regular structure of g. We define a regular structure
(µΦ, µg, µX = Mor(1A, g)) for Mor(1A, g) as follows.

Define the coordinate morphism

µΦ : Φ(A,B) → Φ(A,C).

β 7→ ηΦβ
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Define the natural transformation

µG : G(A,B) → G(A,C)

by the commutative diagram

(G(A,B))β

µG(β)
// (G(A,C))µΦ(β)

∏
x∈|A|

(G(A,B))β(x) ∏
x∈|A|

ηG(β(x))
//

∏
x∈|A|

(G(A,C))ηΦ(β(x))

One checks straightforward that (µΦ, µG, Mor(1A, g)) is a regular morphism.�

For the results below on the exponential law, the notion of product is needed. We construct
this next.

Definition-Lemma 2.19 Let A and B be global actions. Their
product A × B is constructed as follows.

ΦA×B = ΦA × ΦB

and (α, β) 5 (α′, β ′) ⇔ α 5 α′andβ 5 β ′.

GA×B = GA × GB

|A × B| = |A| × |B|

XA×B = XA × XB.

For any coordinate (α, β) ∈ ΦA×B , there is an obvious action of (GA×B)(α,β) on (XA×B)(α,β),
namely the one defined coordinatewise. One checks easily that A×B satisfies the universal
property of a product.

The following notation will be used below. If S and T are sets, let

(S, T ) = Mor((sets))(S, T ).
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If U is also a set then there is a canonical isomorphism

E : (U, (S, T ))
∼=

−→ (U × S, T )(2.20)

f 7−→ Ef

of sets such that Ef(u, s) = f(u)(s). Its inverse is obviously the function

E ′ : (U × S, T ) −→ (U, (S, T ))

f 7−→ E ′f

where (E ′f(u))(s) = f(u, s).

Definition 2.21 Let A, B and C be global actions. Define a regular morphism

E : Mor(A, Mor(B, C)) → Mor(A × B, C)

as follows. Denote the structural components of the global action Mor(A, Mor(B, C)) by
(Φ(A,(B,C)), G(A,(B,C)), X(A,(B,C))). Define

EΦ : Φ(A,(B,C))
// Φ(A×B,C)

(|A|, (|B|, ΦC)) (|A| × |B|, ΦC)

to be the set theoretic exponential isomorphism (2.20). Clearly EΦ preserves the reflexive
relation. Define the natural transformation

EG : G(A,(B,C)) → (G(A×B,C))EΦ( )

such that

EG(α) : (G(A,(B,C)))α
// (G(A×B,C))EΦ(α)

∏
x∈|A|

(
∏

y∈|B|

(GC)α(x)(y))
∏

(x,y)∈|A|×|B|

(GC)(EΦα)(x,y)
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maps the factor (GC)α(x)(y) via the identity map onto the factor (GC)(EΦα)(x,y) = (GC)α(x)(y).
One verifies easily that the composite mapping |Mor(A, Mor(B, C))| → (|A|, (|B|, |C|))
@ > (2.20) >> (|A| × |B|, |C|) takes its image in |Mor(A × B, C)| and we define

EX : |Mor(A, Mor(B, C))| → |Mor(A × B, C)|

to be the resulting mapping. One checks straightforward that

E = (EΦ, EG, EX)

is a regular morphism. (It fails in general to be an isomorphism (resp. regular isomor-
phism) because EX is not necessarily surjective (resp. EX((X(A,(B,C)))α) is not necessarily
all of (X(A×B,C))EΦ(α)).

Let An, · · · , A1 be an arbitrary sequence of global actions. Iterating the procedure above,
one defines for any n ≥ 2 a regular morphism

En : Mor(An, Mor(An−1, · · · , Mor(A1, C)) · · · ) → Mor(An × · · · × A1, C)

as follows. For n = 2, the morphism is defined above. Suppose n > 2 and that the
morphism has been defined for every natural number N where 2 5 N 5 n − 1. Let
En−1 denote the morphism for the sequence An−1, · · · , A1. Define En for the sequence
An, An−1, · · · , A1 as the composite of the regular morphism Mor(1An

, En−1) (see (2.18))
and the regular morphism E2 : Mor(An, Mor(An−1 × · · · × A1, B)) → Mor(An × · · · ×
A1, B).

Many global actions arising in nature satisfy the following condition.

Definition 2.22 Let A be a global action. If ∆ j ΦA, let ΦA
=∆ = {α ∈ ΦA|α =

β ∀ β ∈ ∆}. A is called an strong infimum action if for any finite subset ∆ j ΦA

and any finite nonempty set U j |A| such that (XA)β ∩ U 6= ∅ for each β ∈ ∆, the set
{α ∈ ΦA

=∆|U an α − frame} is either empty or contains an initial element. A is called
an infimum action if it satisfies the condition above at least for ∆ = ∅ (empty set).

Theorem 2.23 The exponential map

En : Mor(An, Mor(An−1, · · · , Mor(A1, C)) · · · ) → Mor(An × · · · × A1, C)

in (2.21) has a normal (resp. regular) inverse if C satisfies the infimum (resp. strong
infimum) condition.
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PROOF See [1] Theorem 3.23.

We close by defining when two morphisms are homotopic.

Definition 2.24 Let f, g : A → B be morphisms of global actions. Then f is homotopic

to g if there is a morphism F : A×L → B of global actions and integers n 5 N ∈ Z = |L|
such that F |A×{l} = f for all l 5 n and F |A×{l} = g for all N 5 l.
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