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Abstract. We present a phase-�eld model for multiphase �ow for an arbitrary number
of immiscible incompressible �uids with variable densities and viscosities. The model con-
sists of a system of the Navier-Stokes equations coupled to multicomponent Cahn-Hilliard
variational inequalities. The proposed formulation admits a natural energy law, preserves
physically meaningful constraints and allows for a straightforward modelling of surface ten-
sion e�ects. We propose a practical fully discrete �nite element approximation of the model
which preserves the energy law and the associated physical constraints. In the case of matched
densities we prove convergence of the numerical scheme towards a weak solution of the con-
tinuous model. The convergence of the numerical approximations also implies the existence
of weak solutions. Furthermore, we propose a convergent iterative �xed-point algorithm for
the solution of the discrete nonlinear system of equations and present several computational
studies of the proposed model.

1. Introduction

Let Ω be a bounded domain in Rd, d = 2, 3. We consider a mixture of N ≥ 2 immiscible
incompressible �uids and introduce a vector valued order parameter c = (c1, c2, . . . , cN )T :
Ω→ RN , where 0 ≤ ci ≤ 1, i = 1, . . . , N are order parameters corresponding to the di�erent
�uid components. Physically meaningful values for the order parameter c have nonnegative
entries and satisfy

∑N
n=1 cn = 1. It is therefore convenient to de�ne the Gibbs simplex

GN = {ζ ∈ RN :
N∑
n=1

ζn = 1, ζ ≥ 0} ⊂ RN

as the set of meaningful values for c, i.e. c ∈ GN . For later use, we denote the corners of the
Gibbs simplex by ei, i = 1, . . . , N . Similarly we de�ne the vector valued chemical potential
as w = (w1, w2, . . . , wN )T ∈ RN . In addition, we let u : Ω → Rd and p : Ω → R denote the
velocity and pressure of the �uid mixture, with its density and viscosity de�ned by ρ(c) = cTρ
and µ(c) = cTµ, respectively. Here ρ = (ρ1, ρ2, . . . , ρN )T ∈ RN and µ = (µ1, µ2, . . . , µN )T ∈
RN denote the densities and viscosities of the individual �uid components, which satisfy
ρmin ≤ ρi ≤ ρmax, µmin ≤ µi ≤ µmin for i = 1, . . . , N , with ρmin, ρmax, µmin, µmax ∈ R>0.
We propose a phase-�eld model for a mixture of N incompressible immiscible �uids. The
model consists of a system of variable density multicomponent Cahn-Hilliard-Navier-Stokes
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equations

∂t(ρ(c)u) +∇ · (ρ(c)u⊗ u) +∇ · (u⊗ j)−∇ · (2µ(c)D(u)) +∇p = ρ(c)g − λ(∇w)T c ,

(1.1a)

∇ · u = 0 ,(1.1b)

∂tc +∇ · (c⊗ u) = ∇ · (M∇w) ,(1.1c)

w = −ε∆c +
1

ε

∂Ψ(c)

∂c
,(1.1d)

whereD(u) = 1
2 (∇u+(∇u)T ) denotes the rate-of-deformation tensor and∇η is the N×dma-

trix with entries (∂ηm∂xp
)m=1,...,N,p=1,...,d, for η ∈ RN . For aN×dmatrix Λ = (Λmp)m=1,...,N,p=1,...,d,

∇ · Λ is the N × 1 vector with entries
∑d

p=1
∂Λmp

∂xp
, m = 1, . . . , N . The mobility matrix

M = (mij)i,j=1,...,N ∈ RN×N is described in more detail below. Moreover, we de�ne

(1.2) j = −
N∑
i=1

ρi

N∑
j=1

mij∇wj = −(M∇w)Tρ .

We consider homogeneous Neumann and Dirichlet boundary conditions for the Cahn-Hilliard
variables c, w and the velocity �eld u, respectively, i.e.

(1.3)
∂c

∂n
= M

∂w

∂n
= 0 and u = 0 on (0, T )× ∂Ω ,

where n is the outward unit normal vector to ∂Ω. In addition, u and c satisfy the initial
conditions

(1.4) u(0,x) = u0(x) ∀x ∈ Ω and c(0,x) = c0(x) ∀x ∈ Ω .

Here we assume the following properties for the initial condition c0 for the variable c

(1.5) (a) c0(x) ≥ 0 and (b)

N∑
i=1

c0
i (x) = 1 ∀x ∈ Ω ,

i.e. that c0(x) ∈ GN for all x ∈ Ω.
The Ginzburg-Landau free energy of the Cahn-Hilliard part of the system takes the form

(1.6) Ech(c) =

∫
Ω

(
ε

2
|∇c|2 +

1

ε
Ψ(c)

)
,

where the homogeneous free energy is expressed as

(1.7) Ψ(c) = Ψ0(c)− 1

2
cTAc ,

with A a constant symmetric N × N matrix that models the surface tension forces between
the di�erent �uids. Here a physically reasonable assumption is that diag(A) = 0 and Aij < 0,
for i 6= j. For equal surface tension forces, which leads to equal 120◦ angle conditions at triple
junctions, the matrix A in (1.7) takes the form

(1.8) A = I − 11T ,

where I is the N × N identity matrix and 1 = (1, . . . , 1)T ∈ RN . The choice of A for more
general contact angle conditions has been discussed in e.g. [15, 29], see also Sections 2.4 and
5.2 below.
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In this paper the term Ψ0 in (1.7) represents the obstacle free energy

(1.9) Ψ0(c) =

{
0 if c ∈ GN ,

∞ if c 6∈ GN .

For the non-smooth free energy (1.7) the derivative ∂Ψ(c)
∂c = (∂c1Ψ(c), . . . , ∂cN Ψ(c))T is only

formal and the equation (1.1d) has to be formulated as a variational inequality, cf. [29].
The mobility matrix M is symmetric positive semi-de�nite, with the natural property

(1.10) M1 = 0 .

This property ensures that the constraint
∑N

i=1 ci = 1 is ful�lled during the evolution, as long
as the initial data satis�es (1.5b). Moreover, for the constant density case it follows from (1.2)
and (1.10) that j vanishes, meaning that our model is consistent with classical models for two-
and multi-phase �ow. For instance, in the case of a constant mobility m0 ∈ R>0, the mobility
matrix M = (mij)

N
ij=1 is de�ned by the entries

(1.11) mij =

{
m0(1− 1/N) if i = j ,

−m0/N if i 6= j .

An alternative option is a concentration dependent mobility matrix M(c) with entries

(1.12) mij(c) = m0(ci + ν)(δij −
cj + ν

1 +Nν
) ,

where ν > 0 is a �xed parameter. Note, that for ν → 0 in (1.12), we recover a degenerate
concentration dependent mobility matrix

(1.13) mij(c) = m0ci(δij − cj) ,
cf. [7, 29]. Other choices for the mobility matrix are also possible, see e.g. [15, 7, 29].
For simplicity we will consider the constant mobility (1.11) throughout the theoretical part of
this paper. However, it is straightforward to generalize the presented numerical approxima-
tions to the case of degenerate and concentration dependent mobilities, such as, e.g., (1.13).
In particular, all theoretical results from this paper remain valid for the model with the regu-
larized variant (1.12) of the degenerate mobility (1.13). Furthermore, Lemmas 2, 3, 5 remain
valid for the numerical approximation with degenerate mobility (1.13), however, the existence
of discrete solutions is not clear, cf. [7].
Energy preserving convergent numerical approximations of variable density Navier-Stokes
equations have been constructed for instance in [27, 2]. In principle, the considered so-called
�sharp interface� model allows an arbitrary number of components to be included. However,
the corresponding numerical approximations su�er from numerical di�usion. Furthermore, the
inclusion of surface tension e�ects in variable density Navier-Stokes equations is not straight-
forward. Phase-�eld models have the advantage that various physical e�ects, such as surface
tension, can be included in a straightforward way. Furthermore, the corresponding numer-
ical approximations do not su�er from numerical di�usion, and preserve properties of the
continuous models, such as mass conservation and energy estimates. Phase-�eld models for
binary �uid mixtures and their numerical approximations are well-studied. Convergence of
numerical approximations for density independent models of two-phase �ows has been shown
in [16, 21]. A thermodynamically consistent phase-�eld model for two-phase �ows has been
proposed in [1]; energy preserving numerical approximations for that model have been con-
sidered in [20, 17], while convergence of a numerical approximation is shown in [18], [19].
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Considerably fewer results are available for mixtures of more than two �uids. For di�erent
approaches to construct phase-�eld models for ternary �uids with smooth homogeneous free
energy, we refer to [25, 9], the review paper [24] and the references therein. Stable numer-
ical approximations for density dependent three-phase �ows have been proposed in [10, 28],
and convergence of these numerical approximations towards weak solutions has been shown
in the case of constant density. Development of phase-�eld models for N > 3 �uid phases is
not straightforward due to the complicated modelling of surface tension e�ects, cf. [23, 26].
Recently, generalizations of the thermodynamically consistent phase-�eld model from [1] for
variable density �ows with an arbitrary number of phases and their numerical approximations
have been proposed in [13, 14]. We also mention the work [11], which proposes consistent
N -component Cahn-Hilliard models with smooth free energy, as well as their numerical ap-
proximation and the coupling with Navier-Stokes equations. For the numerical approximation
of multicomponent Cahn-Hilliard systems in the absence of �uid �ow, including the case of
degenerate mobility (1.13) and for the non-smooth obstacle free energy (1.7), see e.g. [7, 29].
In the present work we propose a generalization of the thermodynamically consistent model
from [1] for an arbitrary number of �uid components. As far as we are aware, all existing
phase-�eld models for �uid �ow use a smooth or regularized free energy formulation and the
present model is the �rst one to employ a non-smooth free energy. The advantage of the non-
smooth obstacle energy (1.9) is that the pure phases are easily identi�ed, and that physically
meaningful values for c are guaranteed throughout. We construct an energy stable numerical
approximation of the model and show convergence of the approximation to a weak solution in
the case of �uids with equal densities. Apart from the present paper, convergence of numerical
approximations of Cahn-Hilliard-Navier-Stokes systems for N > 2 components has only been
show in [10, 28]. We note that their results are limited to N = 3 components, while the
results presented in this paper hold for arbitrary N ≥ 2. In addition, the convergence of our
numerical approximations implies the existence of weak solutions to (1.1) for a non-smooth
energy, which is a new result even for N = 2. Furthermore, as detailed in Remark 1, the
existence of discrete solutions requires a velocity-pressure-density compatibility condition for
the corresponding �nite element spaces to hold 1.
The remainder of the paper is organized as follows. In Section 2 we discuss properties of the
continuous model, such as the energy inequality, surface tension e�ects and consistency with
models for N = 2 �uid components. The density independent model is considered in detail
in Section 3. Here we propose a fully discrete energy preserving numerical approximation of
the model and prove convergence towards a weak solution. Furthermore, we present a simple
�xed point algorithm for the solution of the discrete nonlinear system of equations and show
its convergence. In Section 4 we construct an energy preserving numerical approximation of
the density dependent model. The paper concludes with Section 5, where we brie�y discuss
implementation issues, such as mesh adaptivity and algebraic solvers, and where we present
numerical studies of the model.

2. Properties of the model

Below we summarize the main properties of the model (1.1).

1Note, that an analogical velocity-pressure-density compatibility condition was used previously in [27, 2]
where the former used a piecewise constant pressure-density spaces, and the latter used piecewise linear con-
tinuous pressure-density spaces.
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2.1. Energy law. An energy law for the system (1.1) can be obtained by the following formal
calculations. Using the representation for the density ρ(c) = cTρ and (1.2) we obtain from
(1.1c) that

(2.1) ∂tρ(c) +∇ · (ρ(c)u) +∇ · j = 0 .

We multiply (2.1) by |u|2, integrate over Ω and use integration by parts in the second and
third terms to get∫

Ω
∂tρ(c)|u|2 +

∫
Ω

[∇ · (ρ(c)u)]|u|2 +

∫
Ω

[∇ · j] |u|2

=

∫
Ω
∂tρ(c)|u|2 − 2

∫
Ω
ρ(c)(u · ∇)u · u− 2

∫
Ω

(j · ∇)u · u = 0 .(2.2)

Next, we take a product of (1.1a,c,d) with u,w, ∂tc, respectively, use (1.1b) and integrate over
Ω and by parts to yield

1

2
∂t

∫
Ω
ρ(c)|u|2 +

∫
Ω

2µ(c)|D(u)|2 +
1

2

∫
Ω
∂tρ(c)|u|2

−
∫

Ω
ρ(c)(u · ∇)u · u−

∫
Ω

(j · ∇)u · u =

∫
Ω
ρ(c)g · u− λ

∫
Ω

(∇w)T c · u ,(2.3a) ∫
Ω
M∇w · ∇w = −

∫
Ω
∂tc ·w +

∫
Ω

(∇w)T c · u ,(2.3b)

ε

2
∂t

∫
Ω
|∇c|2 +

1

ε
∂t

∫
Ω

Ψ(c) = (w, ∂tc) .(2.3c)

Now we use (2.2), multiply (2.3b) and (2.3c) by λ to cancel out the terms on the right-hand
side, and sum the equations up to get the energy identity

(2.4) λ

[
∂tEch(c) +

∫
Ω
|M

1
2∇w|2

]
+ ∂tEns(c,u) +

∫
Ω

2µ(c)|D(u)|2 =

∫
Ω
ρ(c)g · u ,

where

Ens(c,u) =
1

2

∫
Ω
ρ(c)|u|2

is the kinetic energy of the Navier-Stokes part of the system (1.1).
The identity (2.2) was necessary for the derivation of the energy law (2.4). However, on
the discrete level (2.1) does not hold in general. Hence, a discrete energy estimate is not
immediately obvious. To derive an energy preserving numerical approximation, in Section 4
we consider an equivalent reformulation of (1.1). On noting ∇ · (u ⊗ j) = (j · ∇)u + (∇ · j)u
we obtain by a direct calculation that

∂t(ρ(c)u) +∇ · (ρ(c)u⊗ u) +∇ · (u⊗ j) = ρ(c)∂tu + (ρ(c)u · ∇)u + (j · ∇)u

+ [∂tρ(c) +∇ · (ρ(c)u) +∇ · j]u ,

which implies that

1

2
[∂tρ(c) +∇ · (ρ(c)u) +∇ · j]u

=
1

2

{
∂t(ρ(c)u)−∇ · (u⊗ [ρ(c)u + j])− ρ(c)∂tu + ([ρ(c)u + j] · ∇)u

}
.(2.5)
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The identities (2.5) and (2.1) then allow the momentum equation to be reformulated as follows

∂t(ρ(c)u) +∇ · (ρ(c)u⊗ u) +∇ · (u⊗ j)− 1

2
[∂tρ(c) +∇ · (ρ(c)u) +∇ · j]u︸ ︷︷ ︸

=0

= ∂t(ρ(c)u) +∇ · (ρ(c)u⊗ u) +∇ · (u⊗ j)

− 1

2

{
∂t(ρ(c)u) +∇ · (u⊗ [ρ(c)u + j])− ρ(c)∂tu− ([ρ(c)u + j] · ∇)u

}
=

1

2

{
∂t(ρ(c)u) +∇ · (ρ(c)u⊗ u) +∇ · (u⊗ j) + ρ(c)∂tu + (ρ(c)u · ∇)u + (j · ∇)u

}
.

(2.6)

By (2.6) the momentum equation (1.1a) is equivalent to

1

2

{
∂t(ρ(c)u) + ρ(c)∂tu +∇ · (ρ(c)u⊗ u) + (ρ(c)u · ∇)u +∇ · (u⊗ j) + (j · ∇)u

}
= ρ(c)g − λ(∇w)T c .(2.7)

Hence, the energy law (2.4) for the reformulated system (2.7), (1.1b)-(1.1d) then follows
analogously as before, with the exception that (2.2) is not used in the calculations, cf. Lemma 5
below.

2.2. Conservation properties. Next, we state conservation properties of the model which
are due to the Cahn-Hilliard part of (1.1). From (1.5) it follows, cf. [5, 6], that the solution of
(1.1) satis�es

(2.8) (a) c(t,x) ≥ 0 and (b)
N∑
i=1

ci(t,x) = 1 ∀x ∈ Ω, t ∈ [0, T ] ,

where (2.8a,b) are enforced by the homogeneous free energy, since (1.9) becomes in�nite for
c /∈ GN . The condition (2.8b) is also a consequence of (1.1c) and the incompressibility
condition (1.1b). Namely, using (1.10) and ∇ · u = 0 we obtain from (1.1c) that

∂t(1
T c) + [u · ∇](1T c) = 0 ,

and so (1.5b) yields that 1T c = 1 holds for all times.
The boundary conditions imply that the mass of the individual components is preserved, i.e.,

(2.9)

∫
Ω

c(t, ·) =

∫
Ω

c0 ∀t ∈ [0, T ] .

Note that because of the conservative form of the convective term in (1.1c), the incompress-
ibility condition ∇ · u = 0 is not required for the global mass conservation (2.9) to hold.

2.3. Consistency with binary phase-�eld models. In the case N = 2, assuming that A
is of the form (1.8) and that M is of the form (1.11), we de�ne c = c2 − c1 and w = w2 −w1,
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cf. [8, 4]. We then obtain that (u, p, c, w) satisfy the following set of equations.

∂t(ρ̃(c)u) +∇ · (ρ̃(c)u⊗ u) +∇ · (u⊗ j)−∇ · (2µ̃(c)D(u)) +∇p = ρ̃(c)g − 1
2λc∇w ,

(2.10a)

∇ · u = 0 ,(2.10b)

∂tc+∇ · (cu)−m0∆w = 0 ,(2.10c)

w = −ε∆c+
1

ε

∂Ψ̃(c)

∂c
,(2.10d)

where ρ̃(c) = 1−c
2 ρ1 + 1+c

2 ρ2, and similarly for µ̃(c). Moreover,

(2.11) Ψ̃(c) =

{
1
2(1− c2) if |c| ≤ 1 ,

∞ if |c| > 1 ,

is the standard obstacle potential. In deriving (2.10a) we have noted that for |c| < 1 it follows
from (1.1d) that ∇w1 +∇w2 = 0, and so we obtain that

(∇w)T c = c1∇w1 + c2∇w2 = c1∇w1 − c2∇w1 = −c∇w1 = c
1

2
(∇w2 −∇w1) =

1

2
c∇w .

Similarly, on noting Mii = 1
2 , we get j = −m0

2 (ρ2 − ρ1)∇w, which corresponds to the model

developed in [1] for the non-smooth free energy Ψ̃(c). Note that so far existence of solutions for
the model from [1] has only been shown in the case of a smooth free energy. Our convergence
result, on the other hand, covers the non-smooth case for a model with constant density
(j = 0).

2.4. Surface tension. The term λ(∇w)T c = λ
∑N

i=1 ci∇wi in (1.1a) models capillary forces,
i.e., it introduces pressure jumps across the interfaces between the di�erent �uid components.
In particular, the pressure jump induced at the interface between the components i and j is
proportional to the curvature of the interface and to the surface tension coe�cient σij . The
coe�cients σij are determined by the matrix A = (Aij)i,j=1,...,N , through the minimization
problem

(2.12) σij = 2 inf
q

∫ 1

−1
|q′(s)|

√
1
2 Ψ(q(s)) ds, i, j ∈ {1, . . . , N} ,

where we recall (1.7) and where the in�mum is over all q ∈ C1([−1, 1],RN ) with q(−1) = ei
and q(1) = ej ; see [29, Eq. (1.13)]. In [22] it is shown that λ(∇w)T c, for N = 2, relates to the
continuous surface tension force formulation of the capillary force term, where the parameter
λ is determined by the equilibrium pro�le of the interface. In [23] a slightly more general

formulation
∑N

i=1 λici∇wi with parameters λi, i = 1, . . . , N , is considered. The author then
shows that this choice can only be considered in the case N ≤ 3 for their CHNS model. This is
due to the fact that the determination of the parameters λi in their model, in order to model
the correct surface tension coe�cients σij , leads to an overdetermined system of equations in
the case N ≥ 4, which has no solution in general.
The advantage of our model (1.1) is that the surface tension can be modelled by λ(∇w)T c
with a single scaling parameter λ. To see this, we formally consider an interface between the
�uid components i and j, so that in the interfacial region ci, cj ∈ (0, 1) and cl = 0 for all
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l ∈ {1, . . . , N}\{i, j}. Hence the Cahn-Hilliard part in (1.1) yields for the chemical potentials
that (recall that we assume Aii = 0 and Aij < 0, for i 6= j)

(2.13) wi = −ε∆ci −
|Aij |
ε

cj and wj = −ε∆cj −
|Aij |
ε

ci .

Setting c = ci − cj ∈ (−1, 1), w = wi − wj we obtain that

w = −ε∆c− |Aij |
ε

c .

Hence, the Cahn-Hilliard part of (1.1) reduces to the Cahn-Hilliard equation for two component
mixtures with interfacial parameter ε̃ = ε√

|Aij |
. Furthermore, since ci = 1 − cj and wi =

− |Aij |
ε − wj , we obtain by taking a gradient of the sum of the two equations in (2.13) that

∇wi = −∇wj . As in the previous section we obtain that ci∇wi + cj∇wj = 1
2(c∇w). Then we

can rewrite the capillary term across the interface Γij , using the scaling of [22], as

λ

2
c∇w =

λ

2

√
|Aij |

1

ε̃
c∇w̃ .

The above corresponds to a capillary force with surface tension coe�cient λ
2

√
|Aij |, where the

scaling constant λ has to be determined from the equilibrium pro�le, in order to match the
surface tension coe�cient σij in the sharp interface limit, cf. [22].
The above considerations show that our model with capillary term λ(∇w)T c can reproduce
correct capillary forces and surface tension e�ects for any number of components. The formula-
tion (1.1) does not need to be modi�ed forN ≥ 4, which is not the case for the multicomponent
model considered in [23]. A potential disadvantage of our model (1.1) is that the widths of
the di�use interfaces are proportional to the surface tension coe�cients σij , which leads to
di�erent interface widths in the case of unequal surface tensions.

3. Density independent model

In the case of �uids with constant density ρ(c) ≡ 1, i.e. when ρ = 1 ∈ RN , the model (1.1)
reduces to

(3.1)

∂tu + (u · ∇)u−∇ · (2µ(c)D(u)) +∇p = g − λ(∇w)T c ,
∇ · u = 0 ,

∂tc +∇ · (c⊗ u) = ∇ · (M∇w) ,

w = −ε∆c +
1

ε

∂Ψ̃(c)

∂c
,

where we have noted from (1.2) and (1.10) that j = 0, together with the boundary and initial
conditions (1.3) and (1.4).
We let L2(Ω) = [L2(Ω)]N , H1(Ω) = [H1(Ω)]N , and similarly L2(Ω) = [L2(Ω)]d, Hj(Ω) =
[Hj(Ω)]d, j = 1, 2. Moreover, we let (·, ·) denote the L2-inner product over Ω with the natural
extensions to vector and matrix valued functions, e.g., for N ×M matrices A, B with entries
in L2(Ω) we let (A,B) =

∑N
i=1

∑M
j=1(Aij , Bij). The L

2-norm will be denoted as ‖ · ‖, the H1-

norm as ‖ · ‖1, the L∞-norm as ‖ · ‖∞. The same notations will be used for the corresponding

norms of vector valued functions. In addition, the duality product between
(
H1(Ω)

)′
and

H1(Ω) will be denoted by 〈·, ·〉, and similarly for vector valued functions.



NUMERICS FOR A PHASE-FIELD MODEL FOR MULTICOMPONENT INCOMPRESSIBLE FLOW 9

We introduce the following function spaces

V = {v ∈ C∞0 (Ω); ∇ · v = 0} ,
V = {v ∈ H1

0(Ω); ∇ · v = 0} ,
H = {v ∈ L2(Ω); ∇ · v = 0 weakly in Ω, v · n|∂Ω = 0} ,

H1
+ = {φ ∈ [H1(Ω)]N ; φ ≥ 0} ,
K = {φ ∈ H1

+; 1Tφ = 1} .

Note that V and H are obtained as the closures of V in the H1 and L2 norms, respectively.

De�nition 1 (Weak solution). Let T > 0 and suppose that u0 ∈ H, c0 ∈ K and g ∈
L2(0, T ; L2(Ω)). A weak solution of (3.1) with (1.3) and (1.4) is given by functions

u ∈ L2(0, T ; V) ∩ L∞(0, T ; H) ,

c ∈ L∞(0, T ; K) ∩H1(0, T, (H1(Ω))′) ,

w ∈ L2(0, T ; H1(Ω)) ,

such that

−
∫ T

0
(u, ∂tv) +

∫ T

0
(u · ∇u,v) +

∫ T

0
(2µ(c)D(u), D(v))

= (u0,v(0)) +

∫ T

0
(g,v)− λ

∫ T

0
((∇w)T c,v) ,(3.2a) ∫ T

0
〈∂tc,ψ〉+

∫ T

0
(M∇w,∇ψ) =

∫ T

0
(c⊗ u,∇ψ) ,(3.2b) ∫ T

0
(w,φ− c) ≤ ε

∫ T

0
(∇c,∇(φ− c))− ε−1

∫ T

0
(Ac,φ− c) ,(3.2c)

for all (v,ψ,φ) ∈ H1(0, T ; V)× L2(0, T ; H1(Ω))× L2(0, T ; K) with v(T ) = 0.

3.1. Numerical approximation. Let Ω ⊂ Rd be an open bounded polyhedral domain and
let {Th}h>0 be a quasi-uniform partitioning of Ω into disjoint open simplices σ with hσ =
diam(σ) and h = maxσ∈Th hσ, so that Ω = ∪σ∈Thσ. Let Pm(σ) denote the space of polynomials
of degree ≤ m on σ. Associated with Th are the �nite element spaces

Sh = {φ ∈ C(Ω); φ|σ ∈ P1(σ) ∀σ ∈ Th} ,
Sh = [Sh]N ,

S+
h = {φ ∈ Sh; φi ≥ 0 for i = 1, . . . , N} ,

Kh = {φ ∈ Sh; 1Tφ = 1} ,

K0
h = {φ ∈ Kh;

∫
Ω
φ =

∫
Ω

c0} ,

Wh = {v ∈ [C(Ω)]d ∩H1
0(Ω); v|σ ∈ P2(σ) ∀σ ∈ Th} ,

Vh = {v ∈Wh; (∇ · v, q) = 0, ∀q ∈ Sh} .

Note that the pair Wh × Sh is the classical P2-P1 lowest order Taylor-Hood element for the
discretization of Navier-Stokes equations, which satis�es the inf-sup condition.



10 L'UBOMÍR BA�AS AND ROBERT NÜRNBERG

We de�ne the orthogonal L2 and H1-projections on to Vh, respectively, as

(v −Ph
0v,w) = 0 ∀w ∈ Vh and (∇[v −Ph

1v],∇w) = 0 ∀w ∈ Vh .

We note that following error estimates, see for instance [2, 18]

‖v −Ph
1v‖+ h‖∇[v −Ph

1v]‖ ≤ Chj‖v‖Hj ,(3.3a)

‖v −Ph
0v‖ ≤ Chj‖v‖Hj ,(3.3b)

for v ∈ V ∩Hj(Ω), j = 1, 2. Furthermore, Ph
0 is H1 stable on V, see [18].

We also introduce the nodal interpolation operator Ih : C(Ω) → Sh and note the standard
interpolation estimate

(3.4) ‖φ− Ihφ‖+ h‖∇[φ− Ihφ]‖ ≤ Ch2‖φ‖H2(Ω) .

We naturally extend the de�nition of Ih to vector valued functions. We also de�ne the discrete

inner product (φ, ψ)h =

∫
Ω
Ih(φψ). We recall the well-known estimate

(3.5) |(φ, ψ)− (φ, ψ)h| ≤ Ch‖φ‖‖ψ‖1 ∀φ, ψ ∈ Sh .

With the discrete inner product we associate the norm ‖φ‖h = [(φ, φ)h]
1
2 and recall its equiv-

alence with the L2 norm for all φh ∈ Sh
(3.6) ‖φh‖2 ≤ ‖φh‖2h ≤ (d+ 2)‖φh‖2 .

The discrete L2-projection Qh : L2(Ω)→ Sh is de�ned as

(Qhv,w)h = (v,w) ∀w ∈ Sh ,

and satis�es the following estimate, cf. [7, Eq. (2.20)]

(3.7) ‖v −Qhv‖+ h‖∇[v −Qhv]‖ ≤ Ch‖∇v‖ ∀v ∈ H1(Ω) .

Let
Fh = {ψ ∈ L2(Ω);

∫
Ωψ = 0, (1Tψ, w) = 0, ∀w ∈ Sh} ,

F̂h = {ψ ∈ C(Ω);
∫

Ω I
hψ = 0, 1Tψ(x`) = 0 for ` = 1, . . . , L} ,

Vh = F̂h ∩ Sh ,

where {x`}L`=1 is the set of all the nodes of Th. Then the discrete Green's operators GhM :

Fh → Vh, Ĝ
h

M : F̂h → Vh are de�ned as

(3.8)
(M∇[GhMv],∇w) = (v,w) ∀w ∈ Sh ,

(M∇[Ĝ
h

Mv],∇w) = (v,w)h ∀w ∈ Sh .

We note that there exist constants λMmax, λ
M
min > 0, such that (cf. [7, Eqns. (2.7), (2.9)])

(3.9) λMmin‖ξ‖`2 ≤ ξMξT ≤ λMmax‖ξ‖`2 ,

holds for all ξ ∈ RN with 1T ξ = 0 with the mobility de�ned by (1.11) as well as (1.12). Hence,

the well-posedness of GhM and Ĝ
h

M follows in both cases as in [3, 7].
For our numerical approximation we consider the splitting

A ≡ A+ +A−, where A+(−) is symmetric positive (negative) semi-de�nite.
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We construct an equidistant partition {tk}Kk=0, tk = kτ of the time interval [0, T ] into subin-

tervals [tk−1, tk], k = 1, . . . ,K with a step size τ = T/K and denote dtU
k = Uk−Uk−1

τ . We set

C0 = Qhc0 ∈ K0
h and U0 = Ph

0u0 ∈ Vh.
For k = 1, . . . ,K we propose the following fully discrete numerical approximation of (3.1):
Find (Uk, P k,Wk,Ck) ∈Wh × Sh × Sh × S+

h such that

(dtU
k,v) +

1

2

{
([Uk−1 · ∇]Uk,v)− ([Uk−1 · ∇]v,Uk)

}
+
(

2µ(Ck−1)D(Uk), D(v)
)

+ (P k,∇ · v) = (g,v)− λ((∇Wk)TCk−1,v) ,(3.10a)

(∇ ·Uk, q) = 0 ,(3.10b)

(dtC
k,ψ)h +

(
M∇Wk,∇ψ

)
= (Ck−1 ⊗Uk,∇ψ) ,(3.10c)

ε(∇Ck,∇(φ−Ck))− (ε−1A−Ck + Wk,φ−Ck)h ≥ ε−1(A+Ck−1,φ−Ck)h ,(3.10d)

for all (v, q,ψ,φ) ∈Wh × Sh × Sh × S+
h .

In the next lemma we prove that the numerical solution exactly preserves the physically
motivated constraints (2.8), (2.9).

Lemma 1. Let C0 ∈ K0
h. Then the numerical solutions Ck, k = 1, . . . ,K, obtained by the

scheme (3.10a-d) satisfy Ck ∈ K0
h, i.e. in particular

(3.11) (a)

∫
Ω

Ck =

∫
Ω

c0 and (b) 1TCk = 1 .

Proof. By de�nition Ck ∈ S+
h , and so in order to show Ck ∈ K0

h, we only need to prove (3.11).

To show (3.11a) we set ψ = ei for i = 1, . . . , N in (3.10c) and get∫
Ω
Cki = (Ck, ei)h = (Ck−1, ei)h =

∫
Ω
Ck−1
i = . . . =

∫
Ω
C0
i =

∫
Ω
c0
i .

In order to prove (3.11b), we set ψ = ψ1 in (3.10c), for ψ ∈ Sh. Then we obtain, on recalling
(1.10) and (3.10b), that

(dtC
k, ψ1)h = −

(
M∇Wk,1⊗∇ψ

)
+ (Ck−1, [1⊗ (∇ψ)]Uk)

= ((Ck−1)T1, (∇ψ)TUk) = (Uk,∇ψ) = −(∇ ·Uk, ψ) = 0 ∀ψ ∈ Sh .(3.12)

It immediately follows from (3.12) that

(1TCk, ψ)h = (1TCk−1, ψ)h ∀ψ ∈ Sh ,
and hence (3.11b) follows by induction. �

Remark 1. The above proof implies that in order to preserve (3.11b), the �nite element
space used for the phase-�eld components Cki should be a subset of the �nite element space

used for the pressure P k. I.e., a compatibility condition needs to hold for the pressure-density
�nite element spaces: if P k ∈ Uh for some �nite element space Uh, and if Ck ∈ Sh =
[Sh]N , then we require Sh ⊂ Uh in order to guarantee (3.11b). In addition, the pressure-
density compatibility condition is required for the well-posedness of a �xed point iteration for
(3.10), and to be able to prove the existence of solutions to (3.10), see Remark 3 and the
proof of Lemma 3 below. We also refer to [27, 2], where the pressure-density condition is
required to guarantee a maximum principle for the discrete densities. Hence, the combination
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of the pressure-density compatibility condition for P k, Ck and the usual inf-sup condition
for Uk, P k de�nes a velocity-pressure-density compatibility condition, which guarantees well-
posedness of �nite element discretizations of multicomponent �ows. Note that the pressure-
density compatibility condition is not required in the case of binary �uids N = 2, where (3.11b)
is enforced implicitly when using the equivalent reformulation in terms of c = c1 − c2, recall
�2.3.

The next lemma shows that solutions for the scheme (3.10a-d) satisfy a discrete counterpart
of the energy inequality (2.3).

Lemma 2. Let {Uk, P k,Ck,Wk}Kk=1 be a solution of (3.10a-d). Then the energy estimate

ελ

2
‖∇Ck‖2 +

λ

ε
(Ψ(Ck), 1)h +

1

2
‖Uk‖2 + τ

k∑
j=1

[
2‖µ

1
2 (Cj−1)D(Uj)‖2 + λ‖M

1
2∇Wj‖2

]

+

k∑
j=1

[
λ

2
‖∇(Cj −Cj−1)‖2 +

1

2
‖Uj −Uj−1‖2

]

≤ ελ

2
‖∇C0‖2 +

λ

ε
(Ψ(C0), 1)h +

1

2
‖U0‖2 + τ

k∑
j=1

(g,Uj)

holds for all k = 1, . . . ,K.

Proof. To prove the energy estimate we set v = Uk, q = P k, ψ = Wk, φ = Ck−1 in
(3.10a)-(3.10d) to obtain

(dtU
k,Uk) + 2‖µ

1
2 (Ck−1)D(Uk)‖2 + (P k,∇ ·Uk) = (g,Uk)− λ((∇Wk)TCk−1,Uk) ,

(∇ ·Uk, P k) = 0 ,(
M∇Wk,∇Wk

)
= −(dtC

k,Wk)h + (Ck−1 ⊗Uk,∇Wk) ,

ε(∇Ck,∇dtCk)− ε−1
[
(A−Ck, dtC

k)h + (A+Ck−1, dtC
k)h

]
≤ (Wk, dtC

k)h .

Next, we multiply the last two equations above by λ, sum all the equations and get

(dtU
k,Uk) + 2‖µ

1
2 (Ck−1)D(Uk)‖2 + λ‖M

1
2∇Wk‖2

+ λε(∇Ck,∇dtCk)− λε−1(A−Ck +A+Ck−1, dtC
k)h ≤ (g,Uk) .(3.13)

From (3.13) and Lemma 1 it follows that

1

2
‖Uk‖2 +

1

2
‖Uk −Uk−1‖2 − 1

2
‖Uk−1‖2 + 2τ‖µ

1
2 (Ck−1)D(Uk)‖2

+ λτ‖M
1
2∇Wk‖2 +

ελ

2
‖∇Ck‖2 +

ελ

2
‖∇(Ck −Ck−1‖2 − ελ

2
‖∇Ck−1‖2

+
λ

ε
(Ψ(Ck), 1)h −

λ

ε
(Ψ(Ck−1), 1)h +

1

2
((A+ −A−)(Ck −Ck−1),Ck −Ck−1)h

≤ (g,Uk) ,(3.14)

where we have employed the identity 2(a− b)TBa = aTBa + (a− b)TB(a− b)− bTBb for
symmetric N ×N matrices B ∈ RN×N . Summing (3.14) for k replaced by j = 1, . . . , k yields
the desired energy estimate. �
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Remark 2. We de�ne the following discrete counterpart of (1.6)

Ehch(Ck) =
ε

2
‖∇Ck‖2 +

1

ε
(Ψ(Ck), 1)h ,

and the discrete Navier-Stokes energy

Ehns(Uk) =
1

2
‖Uk‖2 .

Using the above notation, the energy inequality from Lemma 2 can be rewritten as

λEhch(Ck) + Ehns(Uk) + λτ
k∑
j=1

‖M
1
2∇Wj‖2 + 2τ

k∑
j=1

‖µ
1
2 (Cj−1)D(Uj)‖2

+
k∑
j=1

[
λ

2
‖∇(Cj −Cj−1)‖2 +

1

2
‖Uj −Uj−1‖2

]
≤ τ

k∑
j=1

(g,Uj) + λEhch(C0) + Ehns(U0) .

The nonlinear system (3.10a-d) is solved using the following �xed-point algorithm.
Algorithm 1

1. Given Uk−1 ∈ Vh, Ck−1 ∈ K0
h set Uk,0 = Uk−1, Ck,0 = Ck−1 and choose δfix > 0.

2. For l ≥ 1 compute (Uk,l, P k,l,Wk,l,Ck,l) ∈Wh × Sh × Sh × S+
h such that(

Uk,l −Uk−1

τ
,v

)
+

1

2

{
([Uk−1 · ∇]Uk,l,v)− ([Uk−1 · ∇]v,Uk,l)

}
+
(

2µ(Ck−1)D(Uk,l), D(v)
)

+ (P k,l,∇ · v) = (g,v)− λ((∇Wk,l)TCk−1,v) ,(3.15a)

(∇ ·Uk,l, q) = 0 ,(3.15b) (
Ck,l −Ck−1

τ
,ψ

)
h

+
(
M∇Wk,l,∇ψ

)
= (Ck−1 ⊗Uk,l−1,∇ψ) ,(3.15c)

ε(∇Ck,l,∇(φ−Ck,l))− (ε−1A−Ck,l + Wk,l,φ−Ck,l)h ≥ ε−1(A+Ck−1,φ−Ck,l)h ,

(3.15d)

for all (v, q,ψ,φ) ∈Wh × Sh × Sh × S+
h .

3. If ‖Ck,l − Ck,l−1‖∞ + ‖Uk,l − Uk,l−1‖∞ ≤ δfix set Uk = Uk,l, Ck,l = Ck,l and
terminate; else set l→ l + 1 and proceed to step 2.

Let us �x k ≥ 1. Then, for each l ≥ 1 the system (3.15a-d) decouples into the Navier-
Stokes part (3.15a,b) and Cahn-Hilliard part (3.15c,d). In each iteration of the �xed-point
Algorithm 1 we �rst compute the solution (Ck,l, Wk,l) of (3.15c,d), which is then used in
�nding the solution (Uk,l, P k,l) of (3.15a,b).

Remark 3. The pressure-density compatibility condition from Remark 1 implies that
∇ · [Ck−1 ⊗Uk,l−1] ∈ Fh. To see this, note that it follows from Ck−1 ∈ Kh and Uk,l−1 ∈ Vh

that

(1T∇ · [Ck−1 ⊗Uk,l−1], w) = (∇ ·Uk,l−1, w) = 0 ∀w ∈ Sh .
Hence, by (3.8a) it holds that(
M∇GhM (∇ · [Ck−1 ⊗Uk,l−1]),∇ψ

)
= (∇ · [Ck−1 ⊗Uk,l−1],ψ) = −(Ck−1 ⊗Uk,l−1,∇ψ)
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for all ψ ∈ Sh. Consequently, we may rewrite (3.15c) as(
Ck,l −Ck−1

τ
,ψ

)
h

+
(
M∇Wk,l,∇ψ

)
= −

(
M∇GhM (∇ · [Ck−1 ⊗Uk,l−1]),∇ψ

)
.

It follows, cf. [8, 4, 7], that

(3.16) Wk,l = −Ĝ
h

M

(
Ck,l −Ck−1

τ

)
+ Ξk,l1 + Λk,l − GhM (∇ · [Ck−1 ⊗Uk,l−1]) ,

with Ξk,l ∈ Sh and Λk,l = (Λk,l1 , . . . ,Λk,lN )T ∈ RN , with 1TΛk,l = 0, are the Lagrange mul-
tipliers associated with the constraints (3.11b) and (3.11a), respectively. Hence, (3.15c,d) is
equivalent to

ε(∇Ck,l,∇(φ−Ck,l))

− (ε−1A−Ck,l − Ĝ
h

M

(
Ck,l −Ck−1

τ

)
− GhM (∇ · [Ck−1 ⊗Uk,l−1]),φ−Ck,l)h

≥ (Ξk,l1 + Λk,l + ε−1A+Ck−1,φ−Ck,l)h ∀φ ∈ S+
h .(3.17)

We can now show that the �xed point iteration in Algorithm 1 is well-de�ned, and converges
to a solution of (3.10).

Lemma 3. Given (Uk−1,Ck−1) ∈ Vh × K0
h, for each l ≥ 1 there exists a solution

(Uk,l, P k,l,Wk,l,Ck,l) ∈ Vh × Sh × Sh ×K0
h to (3.15a-d). Here (Uk,l,Ck,l) is unique, and

P k,l is unique up to an additive constant. Moreover, the �xed-point iteration in Algorithm 1 is
a contraction. Consequently, there exists a solution (Uk, P k,Wk,Ck) ∈ Vh × Sh × Sh ×K0

h,
to (3.10a-d).

Proof. We divide the proof into two parts. To simplify the presentation we assume that λ = 1,
µmin = 1, m0 = λMmin = 1 and g = 0. However, it is straightforward to extend the proofs for
the general case.
Note, that in general Wk,l is not unique. We denote by

(3.18) W̃k,l = −Ĝ
h

M

(
Ck,l −Ck−1

τ

)
− GhM (∇ · [Ck−1 ⊗Uk,l−1]) ,

the uniquely de�ned part of Wk,l, cf. (3.16), (3.8). Next, we observe that((
∇Wk,l

)T
Ck−1,v

)
=
([
∇(W̃k,l + Ξk,l1 + Λk,l)

]T
Ck−1,v

)
=
([
∇W̃k,l + 1⊗∇Ξk,l

]T
Ck−1,v

)
=
((
∇W̃k,l

)T
Ck−1,v

)
∀v ∈ Vh .(3.19)

Here we used the identity([
1⊗∇Ξk,l

]T
Ck−1,v

)
=
(

(1TCk−1)∇Ξk,l,v
)

= (∇Ξk,l,v) = −(Ξk,l,∇ · v) = 0 ,

which holds due to Ck−1 ∈ Kh, Ξk,l ∈ Sh, v ∈ Vh and the velocity-pressure-density com-
patibility condition. Hence, (3.19) implies that for v ∈ Vh equation (3.15a) is equivalent
to (

Uk,l −Uk−1

τ
,v

)
+

1

2

{
([Uk−1 · ∇]Uk,l,v)− ([Uk−1 · ∇]v,Uk,l)

}
(3.20)

+
(

2µ(Ck−1)D(Uk,l), D(v)
)

= (g,v)− λ
(

(∇W̃k,l)TCk−1,v
)
.
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The equivalence between the two formulations turns out to be convenient for the arguments
below.
a) Existence of solutions for (k, l) > 0. First, we derive an energy bound for l > 0. We �x
k > 0 and assume that (Ck−1,Uk−1,Wk−1) ∈ K0

h ×Vh × Sh satisfy the energy bound

ε

2
‖∇Ck−1‖2 +

1

ε
(Ψ(Ck−1), 1)h +

1

2
‖Uk−1‖2 + τ2‖D(Uk−1)‖2 + τ‖∇W̃k−1‖2 ≤ C̃

for some �xed C̃ > 0. Next, we choose (v, q,ψ,φ) = (Uk,l, P k,l,Wk,l,Ck−1) in (3.15a)-
(3.15d), employ (3.19) and obtain

Ẽk,l =
ε

2
‖∇Ck,l‖2 +

1

ε
(Ψ(Ck,l), 1)h +

1

2
‖Uk,l‖2 + τ2‖D(Uk,l)‖2 + τ‖∇W̃k,l‖2

≤ ε

2
‖∇Ck−1‖2 +

1

ε
(Ψ(Ck−1), 1)h +

1

2
‖Uk−1‖2

+ τ(Ck−1 ⊗Uk,l−1,∇W̃k,l)− τ((∇W̃k,l)TCk−1,Uk,l) .

Since Ck−1 ∈ Kh we estimate the last term on the right-hand side using Cauchy-Schwarz and
Young's inequalities as follows

τ((∇W̃k,l)TCk−1,Uk,l) ≤ τ‖Ck−1‖∞‖∇W̃k,l‖‖Uk,l‖ ≤ τ
4‖∇W̃k,l‖2 + τ‖Uk,l‖2 ,

and similarly we bound the last but one term as

τ(Ck−1 ⊗Uk,l−1,∇W̃k,l) ≤ τ‖Ck−1‖∞‖∇W̃k,l‖‖Uk,l−1‖ ≤ τ
4‖∇W̃k,l‖2 + τ‖Uk,l−1‖2 .

Using the previous two bounds we obtain for τ ≤ 1
4 that

Ẽk,l ≤ 2C̃ + τ4Ẽk,l−1 .

Hence, we conclude recursively for τ ≤ 1
8 that

(3.21)
ε

2
‖∇Ck,l‖2 +

1

ε
(Ψ(Ck,l), 1)h +

1

2
‖Uk,l‖2 + τ2‖D(Uk,l)‖2 + τ‖∇W̃k,l‖2 ≤ 4C̃

for any l ≥ 0.
We note that (3.17) for φ ∈ K0

h is the Euler-Lagrange equation of the strictly convex mini-
mization problem, cf.:

minzh∈K0
h

{ε
2
‖∇zh‖2 −

1

2ε
(A−zh, zh)h +

1

2τ
‖M

1
2∇[Ĝ

h

M (zh −Ck−1)]‖2

−1

ε
(A+Ck−1, zh)h + (GhM (∇ · [Ck−1 ⊗Uk,l−1]), zh)

}
,

and the existence of unique Ck,l ∈ K0
h, as well as the existence of suitable Lagrange multipliers

Ξk,l and Λk,l, follows from standard optimization theory, see e.g. [7, Proof of Theorem 2.1].
The existence of Wk,l ∈ Sh then follows from (3.16), and Remark 3 implies that (Ck,l, Wk,l)
is a solution to (3.15c), (3.15d).

On noting the uniqueness of Ck,l and W̃k,l ≡ W̃k,l(Ck,l,Uk,l−1) and (3.21) the existence of a
unique Uk,l ∈ Vh in (3.20) (and hence also (3.15a)) follows by the Lax-Milgram theorem. Since
the Taylor-Hood element Wh × Sh satis�es the inf-sup condition, the existence of P k,l ∈ Sh,
which is unique up to a constant, such that (Uk,l, P k,l) solves (3.15a), (3.15b) follows from
standard theory on the numerical approximation of Navier-Stokes equations, see for instance
[30].
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The above considerations imply that we may write (Uk,l,Ck,l) = Fk(Uk,l−1,Ck,l−1), where
Fk : Vh ×K0

h → Vh ×K0
h is a well-de�ned mapping represented implicitly by Algorithm 1.

Below we show that Fk is a contraction mapping and hence the Banach �xed point theorem
yields the existence of the solution (Uk,Ck) as the unique �xed-point of the mapping Fk.

b) Contraction property. We denote by Ek,l

φ
= φk,l − φk,l−1, and similarly for Ek,lφ and Ek,lφ .

Then subtracting (3.15a)-(3.15c), with l replaced by l − 1, from (3.15a)-(3.15c) yields

(Ek,lU ,v) +
1

2

{
([Uk−1 · ∇]Ek,lU ,v)− ([Uk−1 · ∇]v, Ek,lU )

}
+
(

2µ(Ck−1)D(Ek,lU ), D(v)
)

+ (Ek,lP ,∇ · v) = −((∇Ek,l

W̃
)TCk−1,v) ,(3.22a)

(∇ · Ek,lU , q) = 0 ,(3.22b)

(Ek,l
C ,ψ)h + τ

(
M∇Ek,l

W̃
,∇ψ

)
= τ(Ck−1 ⊗ Ek,l−1

U ,∇ψ) .(3.22c)

Furthermore, setting φ = Ck,l−1, φ = Ck,l in (3.15d) for l, l− 1, respectively, and addition of
resulting inequalities gives

ε‖∇Ek,l
C ‖

2−1

ε
(A−Ek,l

C ,Ek,l
C )h − (Ek,l

W̃
,Ek,l

C )h ≤ 0 .

On recalling that A− is negative semi-de�nite and that Ck,l,Ck,l−1 ∈ K0
h, we obtain from a

Poincaré inequality that

ε‖Ek,l
C ‖

2 − (Ek,l

W̃
,Ek,l

C )h ≤ 0 .(3.23)

Next, we set v = Ek,lU , q = Ek,lP in (3.22a), (3.22b), respectively, integrate by parts in (3.22b)

and add the resulting identities to obtain

1

τ
‖Ek,lU ‖

2 + 2‖D(Ek,lU )‖2 = −((∇Ek,l

W̃
)TCk−1, Ek,lU ) .(3.24)

We estimate the right-hand side of (3.24) using Cauchy-Schwarz and Young's inequalities as

(3.25)
τ((∇Ek,l

W̃
)TCk−1, Ek,lU ) ≤ τ‖∇Ek,l

W̃
‖‖Ck−1‖∞‖Ek,lU ‖

≤ Cτ2‖∇Ek,l

W̃
‖2 +

1

4
‖Ek,lU ‖ .

After substituting (3.25) into (3.24) we obtain for su�ciently small τ

‖Ek,lU ‖
2 + τ2‖D(Ek,lU )‖2 ≤ Cτ2‖∇Ek,l

W̃
‖2 +

1

4
‖Ek,lU ‖

2 ≤ τ

4
‖∇Ek,l

W̃
‖2 +

1

4
‖Ek,lU ‖

2 .(3.26)

Next, we subtract (3.15c) for l, l − 1 and set ψ = Ek,l

W̃

(Ek,l
C ,Ek,l

W̃
)h + τ

(
M∇Ek,l

W̃
,∇Ek,l

W̃

)
= τ(Ck−1 ⊗ Ek,l−1

U ,∇Ek,l

W̃
) .(3.27)

We add together (3.27) and (3.23) and obtain

(3.28) ε‖Ek,l
C ‖

2 + τ‖∇Ek,l

W̃
‖2 ≤ τ(Ck−1 ⊗ Ek,l−1

U ,∇Ek,l

W̃
) .

The right-hand side in the above expression is estimated using the fact that Ck−1 ∈ Kh

(3.29)
τ(Ck−1, (∇Ek,l

W̃
)Ek,l−1

U ) ≤ τ‖Ek,l−1
U ‖‖Ck−1‖∞‖∇Ek,l

W̃
‖

≤ τ

4
‖∇Ek,l

W̃
‖2 + Cτ‖Ek,l−1

U ‖2 .
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Hence we obtain that

(3.30) ε‖Ek,l
C ‖

2 + τ‖∇Ek,l

W̃
‖2 ≤ τ

4
‖∇Ek,l

W̃
‖2 + Cτ‖Ek,l−1

U ‖2 .

We add together (3.26) and (3.30) to obtain the inequality

‖Ek,lU ‖
2 + τ2‖D(Ek,lU )‖2 + ε‖Ek,l

C ‖
2 + τ‖∇Ek,l

W̃
‖2 ≤ τ

2
‖∇Ek,l

W̃
‖2 +

1

4
‖Ek,lU ‖

2 + Cτ‖Ek,l−1
U ‖2 .

The �rst two terms on the right hand side with index l can be absorbed into the left hand
side. Hence, we get

(3.31) ε‖Ek,l
C ‖

2 + ‖Ek,lU ‖
2 + τ‖∇Ek,l

W̃
‖2 ≤ C∗τ‖Ek,l−1

U ‖2 ,

and the �xed-point algorithm de�nes a contraction mapping for su�ciently small τ . The
Banach �xed point theorem then implies existence of unique limits and convergence Uk,l → Uk

and Ck,l → Ck for l → ∞. In addition, (3.31) implies the convergence W̃k,l → W̃k, cf.

(3.18). For the unique (Uk, Ck) the existence of P k and Wk = W̃k + Ξk1 + Λk, such that
(Uk, P k,Wk,Ck) solves (3.10), is implied by the inf-sup condition and Remark 3, respectively.

�

Remark 4. Given a W ∈ Sh we denote by
∑
− W = 1

N

∑N
i=1Wi ∈ Sh,

∫
−W = |Ω|−1

∫
Ω W ∈

RN , W = W − 1
∑
− W, W̃ = W −

∫
−W and note that 1TW̃ = 1TW = 0,

∫
−W̃ = 0. Due

to the degeneracy of the mobility matrix M , it is not immediately obvious how to control the

gradient of Wk, since Lemma 2 and (3.9) only imply the bound ‖∇W
k‖ ≤ C. However, cf.

[4], it is possible to express

Wk = W̃k + Λk + 1Ξk ,

where Λk ∈ RN s.t. 1TΛk = 0 and Ξk ∈ Sh are Lagrange multipliers, recall also Remark 3 and

the proof of Lemma 3. Since Λk ∈ RN , we directly obtain a gradient bound for W̃k = W
k−Λk,

i.e.

‖∇W̃k‖ ≤ C .

In addition, the estimate |Ω|−1(W
k
i , 1) = Λki ≤ C, i = 1, . . . , N , can be obtained similarly as

in [4, Theorem 3.1]. Hence, a H1(Ω) bound for W
k
follows by the Poincaré inequality, i.e.

‖Wk‖1 ≤ C .

Furthermore, we also note that for φ ∈ Kh it holds that (1Ξk,φ − Ck)h = 0. Hence for
φ ∈ Kh it follows from (3.10d) that

(3.32) ε(∇Ck,∇(φ−Ck))− (ε−1A−Ck + W
k
,φ−Ck)h ≥ ε−1(A+Ck−1,φ−Ck)h .

Lemma 4. The discrete time derivatives satisfy the following estimates

τ

K∑
j=1

‖dtUj‖
4
3

V′
≤ C and τ

K∑
j=1

‖dtCj‖2(H1(Ω))′ ≤ C .
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Proof. Since (dtU
k,Ph

0v) = (dtU
k,v) we obtain (cf. (3.20))

(dtU
k,v) = −([Uk−1 · ∇]Uk,Ph

0v) + ([Uk−1 · ∇]Ph
0v,Uk)−

(
2µ(Ck−1)D(Uk), D(Ph

0v)
)

− λ((∇W̃k)TCk−1,Ph
0v)

≤ ‖Uk−1‖L3‖∇Uk‖‖Ph
0v‖L6 + ‖Uk−1‖L4‖Uk‖L4‖∇Ph

0v‖

+ Cµmax‖∇Uk‖‖∇Ph
0v‖+ λ‖Ck−1‖∞‖∇W̃k‖‖Ph

0v‖

≤ C‖∇Ph
0v‖

{
‖Uk−1‖

1
2 ‖∇Uk−1‖

1
2 ‖∇Uk‖

+ ‖Uk−1‖
1
4 ‖∇Uk−1‖

3
4 ‖Uk‖

1
4 ‖∇Uk‖

3
4 + ‖∇Uk‖+ ‖∇W̃k‖

}
≤ C‖∇v‖

{
‖Uk−1‖

1
2 (‖∇Uk−1‖

3
2 + ‖∇Uk‖

3
2 )

+ ‖Uk−1‖
1
4 ‖Uk‖

1
4 (‖∇Uk−1‖

3
2 + ‖∇Uk‖

3
2 ) + ‖∇Uk‖+ ‖∇W̃k‖

}
.

To estimate the nonlinear terms we employed the embedding H1 ⊂ L6 and the interpolation
inequality

‖v‖Lq ≤ ‖v‖1+d/q−d/p
Lp ‖∇v‖d/p−d/qLp ,

where q ∈ [p,∞) if p = d and q ∈ [p, dp
d−p ] if p < d. The �rst estimate then follows from

Lemma 2, Remark 4 and the stability of the projection Ph
0 . To obtain the second estimate we

write

(dtC
k,ψ) = (dtC

k,Qhψ)h = −
(
M∇W̃k,∇Qhψ

)
+ (Ck−1 ⊗Uk,∇Qhψ)

≤ C‖∇W̃k‖‖∇Qhψ‖+ ‖Uk‖‖Ck−1‖∞‖∇Qhψ‖ .

Hence, the second estimate follows from Lemma 2, Remark 4 and the stability of Qh implied
by (3.7). �

3.1.1. Convergence. Given the discrete solutions Ck, k = 0, . . . ,K, we de�ne the piecewise
constant interpolants as

C+(t) = Ck+1 for t ∈ (tk, tk+1] ,
C−(t) = Ck for t ∈ (tk, tk+1] ,

and the piecewise linear interpolant

C(t) =
t− tk
τ

Ck +
tk+1 − t

τ
Ck+1 for t ∈ [tk, tk+1] .

Using analogous notations for the variables Uk, P k and Wk, the fully discrete scheme (3.10a-d)
can be restated as

(∂tU,v) +
1

2

{
([U− · ∇]U+,v) + ([U− · ∇]v,U+)

}
+2
(
µ(C−)D(U+), D(v)

)
+ (P+,∇ · v) = (g,v)− λ((∇W+)TC−,v) ,(3.33)

(∇ ·U+, q) = 0 ,(3.34)

(∂tC,ψ)h − (C− ⊗U+,∇ψ) +
(
M∇W+,∇ψ

)
= 0 ,(3.35)

ε(∇C+,∇(φ−C+))− (ε−1A−C+ + W+,φ−C+)h ≥ ε−1(A+C−,φ−C+)h .(3.36)
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Remark 5. By the estimates from Lemmas 1, 2 and 4 we obtain for all h, τ > 0 the
boundedness of C± in L∞(0, T ; H1(Ω)), ∂tC in L2(0, T ; (H(Ω))′), U± in L∞(0, T ; L2(Ω))∩
L2(0, T ; H1(Ω)), ∂tU in L

4
3 (0, T ; V′). Furthermore, the boundedness of W

+
= W+−1

∑
− W+

in L2(0, T ; H1(Ω)) follows from Remark 4.
In addition, Lemma 2 implies that

‖C± −C‖L2(0,T ;L2(Ω)) → 0 ,

and

‖U± −U‖L2(0,T ;L2(Ω)) → 0 ,

for τ → 0.

The next theorem shows the convergence of the numerical solutions to a weak solution.

Theorem 1. Let (U0,C0) → (u0, c0) in L2(Ω) × L2(Ω) for h → 0. Then there exists a
subsequence {U,C,W}h,τ≥0 of solutions of (3.33) which converges towards a limit (u, c,w) ∈
L2(0, T ; V) × L∞(0, T ; K) × L2(0, T ; H1(Ω)) for h, τ → 0. In addition, (u, c,w) is a weak
solution of (1.1) in the sense of De�nition 1.

Proof. By Remark 5 from the sequence {U,C,W}h,τ≥0 we can choose a subsequence such
that

(3.37)

C, C± → c weakly∗ in L∞(0, T ; H1(Ω)) ,
∂tC→ ∂tc weakly in L2(0, T ; (H1(Ω))′) ,

W
+ → w weakly in L2(0, T ; H1(Ω)) ,

U, U± → u weakly∗ in L∞(0, T ; L2(Ω)) ,
U, U± → u weakly in L2(0, T ; H1(Ω)) ,

∂tU→ ∂tu weakly in L
4
3 (0, T ; V′) .

In addition, the estimates from Lemmas 2 and 4, together with an Aubin-Lions compactness
argument, yield strong convergence

(3.38)
C, C± → c strongly in L2(0, T ; L2(Ω)) ,
U, U± → u strongly in L2(0, T ; L2(Ω)) .

Furthermore, the strong convergence (3.38)1 implies that c ∈ K. To show that the limit
(u, c,w) satis�es (3.2) we take (vh, qh,ψh,φh) = (Ph

1v, Ihq, Ihψ, Ihφ) for (v, q,ψ,φ) ∈
H1(0, T ; V) × C(0, T ; H2(Ω)) × C(0, T ; H2(Ω)) × C(0, T ; H1

+ ∩ H2(Ω)) in (3.10a)-(3.10d).
By (3.4) and (3.3) we note that for h→ 0

(3.39) (vh, qh,ψh,φh)→ (v, q,ψ,φ) ,

strongly in the corresponding H1 norms for all t ∈ (0, T ).
First, we note that (3.34), (3.37)5, (3.39) imply that

0 =

∫ T

0
(∇ · u, q) = lim

h,τ→0

∫ T

0
(∇ ·U+, qh).

Hence, it follows that ∇ · u = 0, a.e. in (0, T )× Ω.
Since, vh ∈ Vh we note that for any h

(3.40)

∫ T

0
(P+,∇ · vh) = 0 ,
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and hence the pressure term in (3.33) vanishes. Integration by parts in the time variable
implies ∫ T

0
(∂tU,vh) = −

∫ T

0
(U, ∂tvh) + (U(T ),vh(T ))− (U(0),vh(0)) ,

and by (3.37)3, (3.39) we get with v(T ) = 0 that

(3.41)

∫ T

0
(∂tU,vh)→ −

∫ T

0
(u, ∂tv)− (u(0),v(0)) .

Next, we show that

(3.42)

∫ T

0

1

2

{
([U− · ∇]U+,vh)− ([U− · ∇]vh,U

+)
}
→
∫ T

0
([u · ∇]u,v) .

We obtain after integration by parts in the second term that

(3.43)

1

2

{
([U− · ∇]U+,vh)− ([U− · ∇]vh,U

+)
}

=
1

2
([U− · ∇]U+,vh) +

1

2
([U− · ∇]U+,vh) +

1

2
([∇ ·U−]U+,vh) .

Hence, we observe∫ T

0
[([U− · ∇]U+,vh)− ([u · ∇]u,v)]

≤ |
∫ T

0
([(U− − u) · ∇]U+,vh)|+ |

∫ T

0
([u · ∇](U+ − u),vh)|

+|
∫ T

0
([u · ∇]u,vh − v)|

≤
∫ T

0
‖(U− − u)‖‖∇U+‖‖vh‖∞ + |

∫ T

0
([u · ∇](U+ − u),vh)|

+

∫ T

0
‖u‖L4‖∇u‖‖vh − v‖L4

≤
∫ T

0
‖(U− − u)‖‖∇U+‖‖vh‖∞ + |

∫ T

0
([u · ∇](U+ − u),vh)|

+ max
[0,T ]
‖vh − v‖1

∫ T

0
‖u‖21

→ 0 for h, τ → 0 ,

since the �rst two term disappear by (3.38)2, (3.37)4, respectively, and for the last term we
use the continuous embedding H1 ⊂ L4 and (3.39).
We obtain in a similar way that

1

2

∫ T

0
([U− · ∇]U+,vh)→ 1

2

∫ T

0
([u · ∇]u,v) , and

1

2

∫ T

0
([∇ ·U−]U+,vh)→ 0 ,

since ∇ · u = 0, a.e. in (0, T ) × Ω. Hence, from the above results and (3.43) we conclude
(3.42). Further, we obtain that

(3.44)

∫ T

0
((∇W+)TC−,vh)→

∫ T

0
((∇w)T c,v) for τ, h→ 0 ,
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since by (3.37)1,3, (3.38)1 and vh → v

|
∫ T

0

[
((∇W+)TC−,vh)− ((∇w)T c,vh)

]
| ≤ ‖∇W+‖L2(L2)‖C− − c‖L2(L2)‖vh‖L∞(ΩT )

+|
∫ T

0
(∇W+ −∇w, c⊗ vh)| → 0 .

We observe that (3.37)5 and (3.38)1 imply

(3.45)

∫ T

0

(
µ(C−)D(U+), D(vh)

)
→
∫ T

0
(µ(c)D(u), D(v)) for h, τ → 0 .

Collecting (3.40), (3.41), (3.42), (3.45), (3.44) together with the strong convergence U0 → u0

we verify that

−
∫ T

0
(u, ∂tv) +

∫ T

0
(u · ∇u,v) +

∫ T

0
(2µ(c)D(u), D(v))

= (u0,v(0)) +

∫ T

0
(g,v)− λ

∫ T

0
((∇w)T c,v) ,(3.46)

for all v ∈ H1(0, T ; V) with v(T ) = 0.
Similarly as in (3.44), we deduce the convergence

∫ T

0
(C− ⊗U+,∇ψh)→

∫ T

0
(c⊗ u,∇ψ) .

By the same arguments as, for instance, in [7] we get by (3.37)2, (3.5), (3.39) that∫ T

0
(∂tC,ψh)h →

∫ T

0
〈∂tc,ψ〉 .

The previous two identities and (3.37)3, (3.39) yield in the limit

(3.47)

∫ T

0
〈∂tc,ψ〉 −

∫ T

0
(c⊗ u,∇ψ) +

∫ T

0
(M∇w,∇ψ) = 0 .

Using (3.37)1,2, (3.37)3, (3.39) and (3.5) we easily verify that

(3.48)

∫ T

0
(∇C+,∇φh) →

∫ T

0
(∇c,∇φ) ,∫ T

0

[
(A−C+,φh)h + (A+C−,φh)h

]
→

∫ T

0
(Ac,φ) ,∫ T

0
(W

+
,φh)h →

∫ T

0
(w,φ) .
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Furthermore, we deduce from (3.10d), (3.36), (3.48) by the lower semi-continuity of norms
that for all φ ∈ C(0, T ; K ∩H2(Ω))

(3.49)

ε

∫ T

0
(∇c,∇φ)− ε−1

∫ T

0
(Ac,φ− c)−

∫ T

0
(w,φ− c)

= lim
h,τ→0

ε

∫ T

0
(∇C+,∇φh)− ε−1

∫ T

0

[
(A−C+,φh −C+)h + (A+C−,φh −C+)h

]
−
∫ T

0
(W+,φh −C+)h

≥ lim inf
h,τ→0

ε

∫ T

0
‖∇C+‖2 ≥ ε

∫ T

0
‖∇c‖2 ≥ 0 ,

where we use (3.32), i.e. the fact that the corresponding limits for W
+
and W+ coincide for

φ ∈ C(0, T ; K ∩H2(Ω)).
Finally, we collect (3.46), (3.47), (3.49) and conclude by a density argument that (u, c, w)
satis�es (3.2). �

4. Numerical approximation of the density dependent model

As discussed in Section 2, in order to derive an energy preserving numerical approximation
of the density dependent model (1.1), it is convenient to consider the reformulation (2.7),
(1.1b)-(1.1d). Hence, we propose the following fully discrete �nite element approximation
of the density dependent model (2.7), (1.1b)-(1.1d): For k ≥ 1 �nd (Uk, P k,Wk,Ck) ∈
Wh × Sh × Sh × S+

h such that for all (v, q,ψ,φ) ∈Wh × Sh × Sh × S+
h the following holds

1

2

{
(ρ(Ck−1)dtU

k,v) + (dt[ρ(Ck)Uk],v) + ([ρ(Ck−1)Uk−1 · ∇]Uk,v)

− ([ρ(Ck−1)Uk−1 · ∇]v,Uk) + ([Jk · ∇]Uk,v)− ([Jk · ∇]v,Uk)
}

+
(

2µ(Ck−1)D(Uk), D(v)
)

+ (P k,∇ · v) = (ρ(Ck−1)g,v)− λ((∇Wk)TCk−1,v) ,(4.1a)

(∇ ·Uk, q) = 0 ,(4.1b)

(dtC
k,ψ)h +

(
M∇Wk,∇ψ

)
= (Ck−1 ⊗Uk,∇ψ) ,(4.1c)

ε(∇Ck,∇(φ−Ck))− (ε−1A−Ck + Wk,φ−Ck)h ≥ ε−1(A+Ck−1,φ−Ck)h ,(4.1d)

where Jk = −(M∇Wk)Tρ and C0 = Qhc0 ∈ K0
h, U0 = Ph

0u0 ∈ Vh.

Lemma 5. The discrete solutions Ck, k = 1, . . . ,K satisfy Ck ∈ K0
h, i.e. in particular

(4.2)

∫
Ω

Ck =

∫
Ω

C0 and 1TCk = 1 .
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Furthermore, for k = 1, . . . ,K the solution (Uk,Ck,Wk) of (4.1a-d) satis�es the energy
estimate

ελ

2
‖∇Ck‖2 +

1

2
‖ρ

1
2 (Ck)Uk‖2 +

λ

ε
(Ψ(Ck), 1)h

+τ
k∑
j=1

[
λ

2τ
‖∇(Cj −Cj−1)‖2

+
1

2τ
‖ρ

1
2 (Cj−1)(Uj −Uj−1)‖2 + λ‖M

1
2∇Wj‖2 + 2‖µ

1
2 (Cj−1)D(Uj)‖2

]

≤ τ
k∑
j=1

(ρ(Cj−1)g,Uj) +
ελ

2
‖∇C0‖2 +

1

2
‖U0‖2 +

λ

ε
(Ψ(C0), 1)h .

Proof. The conservation properties (4.2) of Ck can be obtained in the same way as in Lemma 1.
We set v = Uk, q = P k, ψ = Wk, φ = Ck−1 in (4.1a-d) and observe

1

2

{
(ρ(Ck−1)dtU

k,Uk) + (dt[ρ(Ck)Uk],Uk)
}

+2
∥∥∥µ 1

2 (Ck−1)D(Uk)
∥∥∥2

= (ρ(Ck−1)g,v)− λ((∇Wk)TCk−1,Uk) ,

(dtC
k,Wk)h +

∥∥∥M 1
2∇Wk

∥∥∥2
= (Ck−1 ⊗Uk,∇Wk) ,(4.3)

−ε(∇Ck,∇dtCk) + (ε−1A−Ck + Wk, dtC
k)h ≥ −ε−1(A+Ck−1, dtC

k)h .

We note the identity

(ρ(Ck−1)dtU
k,Uk) + (dt[ρ(Ck)Uk],Uk) = ‖ρ

1
2 (Ck)Uk‖2 + ‖ρ

1
2 (Ck−1)(Uk −Uk−1)‖2

− ‖ρ
1
2 (Ck−1)Uk−1‖2 ,

multiply the last two equations in (4.3) by λ, sum up the resulting identities and obtain,
similarly to (3.14), that

1

2

{
‖ρ

1
2 (Ck)Uk‖2 + ‖ρ

1
2 (Ck−1)(Uk −Uk−1)‖2 − ‖ρ

1
2 (Ck−1)Uk−1‖2

}
+ 2‖µ

1
2 (Ck−1)D(Uk)‖2 + λ‖M

1
2∇Wk‖2

+ λε(∇Ck,∇dtCk)− λε−1
[
(A−Ck, dtC

k)h + (A+Ck−1, dtC
k)h

]
≤ (ρ(Ck−1)g,Uk) .

The energy estimated then follows as in Lemma 2 after summing the above for k replaced by
j = 1, . . . , k. �
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5. Numerical experiments

Algorithm 1 can be generalized to the variable density nonlinear system (4.1a-d) by linearizing
the additional nonlinear terms as

1

2

{
(ρ(Ck−1)

Uk,l −Uk−1

τ
,v) +

(
ρ(Ck,l)Uk,l − ρ(Ck−1)Uk−1

τ
,v

)
+ ([ρ(Ck−1)Uk−1 · ∇]Uk,l,v)− ([ρ(Ck−1)Uk−1 · ∇]v,Uk,l) + ([Jk,l · ∇]Uk,l,v)

− ([Jk,l · ∇]v,Uk,l)
}

+
(

2µ(Ck−1)D(Uk,l), D(v)
)

+ (P k,l,∇ · v)

= (ρ(Ck−1)g,v)− λ((∇Wk,l)TCk−1,v) ,

(∇ ·Uk,l, q) = 0 ,(
Ck,l −Ck−1

τ
,ψ

)
h

+
(
M∇Wk,l,∇ψ

)
= (Ck−1 ⊗Uk,l−1,∇ψ) ,

ε(∇Ck,l,∇(φ−Ck,l))− (ε−1A−Ck,l + Wk,l,φ−Ck,l)h ≥ ε−1(A+Ck−1,φ−Ck,l)h .

The tolerance for the termination of the �xed-point algorithm is chosen δfix = 10−8 and the
algorithm typically terminated within 3-6 iterations for su�ciently small time step sizes.
In practice we see very little di�erence between the numerical results obtained by the �xed-
point algorithm and by the semi-implicit linear scheme

1

2

{
(ρ(Ck−1)dtU

k,v) + (dt[ρ(Ck)Uk],v)

+ ([ρ(Ck−1)Uk−1 · ∇]Uk,v)− ([ρ(Ck−1)Uk−1 · ∇]v,Uk) + ([Jk · ∇]Uk,v)

− ([Jk · ∇]v,Uk)
}

+
(

2µ(Ck−1)D(Uk), D(v)
)

+ (P k,∇ · v)

= (ρ(Ck−1)g,v)− λ((∇Wk)TCk−1,v) ,(5.2a)

(∇ ·Uk, q) = 0 ,(5.2b)

(dtC
k,ψ)h +

(
M∇Wk,∇ψ

)
= (Ck−1 ⊗Uk−1,∇ψ) ,(5.2c)

ε(∇Ck,∇(φ−Ck))− (ε−1A−Ck + Wk,φ−Ck)h ≥ ε−1(A+Ck−1,φ−Ck)h ,(5.2d)

which is the same as (4.1a-d), but with Uk in (4.1c) replaced by Uk−1, i.e., the scheme above is
equivalent to performing only one iteration of the adapted Algorithm 1. For the linear scheme
(5.2a-d) the energy decrease is not guaranteed, however, in the computations below, the energy
graphs for both schemes were graphically indistinguishable. Hence, the computationally more
demanding simulations for N = 5 components were performed using the decoupled linear
scheme (5.2a-d).
The advantage of the �xed-point Algorithm 1, as well as of the semi-implicit scheme (5.2a-d), is
that in each iteration we �rst solve the Cahn-Hilliard variational inequality (3.15c)-(3.15d) and
then the Navier-Stokes part (3.15a)-(3.15b) in a decoupled manner. The Navier-Stokes part
corresponds to a linear system of equations and is solved using the direct solver UMFPACK,
see [12]. The Cahn-Hilliard part is a linear variational inequality and is solved using a projected
block Gauss-Seidel algorithm from [29], with a tolerance taken between 10−6 in experiments
with N = 5, and 10−8 otherwise.
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In the case of equal surface tension coe�cients (1.8), we set A− = −N−1
N 11T , while in the

case of variable surface tension we choose A+ = diagi{
∑N

j=1,j 6=i |Aij |}.
To increase computational e�ciency we employ an adaptive algorithm, which enforces a �ner
mesh size h ≡ hf = 1/Nf within the di�use interfacial region and a coarser mesh size h ≡
hc = 1/Nc otherwise. The di�use interfacial region is de�ned as {x ∈ Ω; dist{c(x), ∂GN} >
δtol}, typically δtol ≈ 10−8, see [29] for a more detailed description. Of course, we note that
the mesh still has to be su�ciently �ne outside of the interfacial region in order to obtain
su�ciently accurate approximations of the Navier-Stokes part of the system. Typically we
chose Nf = 128, Nc = Nf/4 and ε = (16π)−1.

5.1. Static contact angles. We examine the stationary contact angles for 3-component �ow
with constant density ρi = 1 and viscosity µi = 0.1, i = 1, . . . , N . An in-depth study without
the coupling to the Navier-Stokes equations has been performed in [29]. The considered �uid
con�guration is displayed in Figure 1. According to Young's law, stationary contact angles
satisfy

(5.3)
sin θ1

σ23
=

sin θ2

σ13
=

sin θ3

σ12
,

where σij is the surface tension coe�cient between the i-th and j-th �uid phases, and θk is
the angle at the triple junction inside the k-th phase. We consider four di�erent choice of the

θ2

σ13

Phase 2

Phase 3

σ12

Phase 1

σ23

σ12

θ3

θ1

Figure 1. Contact angles predicted by Young's law.

surface tension matrix:

a) A =

 0 −1 −1
−1 0 −1
−1 −1 0

 b) A =

 0 −2 −1
−2 0 −1
−1 −1 0

 ,

and

c) A =
1

2

 0 −1 −2
−1 0 −2
−2 −2 0

 d) A =
1

2

 0 −2 −1
−2 0 −2
−1 −2 0

 .

As discussed in Section 2.4 we have |Aij | ≈ σ2
ij and Young's law (5.3) implies the following

contact angles: a) θ1 = θ2 = θ3 ≈ 2
3π = 120◦; b) θ3 ≈ 2 arccos(1

2

√
A12
A13

) ≈ 90◦ and θ1 = θ2; c)

θ3 ≈ 2 arccos(1
2

√
A12
A13

) ≈ 138.6◦ and θ1 = θ2; d) θ2 ≈ 2 arccos(1
2

√
A13
A12

) ≈ 138.6◦ and θ1 = θ3.
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We employ zero initial condition for the velocity, constant mobility (1.11), set λ = 10−3,
ε = (16π)−1, m0 = 10−5, τ = 2 × 10−3, g = 0 and compute until a steady state is reached.
We display the results in Figure 2, where we visualize the interface by displaying the function
cint = (1− c1)(1− c2)(1− c3) which is nonzero only within the di�use interface. We observe
that at least qualitatively the results agree with Young's law.

Figure 2. Solution cint for cases a)-d) (from left to right).

5.2. Surface tension e�ects. We present a computational study to demonstrate the e�ect
of di�erent surface tension parameters. We consider a mixture of �ve �uids, i.e. N = 5, with
equal densities and viscosities ρi = 1, i = 1, . . . , 5, µi = 1 and set g = 0. We consider the
domain Ω = (0, 1) × (0, 5) and prescribe homogeneous Dirichlet boundary conditions for the
velocity �eld and homogeneous Neumann boundary conditions for c, w. The initial condition
for the velocity is u0 = 0. The initial condition for c0 is close to the stationary pro�le displayed
in Figure 3 (left); the four circular bubbles with radius 0.25 from bottom to top contain �uids
two to �ve, respectively, and the remaining part of the domain is occupied by �uid one.
In the computations we use the concentration dependent mobility (1.12) with m0 = 10−5 and
ν = 10−8 and the matrix A is taken as

A =
1

16


0 −32 −8 −2 −1

−32 0 −16 −16 −16
−8 −16 0 −16 −16
−2 −16 −16 0 −16
−1 −16 −16 −16 0

 .

As discussed in Section 2.4, the choice of coe�cients of A implies that the surface tension
coe�cients σij between the j-th and i-th �uid satisfy: σ12/σ13 ≈

√
A12/A13 = 2, σ13/σ14 ≈√

A13/A14 = 2, σ14/σ15 ≈
√
A14/A15 =

√
2 and σij/σkl = 1, otherwise.

The remaining parameters were chosen λ = 0.1, ε = (16π)−1, τ = 2 × 10−3, hmin = 1/128,
hmax = 1

4 .
The pressure distribution is displayed in Figure 3. In order to eliminate the e�ect of the
pressure di�erences within the interfaces and highlight the distribution of the pressure within
the pure phases we also display in Figure 3 a normalized pressure where we set the pressure
within interfaces equal to the pressure at the reference point x0 = (0.25, 0.25).
According to the Young-Laplace law the pressure di�erence across the �uid interface ∆ijp =
σijκij where κij is the curvature of the interface between �uids i and j. Since the interfaces in
the computed solution are circular we have that κij ≈ −4 for i = 1, j = 2, . . . , 5. To estimate
∆ijp we measure the di�erence between the pressure in the center of each bubble and the
pressure at the reference point x0. We obtain the pressure di�erences are ∆12p = −0.461954,
∆13p − 0.221757, ∆14p = −0.11103, ∆14p = −0.0788834. The results are in good agreement
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with the theoretical predictions. The larger di�erence for the value of ∆12p can be explained
by the fact that the mesh size has not been su�ciently �ne to properly approximate the
interface, cf. Figure 3 (right).

Figure 3. Solution at �nal time, computed pressure, normalized pressure and
the �nite element mesh (from left to right).

5.3. 3-component �ow with variable density. We consider a mixture of three �uids with
densities ρi = 4− i, i = 1, . . . , 3, in a gravitational �eld. The initial condition for the density
is displayed in Figure 4. The heavier �uids are positioned above the lighter ones, the initial
interfaces have a sinusoidal shape and all three �uid components have equal mass. The initial
condition for the velocity is u0 = 0. We consider homogeneous Dirichlet boundary conditions
for the velocity �eld and homogeneous Neumann boundary conditions for c, w. We choose
g = (0,−1)T , µi = 10−2, i = 1, . . . , 3, λ = 10−3, τ = 2 × 10−3, hmin = 1/128, hmax = 1/16

and employ the constant mobility (1.11) with m0 = 10−5.
The evolution of the density is displayed in Figure 4. Due to the perturbation of the interface
the �uids form the so-called Rayleigh-Taylor instability. In Figure 5 we display results for the
same problem computed with the density dependent model with j = 0, which is a formulation
that is most frequently used in the literature. The numerical approximation of this model
corresponds to (3.10a-d) with Jk = 0 for k = 0, . . . ,K. There are obvious di�erences between
the solutions for the two models but qualitatively, the results are comparable.
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Figure 4. Evolution of the density of a three component mixture at t =
0, 4, 5.4, 5.8, 9, 11.6 (from left to right).

Figure 5. Evolution of the density of a three component mixture at t =
0, 4, 5.4, 5.8, 9, 11.6 (from left to right), CHNS model with j = 0.

5.4. 5-component �ow. We consider a mixture of �ve �uids with densities ρi = 6 − i,
i = 1, . . . , 5, in a gravitational �eld. The initial condition for the density is displayed in
Figure 6. The heavier �uids are positioned above the lighter ones, the initial interfaces have a
sinusoidal shape and all �ve �uid components have equal mass. The initial condition for the
velocity is u0 = 0. We consider homogeneous Dirichlet boundary conditions for the velocity
�eld and homogeneous Neumann boundary conditions for c, w. We choose g = (0,−1)T ,

µi = 3.3 × 10−4, i = 1, . . . , 5, λ = 0, τ = 2 × 10−3, hmin = 1/128, hmax = 1/16 and employ
the constant mobility (1.11) with m0 = 10−5.
The evolution of the density is displayed in Figure 6. Due to the perturbation of the interface
the �uids form the so-called Rayleigh-Taylor instability. We obtain similar results as [26],
however they appear to use periodic boundary conditions on the left and right hand side
boundaries, so the results are not directly comparable.
For comparison, in Figure 7 we also display results computed with j = 0. The di�erences
between the solutions for the two di�erent models become increasingly signi�cant as the ge-
ometry of the interfaces becomes more complex (note that the term j acts only within the
interfacial regions).
We repeat the calculation for the model with concentration dependent mobility (1.12) with
δ = 10−18, m0 = 3.2−4 and λ = 10−3; the remaining parameters remain the same as above.
The evolution of the density is displayed in Figure 8. The evolution of the total energy (cf.
(2.4))

Etot = λEch(c) + Ens(c,u) +

∫ t

0

∫
Ω

2µ(c)|D(u)|2 −
∫ t

0

∫
Ω
ρ(c)g · u ,

in Figure 9 demonstrates that the physically relevant energy of the computed numerical ap-
proximation is decreasing in time.
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