12. Übungsblatt

Abgabe: Donnerstag, 28.6.12

Aufgabe 1 Berechnen Sie für den binären [7, 4, 3]-Hamming-Code

- (a) die Wahrscheinlichkeit für einen unentdeckten Fehler;
- (b) die Decodierfehlerwahrscheinlichkeit bei Korrektur eines Fehlers, wenn zur Übertragung ein binär symmetrischer Kanal mit der Symbolfehlerwahrscheinlichkeit p=0,01 benutzt wird.

Aufgabe 2 Sei $C \neq \{0\}$ ein perfekter [n,k,d]-Code über \mathbb{F}_2 , wobei d=2e+1 ist. Zeigen Sie, dass

$$A_d = \frac{\binom{n}{e+1}}{\binom{d}{e}}$$

ist.

Aufgabe 3 Seien C_i zyklische $[n, k_i]$ -Codes über \mathbb{F}_q mit Generatorpolynom $g_i(x)$, i = 1, 2. Zeigen Sie:

- (a) $C_1 + C_1$ (d.h. der kleinste Code über \mathbb{F}_q , der C_1 und C_2 enthält) wird durch $t(x) = \operatorname{ggT}(g_1(x), g_2(x))$ erzeugt.
- (b) $C_1 \cap C_2$ ist ein zyklischer Code, der durch $v(x) = \text{kgV}(g_1(x), g_2(x))$ erzeugt wird.

Aufgabe 4 Sei g(x) das Erzeugerpolynom eines binären zyklischen Codes. Zeigen Sie:

 $x-1 \mid g(x) \Leftrightarrow \text{ alle Codeworte haben gerades Gewicht.}$