Kryptographie WS 2015/16

Barbara Baumeister

Tutoren: Apolonia Gottwald, Soeren Senkovic

10. Übungsblatt

Abgabe: Donnerstag, 14.1.2016

- **Aufgabe 1** Sei P ein punkt der elliptischen Kurve $E(\mathbb{R})$: $y^2 = x^3 + ax + b$. Geben Sie eine geometrische Bedingung, die äquivalent ist zu der Eigenschaft, dass
 - (a) P die Ordnung 2;
 - (b) P die Ordnung 3;
 - (c) P die Ordnung 4 hat.
- **Aufgabe 2** Sei $E(\mathbb{R}): y^2 = x^3 36x$. Dann sind P = (-3,9) und Q = (-2,8) Punkte in $E(\mathbb{R})$. Berechnen Sie P + Q und 2P.
- **Aufgabe 3** Ziel der Aufgabe ist es, den Beweis von Satz 5 weiter auszuführen. Sei $L=L(\alpha,\beta,\gamma)=\alpha X+\beta Y+\gamma Z=0$ eine projektive Gerade mit $\alpha\neq 0$ und $\beta=0$. Weiter sei E=E(K) eine elliptische Kurve zu der homogenen Weierstraß-Gleichung F(X,Y,Z). Zeigen Sie
 - (a) Bestimmen Sie die Elemente $(x_0 : y_0 : z_0)$ in L, indem Sie eine Fallunterscheidung $z_0 = 0$ und $z_0 \neq 0$ machen.
 - (b) $\mathcal{O} \in L \cap E$ und $m(\mathcal{O}, L, E) = 1$ (Hinweis: Betrachten Sie $\psi(t)$ für $P' = (-\gamma : 0 : 1)$).
 - (c) Sei $P = (x_0 : y_0 : z_0) \in L \cap E$, wobei $P \neq \mathcal{O}$. Bestimmen Sie m(P, L, E) mit Hilfe von $P' = \mathcal{O}$.
 - (d) Folgern Sie $\sum_{P \in P^2(K)} m(P, L, E) \in \{0, 1, 3\}$ für diese projektive Gerade L.
- **Aufgabe 4** Gegeben sei das Alphabet $\mathcal{A} = \{A, \dots, Z\}$ und die elliptische Kurve $E: y^2 = x^3 + 300x + 1011$. Es sollen Wörter der Länge 2 über \mathcal{A} in Punkte der elliptischen Kurve "umgewandelt" werden, so dass mit einer Wahrscheinlichkeit von höchstens 1/1000 zu k gegebenen Werten x_i kein Punkt auf der Kurve mit x-Koordinate gleich x_i existiert. Wählen Sie einen geeigneten Körper und wandeln Sie das Wort "Erle" in Punkte der Kurve um.