Kryptographie WS 2015/16

Barbara Baumeister

Tutoren: Apolonia Gottwald, Soeren Senkovic

2. Übungsblatt

Abgabe: Donnerstag, 5.11.2015

Aufgabe 1 (a) Lösen Sie $122x \equiv 1 \mod 343$.

(b) Sei p eine Primzahl und $p \equiv 3 \mod 4$. Sei a eine ganze Zahl, die ein Quadrat mod p ist. Zeigen Sie, dass $a^{(p+1)/4}$ eine Quadratwurzel von $a \mod p$ ist.

Aufgabe 2 Seien $n, m \in \mathbb{N}$ zwei teilerfremde Zahlen grösser als 1. Zeigen Sie, dass $\mathbb{Z}_{n \cdot m}^*$ und $\mathbb{Z}_n^* \times \mathbb{Z}_m^*$ isomorphe Gruppen sind.

Seien $a, b \in \mathbb{N}$ mit a > b. Ziel der nächsten zwei Aufgaben ist es, die Anzahl n der Iterationen im euklidischen Algorithmus zur Berechnung von ggT(a, b) nach oben abzuschätzen. Wir benutzen die in der Vorlesung eingeführte Notation.

- **Aufgabe 3** (a) Zeigen Sie: Es gilt $q_k \ge 1$ für $1 \le k \le n$ und $q_{n+1} \ge 2$.
 - (b) Sei ggt(a,b)=1. Setzen Sie $r_0=b$. Zeigen Sie, dass $r_k\geq \Theta^{n-k}$ gilt für $0\leq k\leq n$, wobei Θ der goldene Schnitt ist.
- **Aufgabe 4** (a) Zeigen Sie, dass n nur von a/b abhängt.
 - (b) Zeigen Sie $n \leq \log_2(b)/\log_2(\Theta)$. Hinweis: Zeigen Sie zuerst, dass ggT(a,b) = 1 angenommen werden kann.