Extended abstract
Constraint Satisfaction Problems, Twisted Subgroups and Transversals

Barbara Baumeister

October 16, 2006

We cite from [6]: “Near subgroups of finite groups were introduced by Feder and Vardi [7] as a tool to study the computational complexity of constraint satisfaction problems. Aschbacher [2] addressed some questions raised in [7] and showed that near subgroups possess much structure. More recently, Feder [5] showed that near subgroups do indeed characterize the polynomial time solvable cases of group theoretic constraint satisfaction problems, using new structural results for near subgroups obtained by Aschbacher [3].”

In our paper we explore further the structure of twisted subgroups which are strongly related to near subgroups. There is a correspondence between twisted subgroups, Bol loops and groups G satisfying the following: G has a subgroup U which has a transversal T such that

(1) $1 \in T$

(2) T is closed under conjugation by G,

see [4].

If we replace (2) by

(2') T is closed under conjugation by U

and if T consists beside of the identity only of involutions (elements of order 2), then we obtain a gyrodecomposition of G, see [6].
We study the groups satisfying (1) and (2) or (1) and (2') which are also of independent interest in group theory. The reader is directed to [1] for notation and terminology.

Gil Kaplan could show the following:

Theorem 1 [8] Let G be a group and let p be a prime. Let P be a Sylow p-subgroup of G. Assume that P has a transversal T in G which is normalized by P. Then P has a normal p-complement.

In this paper we generalize this result to:

Theorem 2 Let U be a nilpotent Hall subgroup of G which has a by U normalized transversal in G. Then U has a normal complement in G.

What is happening if U is not nilpotent, but soluble? The following example shows that a soluble Hall subgroup U which has a by U normalized transversal does not have a normal complement in general:

Example 1 Let $G = S_5$ and U the stabilizer of 5 in G. Set $T = \{1\} \cup (45)^U$. Then U is a soluble Hall subgroup of G and T an U-invariant transversal to U in G. Clearly, U has no normal complement in G.

Assume that U is a π-Hall subgroup of G which admits a normal complement N. Then N is a π'-subgroup and therefore, it is a U-invariant transversal to U in G which is contained in $O^{\pi}(G)$.

We prove that this necessary condition is already sufficient.

Theorem 3 Let U be a Hall subgroup of G which is not perfect. Then G has a normal complement to U if and only if U admits a transversal $T \subseteq O^{\pi}(G)$ with $T^U = T$.

Example 1 is not a counterexample this Theorem, as in the example U is a $\{2, 3\}$-Hall subgroup of G, $O^{\{2,3\}}(G) = A_5$ and there is no U-invariant transversal to U in G which is contained in A_5.

Clearly, the immediat question arises: what can be said if U is a non-perfect Hall subgroup with has a U-invariant transversal, but none of the normalized transversals is contained in $O^\pi(G)$? In the paper we further investigate these groups. Clearly, we can generalize example 1: Let $G = S_p$ for a prime p, let U be the stabilizer of p in G and let $T = \{1\} \cup (p - 1, p)^U$.

Then U is a non-perfect Hall subgroup of G, \mathcal{T} an U-invariant transversal to U in G which is not contained in $O^p'(G) = A_p$ and U has no complement in G.

Moreover, we study the case that U is a perfect Hall subgroup.

References

