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On the Modular Representations 
of the General Linear and Symmetric Groups 

Roger W. Carter and George Lusztig 

1. Introduction 

This paper is the result of our attempt to extend the classical theory 
of polynomial representations of the general linear group GL,, (~;) and 
of complex representations of the symmetric group S r to the more general 
case in which the field of complex numbers is replaced by an infinite 
field of arbitrary characteristic. The characteristic zero situation is a 
well-established theory created at the beginning of this century by 
Young, Schur and Frobenius (see Weyl [15]). The characteristic p case 
has been investigated by several authors: Brauer, Nesbitt, Thrall, 
Littlewood, Robinson, Kerber, and others, but the question is far from 
being completely understood. 

Let A be an infinite field, and let V be the n-dimensional A-vector 
space of which GL,,(A) is the group of automorphisms. Let ~| be the 
r-fold tensor product of V over A. V~r is both a GL,,(A) and an A [S J-  
module 1 (St acts on V| by permuting the factors, and this action clearly 
commutes with that of GL n(A)). Let 2 be a partition of r into at most 
n parts. 

In 3.2 and 3.6 we define subspaces ~ (resp. ~ )  of V| which are 
GL,,(A) (resp. A[Sr]) submodules of V| The definitions involve only 
relations with integral coefficients and we prove that Vx, ~ have dimen- 
sions independent of the field A; in fact we prove that the V~, ~ cor- 
responding to a field A of characteristic p >0 can be regarded as the 
reductions modulo p of the corresponding modules over ~. 

If A = iI~, ~ can be regarded as the image of the appropriate Young 
symmetrizer (primitive idempotent in II; [S,]) but this does not hold if 
char A > 0. 

We also note that ~ is isomorphic to the classical Specht-module 
involving Vandermonde determinants. It is however more convenient 
for us to regard ~ as a subspace of V| Actually we can define ~U~ as 
the set of tensors in V| which are U-invariant of weight 2. (Here U 
denotes the group of upper unitriangular matrices in GL,,(A) and we 

t Given a ring A and a group G we denote by A [G] the group algebra of G over A. 
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identify the partition 2=  (21 ~_~2 2 ~---"" ~_~2 u ~> 0), U ~ n, with the dominant 
weight (21 __ 2 2 ~--.  >_ 2 u >_-.- >_ A n >= 0) of GL. (A) defined by 2i = 0, u < i_<_ n.) 

If A = r  the modules Vz, ~ are irreducible, and we get in this way 
all irreducible polynomial GL.(~)-modules (resp. irreducible C[Sr]- 
modules). If char A = p > 0 the modules Vx, ~ are not necessarily irre- 
ducible. 

In fact, in 3.12 we give sufficient conditions for the existence of a 
non-zero GL,(A)-homomorphism Vz, ~ ~ which, by the duality Theo- 
rem 3.7, is equivalent, at least for p 4: 2, to the existence of a non-zero 
A [S,]-homomorphism ~U~U~,. We regard this as our main theorem. 
It has been known previously only for n < 3 (Braden [3]). 

In 3.8 we give a necessary condition for the existence of such 
homomorphisms; this has been conjectured by Verma in the context of 
semisimple algebraic groups and proved by Humphreys [6] for p 
sufficiently large. Our result 3.8 is new only for p <  n; the case p>n is 
contained in Humphreys' result. 

Both 3.8 and 3.12 can be formulated in terms of an action of the 
affine Weyl group W, of type A._I on the lattice of weights of GL, (A) 
(see 4.1). This action of the affine Weyl group is closely related to the 
process of raising squares in a partition diagram (see 4.2). 

It seems certain that the affine Weyl group plays a central role in 
the modular representation theory of the general linear and symmetric 
groups. This has been pointed out by Verma [14] in the context of 
semisimple algebraic groups, but it does not seem to have been observed 
before in the case of the symmetric groups. It is striking how far the 
analogy between GL, and S, goes. There is practically no result for GL, 
in this paper which has no analogue for S,. 

The main technical tool in this paper is the use of the Z-form q/z of 
the universal enveloping algebra of the Lie algebra gl(n). This has been 
defined by Kostant in the context of semisimple Lie algebras. 

In 2.2 we produce n explicit polynomial generators for the centre 
of q/z|  Q which are closely related to the classical Capelli element. 
The explicit knowledge of these generators is precisely what is needed 
to prove 3.8. 

In 2.3 we define some elements Tj(t)~q/Z which can be combined to 
provide the non-zero maps of 3.12. Our elements Tj(t) have a strange 
similarity with the Capelli-type elements defined in 2.2. 

In 2.9 we define some elements S~q/z  which are slightly less sym- 
metric than Tf !t) but are actually equivalent to them. The advantage of 
the elements S~ is that they are more appropriate for the purpose of 
generalization. Actually, in Chapter 5 we discuss the possibility of 
defining elements analogous to S~ in the case of arbitrary simple Lie 
algebras. 
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Finally, we would like to thank Dr. M. Beetham for useful discussions, 
and for pointing out a slight error in an earlier definition of Vz. 

2. Computations in the Enveloping Algebra 

2.1. Let q/ [gl(n, Q)], or simply egq, be the universal enveloping 
algebra of the Lie algebra of all n • n matrices over Q. 

egQ can be described as the associative Q-algebra with generators 0~, 
1 < i, j < n  (corresponding to elementary matrices) and relations 

-i~--6khO~, l < i , j , k , h < n .  (1) o~ ~ - o~ o'~ - ~ j  _ _ 

A Q basis for egQ is given by 

(01  
(2) 0,N,--1-I (Nj)   N;I 1-I 

where i through all matrices with non-negative n = (N~) 1 =<,, 3=<~ runs n • n 

integers as entries and the symbol (x) means 

1 ~-x(x- 1)..... (x-(~- 1)). 

The factors in (2) must be arranged in lexicographic order in the first 
and third product. (The factors in the second product commute with 
each other.) More precisely, in the first product (resp. third product) 
the factor involving 0~ comes before the factor involving 0~', if and only 
if j < j '  or j=j'  and i<i'. 

The elements O r176 span over Z a subgroup egT~ ego which is a subring. 
This is the Kostant Z-form of the enveloping algebra ego" For a definition 
of the Z-form of the enveloping algebra of an arbitrary semisimple 
complex Lie algebra see Kostant's paper [9]. 

Let eg~ (resp. eg~) be the subgroup ofegz spanned by 0 (~~ with N~=0 
for i>j (resp. i<j). Similarly, let ego be the subspace of egz spanned by 
0 ~N) with N j=0  for i#j. Then eg~, ego are subrings of eg~, and ege= 
eg~- | ego | eg~ as a Z-module. 

Note that for any integers a~ (0__< i<=n)and N_>_ 1 we have 

(3) ( X <_~i<_n ~i O] + ~Ot Ea][O. 
- -  N / 

This follows immediately from the formal identities: 

( x N Y ) =  ~ ( x )  ( y ) and ( N  x ) = ( - 1 )  N ( x + N - 1 )  
O<=N,<=N N1 N-N1  N " 

i4" 
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2.2. The Centre of q/a" It is well known that the centre ~e (q/a) of q/a 
is a polynomial algebra over Q in n generators but the explicit generators 
do not seem to appear in the literature. In a recent letter to Atiyah, 
S. Ramanan noted that the classical Capelli element, given by formula (4) 
below for t = - n ,  Can be regarded as an element of the centre of q/a" 
This is an immediate consequence of the Capelli identity proved in 
Weyl's book [15], or can be checked by direct computation. We propose 
the following generalization: 

Theorem. The element 

(4) 

0 1 - 1 - t  012 . . . . . . . . . . . .  

C (t) = 0~ 022 2- 2 -- t ~2 
�9 i ' ' ' ' ' ' ' ' . ,  , " 

01. "~-n't  
= 2 ~ (o)(oI.~ - a1~, (1 + t))(o~ ~ -  a~(~ (2 + t))... . .  ( ~ . ~ -  a:~.~ (n + t)) 

~ESn 

belongs to the centre of q/a for any teQ. 

(Here e(a) is the sign of a.) 

Proof The general case can be reduced to the case t = - n  as follows. 
Define an algebra automorphism c&: q/e--~ q/a by tp,(0)= 0} for i+-j and 
~o,(01) = 0 I -  t -  n. It is clear that ~0, preserves the relations (1) so it extends 
uniquely to the whole of q/a" Clearly 

(pt(C(-n))=C(t) and qh(~(q /e ) )=~(%) .  

Hence from C(-n)e~(q /a)  it follows that C(t)eN(q/a), for all tsQ. 
Expanding with respect to the powers of t we get: 

Corollary. Let 

Oi~t- il . . . . . . . . . . . . .  01~ I 
~il  0 i2 - -  i A ik I 

Ck = ~ vi2 i2 "2 . . . .  i2 (1 _-< k_-< n). 
1 5 i l  <.. .  < i~<n 

01' ~ . . . . . . . . . . . . . . . . .  i'01~ - -  i k [ 

Then C k belongs to q/zc~ ~ (q/a)" 

Remark. It is not difficult to prove that ~(q/e) is the polynomial 
algebra over Q with generators C1, C 2 . . . .  , C,. 

2.3. We define now some elements of q/z which will play a fundamental 
role in this paper. 
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Definition. For  l <=i < j~n ,  t~TZ define 

01+ A i + I - ( i +  1 + t )  0 0 1 V i + l  " ' "  
" ' . .  : 

. , ,  

oi+2 v,+A'+'~ o l ; ~ - ( i + 2 + t )  o 
(5)  ~ ( t ) =  .....,.......,......... ...... ,., 

.......... i"0~- [ - ( j -  1 + t) 
o~ 0 ?  1 . . . . . . . . . . . . . . . . . . . .  : o j - ,  

= Y~ oi, o',,...., oi~-' o}~ (t + j,  - ~ : ) ( t  + j~  - ~ )  �9 . . .  �9 (t + j ,  - ~,) 

where the sum is over  all sequences i<  i 1 < i 2 < . . .  < ik< j with i, j fixed 
and the set { j ,  J2, .-., Jl} (1 = j -  i -  1 -  k) is the complement  of {il, i 2 . . . . .  ik} 
in { i+1 ,  i+2 ,  . . . , j - -  1}. 

Note  that  the sum has 2 j -  ~- 1 terms. 
More  generally, for any l<=i<j<m<n and T = ( h ,  z 2 . . . . .  z.)~TZ" 

define 
l 

(6) mTj(~)= E 01, Oi~, " ' "  Oi:-l O~(z,, -O~l)(z,2-Oj~)"'" (zj,-Oj:) 
i <it <.,.<ik< j 

where the sets {i 1 . . . . .  ik}, {Jl . . . . .  Jt} are as in (5). Al though our main 
interest lies in the elements (5) we are forced to introduce the more  
general elements (6) for purely technical reasons. 

We also put  ~T](~)= T](~). No te  that  

(7) T] (lr) = T] (t) if ~ = (t + 1, t + 2 . . . .  , t + n). 

We make  the conventions: mTji(l~)= 1, if i=j=m;  mTj'('g)=0 if i = j < m  
or i>j. 

The following relations are easy consequences of the definitions 
(assume i <j ) :  

(8) ~rj(~)= rL~(~)0~ -~ +~'_~(~)%_~-~_-~) (,.>_j). 

(9) ,,,T](x)=O~ T](~:)- T](r m (m>j ) .  

F r o m  (8) and (9) one deduces:  

(10) .T j (~)=O~ -~ T j i l ( q ~ ) ~ - m T j i l ( ' C ) ( ' c j 2 l - - ~ j - l - -  1 )  (m~_~j), 

. r j  (~) = r~'_,(~) 0~-'(1- ~_~ - ~ - I ) +  0~ -~ r~'_~ (~)(~_ ~ -~- I )  
01) 

(m>=j). 

2,4. Our  aim in this section is to prove commuta t ion  formulae 
involving 0" a- I  and products  of elements of  the form T](~): 
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Let l<i<j<n, 2<a<n, 

,r,(h)=(Zl, Z2,...,T,a_2,Ta_l-bh, Za--h, Za+l,...,T.n) h_>_l, 

(i a ~) l)v+6a_l(O i (12) c J a - l '  = ( % - 1 - % +  i i_zi)+~(zj_O~_l)~llO 

where f l  if i<=a-l<a<__j 
V= 

0 otherwise. 

Then the following commutation formula holds: 

�9 ( '  a ) 
Lemma. 0,~_~ Tj'(~)= Tjt(f (1)) ~a-1  "[- T : - I ( ~ )  Tja(~) c J 6 / -  1' "f " 

Proof We can assume i=< a -  1 < a__< j, otherwise the result is obvious. 
We use induction on j. The result is obvious for j = i + 1. Assume j >__ i + 2 
and that the result is true for j - 1 .  Applying (11) for m=j, we have: 

x~f o"._l ~'(~)- ~'(~"b o."_1 
: 0 a  I ( T j / _ . I ( ' ~ ) 0 ~ - t ( 1 - - T j _ I - - 0 ~ : ~ ) - [ - 0 ~ - I  Tji l ( ' ) ( 'Cj_l--0~-_~))  

- T]_ 1 (,(1))0~ - '  ~ _  1 (1 -"~j -1Ar  0~-- I) 

__ ~- -1  Tj/_I (1~(1,) 0a_l  (T j--1 -- 0~-- l) 

= (by induction hypothesis) 

• T]_ 1(,(1))(0~-' 0:_ 1 + 0~(0~51 -- 0~))(1- Zj_l-- ~-~) 

( i  a ) +rL~(~)r;_l(~)c j - 1  ~ - 1  ' ~  ~  

+ 2 -1 r~L~(r ~_1%_1 - oi--l) 

( '  ~  ._ 
+~ j - 1  ~ - 1  ' ~  (~j_~-o~_l) 

+ ~ (oi: 1 - o~) % 1  (~)(~j- ~ - oF I) 

-- Tf._ 1( ,  (1)) 0~ -1  0 a_ 1(1 -- T j_  1 --  0~--~) 

_ 0i-1 EL1 (~"b o~_ 1%-1 - o~- ~). 

Case1. i<a - l<a<j -1  

X =  T~_ 1 (,)[Tf_ 1 (v) 0i- l(z._x - z . +  1)(1 - z  j_ 1 +0~5 I) 

-]- 0~j. -1  Tj a - 1 ("g)(Ta_ 1 - -  Ta-']- I ) ( T j _ ,  -- 0j_-l) ] 

= Td_ 1 (~) Tj"('~)(z._ 1 - z . +  1). 
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Case2. i < a - l < a = j - 1  

x= % ~(,)%_ ~-o~: ~) o~-'(~- ~_, + oj= l) 

+ oj-* r L ~(,)%_ ~- o~:I)%_, - o~:I) 
= T]_ 2 (,) Oj-*(zi_z-Oj- ~ + I)(i -z~_, +~-~) 

-}- Tf_ 2 (') O~- I('fj_ 2--O~. ~)(Tj_I --O~- ~) 

= rL ~ (,) rj-*(,)%_ ~-~j_, + I). 

Case3. i < a - l < a = j  

x = ~'_~ (,)(o~- 1 - o9(i - ~j_~ + oizl) 

+ (o~=I- 09 r;_,(,)%_~- o~=I) 
= r]_,(,) [(oj-l- ~)(*- ~j_~ + o~:I) 

+ ( ~ - I - o ~ +  I)%_,-~-I)1 
= T]_x(~)(z j_, -  0 9 . 

Case4. i = a - l < a < j - i  

X= Tj"_,(z)(Oi-zi+ , + I) ~-*(i -z j_, + ~-I) 

+ ~-* Tf_, (,)(01- ,i+ i + I) (zy_, - 0~-I) 

= [T~, (,)~-'(I- zj_,+ 0~- I) + ~-' Tf_x(z)(zj_,-O~-l)](Oi-z,+t+X) 

= Tf_,(*)(Oi- zi+l + l). 

Case5. i = a - l < a = j - 1  

x = o  '+ r~+ 2 (~)- r,+ ~ (,~)) _,o'+ ~ 

i i+1 =l~i+l[t~i~i ~ i + 1  ~i+21]i+1"~-0i+2('~i+1--0i+1)) 

_ _  ( 0 ~ +  1 /~ i+1  -1- i - -  ~'+* - 1))  01 +~ ~i+2--0i+2("~i+1 Vi+l  

_ i + 1  i 
- -  Oi+ 2 (0 i - -  "Ci+ 1-1- 1) 

and the lemma is proved. 

We may now generalize this result to obtain a commutation formula 
involving 0~_, and certain products of elements of the form Ti(~). 
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Define 

T ] ( ~ - ( d -  1) . . . .  , ~)= T j ( ' c - ( d -  1)).. . . .  T j ( ~ -  1) Tj(~) 

where d >  1 is an integer and ~ - m =  (z 1 - m ,  z 2 - m ,  ...,  z , - m )  for m~ 7Z,. 

Corollary. 

~ - 1 T ] ( ~ - ( d -  1), ..., ~)= TS(~~ ( d -  1), .. . ,  "f'(1)) 0a_ 1 

d-1 
(13) + y~ T j ( , ( ' - ( d -  1) . . . . .  , ( ' - ( h +  1)) Td_~(~-h) Tf(,-h) 

h=O 

�9 T] ( , -  ( h -  1), . . . ,  ~)(c (~ ) -  2 h 8~) 

w h e r e c ( ~ ) = c (  i a ) j a -  1' ~ is given by (12). 

Proof. First we note the relation 

(14) c(a) T ] ( r  ( e -  1) . . . . .  r  V ( r  ( e -  1) . . . . .  ~)(c(a+e)-2e87) 

which follows easily from (1)�9 The corollary follows by applying the 
Lemma repeatedly and using (14). 

2�9149 We wish to obtain the additive expression for T j ( ~ - ( d -  1) . . . . .  r 
as an integral combinat ion of the basis elements of q/z. In order to do 
this we need the following 

Lemma.  Assume m 1, m 2, . . . ,  ma> j >  i. Then 

m a T j ( ~ - ( d -  1)).. . . .  m2Tji( '~ - 1) ml Tj/($) 

is symmetric in m 1, m 2, .. . ,  m a and equals 

E TJL 1 ( ~ - ( d - 1 ) )  "-.-" TS-xO:-k)m,kTS-x(~-(k-1))  
l < i l < i 2 < . . . < i k < d  

�9 " . . . . 0 ~  ( ~ j _ l -  0j_l)(~j_l -Oj_~ - 1) �9 . m i l T j t _ l ( , ) O j m : l l O J : l  . j - - I  j - - I  j - - 1  
. . . . .  2 

�9 .... ( z j _ ~ - 0 j - ~ - k +  1) 

where the sum is over all subsets {il, i2 . . . .  , ik} of {1, 2 . . . . .  d} and 
{Jl , J2 . . . . .  it} is the complementary subset (1 = d -  k). 

Proof. In the course of this p roof  we shall use the following 
abbreviat ion:  

ma~("~,--(d- 1))-.. . .  m TS(~)= T(m d . . . .  , ml) (m,,> j) 

,,hTj_ ~ (T-- ( d -  1)) . . . . .  ,,i TjL ~ (,) = T(m'a, . . . ,  m'O (m'~>j-  1). 
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o~ -1 ~_ 1(,,)= r]_l(.)o~ -1 +m~'_l(.),  m > j - - 1  
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o~ - 1 ~ ' 1 ( . 1 = ~ ' 1 ( o )  o~ -1 m, m > j  1 

These formulae imply by induction 

o~ -~ r  1 . . . .  , j -  1, m~ . . . .  ,m~) 

d - k  
= ~ 7~( j - I  . . . .  , j - l , m , j - 1  . . . .  , j - l ,  mik, . . . ,mll  ) (15) 

h = l  

+ 7~(j-1, ..., j -  l, mik . . . . .  mil)O~ -1 

where in the sum over h, m occurs in the h-th place. 

We prove the lemma by induction. The cases d =  1 or j =  i+  1 are 
obvious�9 Assume the result known for (j,d) and for ( j - I ,  d+ l ) .  We 
prove it for (j, d +  1). 

Using (8) and the induction hypothesis for (j, d) we have 

T(ma+ 1, ma, ... , m 0 = m~+lTj(~-d) T(m a . . . . .  ml) 

= [ - T j / . _ l ( ~ - - d )  OJa~ l + m a + t T j i  l ( " c - d ) ( T . j _ l - ~ j z ~ - d ) ]  

( z j _ t - ~ 7 _ l )  k! ~, T ( j -  1 . . . . .  j -  1, m,k . . . .  , m,) O~-J ~'''1 "" 6J-~ t, k 
l_--<ii <-.- <ik--<d 

=(using (15) and the symmetry statement for j - i ,  d +  i) 

= ~ ( a - k )  7 " ( J - 1 , . . . , j - � 9  ma+a,m,~, . . . ,m,)  
1-<il <,-.<ik=<d d~_k 

~ �9  Omjz J1 

l<=il<'"<ik<=d d - k + 1  ' 

+ Z T ( J - 1 ,  . j - - l ,  md+l,mik , mi )OJ_l . . . . .O  j-1 "* ~ " " " ~ Jl nljl 
l<- - i l< '"<ik<d d~_k --" 

�9 ( T ' J - l k O J J - ~ )  k ! . ( T j _ l - ~ j - - ~ - k ) "  
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Collecting the first and third sum together we find 

T(md+l, ma, ..., ml) 

j-1 Oj-1 --- ~ T ( j - 1  . . . . .  j - l ,  ma+~,mik . . . . .  mi,)Om, "..." mj, 
1-</1 < . . .  < ik <=d d2k 

\ k+ 

+ ~ : ( j - l , . . . , j - l ,  mi~,...,mi,)O j-im~+l Omj,J-i" ... .Oi-l,,~, 
1 <= i l  < "" < ik<=d d - - k + l  

which proves the desired formula. The symmetry assertion follows from 
the formula. 

The above lemma gives immediately an inductive proof of the 
following formula valid for 1 < i < j < n and j <_ m 1 . . . . .  m d < n: 

T.i  . . . .  i ,,2 j ( , - ( d -  1)) �9 m2T](,- 1)mTj (*) 
(16) 

: E O~bl, O~ 2" ' ' "  "O~h h C~1,:~2: ..... h ...,bh 

where the sum is over all arrays al '  a2' " " '  ah of integers with following 
properties: bl' b2, "" bh 

(A) i<bl  <=b2<=...~bh_a<j 
bh_a+l=md . . . .  , bh_l=m2, bh=ml 
al <bl, a2 <b2, . . . ,  ah_a<bh_a 
ah_a+x<j . . . .  , ah_x<j, ah<j. 

(B) If u k (resp. v k) denotes the number of a's (resp. b's) which are equal 
to k, then Uk=Vk <=d for i < k < j  

u i = d .  

The C-factor in the formula (16) has the value: 

1-[ I-I 
i < k < j  O < - s < d - - u k  

Note that the number of terms in the sum (16) is 2 <~-i-1)d. We now 
substitute m d . . . . .  m 2 = m~ = j. In order to simplify the sum (16) observe 
that 0~ ~ ' =  0~'~ so that the factors in each product ~b~ 0~ ... can be 
rearranged in lexicographic order. Collecting together terms involving 
the same product in the 0's (up to order) we find: 

Theorem. 
Tj(z-(d- 1))..... Tj ('r- 1) T](~) 

{ 
(17) = Z d !  I-] [ ( Z U : ) ! ( a - Z u : )  !] 1-[ (N;), <g< ~ d - Z N  :] 

(N)  i < c < j  a a i < _ a < b < - j  " i j 
a 
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where the sum is over all matrices (N~) with non negative integer entries 
such that N~=0 unless i<a<b<j ,  ~ N ~ = ~  N~<d for all i < c < j  and 
Z N j a = Z  i a b N~=d. 
a b 

Another  application of the lemma is the following 

Proposition. 

(18) 
where 

and 

T}_ l (a( ' ) -  1) Tj(a)= Tj(a (1)- 1) Tyi l(~r) 

l < i < j - l < j < m < n  

O "(1) ~--- ((71, 0"2, . . . ,  O'j_ 2,  fly-- 1 "~ 1, o-j- 1, a j+ l, ..., o-.). 

Proof First note 

(19) Tj_ i(a- i) i i i jTj_I(IY)=jTj_I(6-1) Tj_l(O" ) 

which is a special case of the Lemma (d=2). Using (19), (8) and (9) we 
have: 

Tj_ i (er") - 1) T / ( a ) -  T S (n "(1) - 1) Tj_ 1 (a) 

= T j l  1(0 " ( i ) - l ) ( T j i  l(o')0~j.-1--~ - j T j / _ I ( G ) ( O - j _ I - ~ - ~ ) )  

- (Tj_  ,(a o ) -  1)0~ -~ + ,Tj_ ,  (d  ' ) -  1)(ffj_l-  ~-_I) ) Tj._ 1 (,) 

= Tji 1(~ - 1)(T/_ ~(~)0j-~- ~ -' Tj'_, (a)) 

-'~ Tj/_I ((7 - -  1) j Tj/._ 1 ( ~ ) ( o ' j _ l  - -  0 ~ - I )  --(O'j--  1 -- '(0~-- I -~ 1)) 

= Tj_, 0 , -  1)yTj_, (~) (1 - 1)=0.  

2.6. We now consider the commutat ion of the powers of 0~_~ with 
T / ( ~ - ( d - 1 )  . . . . .  ~). We first consider the case a=j. 

Take a=j  in the formula (13). Using (18) we can bring Tj_ , (~-h)  
to the front, commuting it successively with the factors of 

1) . . . . .  1)). 
We find 

(20) 

Oj_ 1 Tji( '~--(d - 1) . . . .  , * ) -  Tj(,(1)- (d - 1) . . . . .  ,(1)) 0j_l 

d--1 
= Tj_ l (~-  ( d -  1)) T j ( ~ - ( d - 2 ) ,  ..., ~) Z (c(~)-2h)  

h=O 

= Tj_l (, - (d - 1)) Tj ( r  ( d -  2) .... , "c) d(c (~) - (d -  1)). 
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This can be generalized as follows: 

L e m m a .  

(O~_f TS(~-(d-  1), . . . ,  T)= Z TS_I(~-(d- 1), . . . ,  ~-(d-s ) )  
O<=s<min(l,d) 

where 

c~'~ (~) = ~ (c ( , ) -  a + 0 . . .  (c (~) - a + t - s + 1). 

Proof. The case l =  1 has been just proved. Assume (21) to be known 
for I. We prove it for l +  1. Apply 0~_ 1 to both sides of (21) and use (20): 

(oL o ,+l . . . . .  

= ~ rj i_ l ( ' ~ - ( d -  1), . . . ,  ~ - ( d - s ) )  T j ( , " - ' ) -  (a - s -  1) . . . .  , ~,'-~,) 
$ 

�9 t v j -  11 

+ ~, TS_l(z-(d-  1) . . . .  , ~-(d-s ) )  T ] _ t ( z - ( d - s -  1)) 
$ 

�9 r ~ ' ( r  (d - s - 2 ) , . . . ,  r  (a - s ) ( c (~  . - ~ )  - ( d -  s - 1)). 

�9 ( ~ _ l ) ' - ~ ( d s )  c~'". 

Use now 

(c ( ~ -  ~))- (d - s - 1))(0j_ 1)'-~ = (~_ 1)'- ~ (c (v) -  d -  s + 21 + 1). 

We get the following recurrence formula 

c~'+l)('O=s(c('O-d-s+ 2/+ 2) c,_1(" (') ~) +c~')(v) 

from which the desired formula follows immediately. 

2.7. It follows from (17) that  

1 
d! T](~-(d-  1), . . . ,  ~)~q/z" q/o. 

The following result is fundamental  for the applications in Chapter  3. 

Theorem. Assume n > a > b >= l, l < i < j < n, l>=1. Then 

(~)t 1 TS(t_(d_ l))...,. T//( t_l)  Tj(t) 
l! d! 

(21) 
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, ( 0 ~ : )  s 
belongs to the left qlz-ideal I generated oy ~-(--. , a > a' > b' > b, s > 1 

('-h-')" 
Proof  First  note  that  the general  case follows by induction f rom the 

case b = a - 1  using the formula  

(22) 

(o~)' ( ~),+1 (o~) ' - *  ( g - ' ) ~  ( g - 0  ~ 

l ! -  ~ -- ( l -h)!  ht h' l < h < l  

+ ( - 1 ) '  (O"~-l)z (O~b-1)l 
l! l! ( a > b + 2 )  

which is p roved  by a s t ra ight forward induct ion on I. No te  that  (22) 
shows also that  q/~ is generated as a ring by 

(0~-1)l 2<_a<n, l> l .  
I! ' 

Assume now tha t  b = a - 1 .  

Case 1. a= j .  We can rewrite (21) in the form:  

(0}_1) t 1 T j ( ~ - ( d - 1 ) ,  v) 
l! d! . . . .  

1 1 
= Z s-~ G x ( x - ( d -  1) . . . . .  ~ - ( d - s ) )  ( d - s ) ,  

0 <s_< min (/, d) 

�9 T] ( ~ " - ~ ) - ( d - s -  1) . . . . .  ~a- ~)) 

(OJ-O'-~ ( c ( ~ ) - d + l ) . . .  �9 ( c ( ~ ) - d + l - s +  l).  
( l -  s) ! 

We take  now �9 = (t + i, t + 2 . . . .  , t + n) (cf. (7)). The  terms cor responding  
(o~_1) ' -~ 

to s < l are left q/z-multiples of �9 the te rm cor responding  to s = l 
is a left q /~mul t ip le  of  ( l - s ) !  ' 

c (x) - -  d + 1 = 3}_ 1 (01 - t - i) - (0j - t - j  + d) 

= (01  - 1) - ( 0 ~  - j )  - d --[- (~}_1 - 1 ) ( 0 1  - t - i )  

and the theorem is proved  in this case. 
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Case 2. a 4= j. Applying formula (13) with -c = (t + 1, t + 2 . . . . .  t + n) and 
a+-j we find 

~a-l~--~l T j ( t - ( d - 1 ) ) -  ... " T j i ( t -1 )  T j ( t )=xOa_l  + U ( O i - t - i )  

where x, u e q /~ .  o//o. 

Note  that  the inclusion ueq /~  �9 q/o follows from the fact that  

u (01 - t -  i) �9 ~ .  ~o 

combined with the fact that  u does not  involve 0 I. 

The  result follows now clearly from the following 

Lemma.  Let  y e q l~ .  ql ~ be such that 0",_ 1 Y = x O"a_ 1 + U (01 -- C) where 
x, ueq l~  . ql~ ce2g. Then for any l>__ 1 we must have: 

o ,  (O h) (23) (0,"_1) t (0,_ 1)_ i c 
l! Y= 2 xs s! I -2Uh 

l<s<l h>l 

where xs, UhEdll~ �9 ~ll ~ for all s, h and uh=0 for h large 

Proof. It is easy to see that we can find unique elements %, 
uhe(q/~,  q/O)| such that  (23) is satisfied and u h does not  involve 01 
for any h. Expressing x~, u h in terms of the basis (2) it follows easily that 
%, u h must lie in q/~ �9 q/o. 

2.8. It is natural  to try to find the greatest integer N (i, j, d) such that  
1 

N( i , j ,  d) T j ( ~ - ( d - 1 )  . . . .  , ~)eq/z- F r o m  (17) and from the fact that  (2) 

is a Z-basis of q/2, it follows that  

N (i, j, d )=d!(~  (d)) j - i - 1  

where 4 (d) is the greatest c o m m o n  divisor of the numbers  

N ! ( d - n ) ! ,  O<_N<_d. 

Some elementary number  theory shows that  

( d + l ) !  
4(d)= I-[ pVO,p~d+ln 

P 

(product  over all primes). For  example:  4 (1) = ~ (2) = 1, 4 (3) = 4 (4) = 2, 
4 (5 )=4(6 )=12 ,  4(7)=48,  4(8)=144,  etc. We note that the conclusion 

1 
of Theorem 23 becomes false if in the statement one replaces d! 

1 
by N (i, j, d) " (Take for example 1 = 2, j = i + 2, d = 3.) 
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and 

2.9. Let q/~ be the subring of q/z generated by 

[Oj.] l<<_i,j<n, i . j ,  Nj>=I 
\ N ] '  

Di ~Qi+ 1\ 

~i ~.i+1~ l < i < n - 1 ,  N~>I .  
NI ] . . . .  

Then q/~ is the Kostant Z-form of the enveloping algebra of ~1,. It is 
easy to see that q/~ is precisely the commutator subring of Y/z- The 
elements T](t)eql  z defined by (5) do not in general lie in q/~. 

Let 

S~ = Z 01~ 01~ "'' " 0!"-' Oi. " ((0! - D- (0~ -Jl)) 

�9 ((oi-" - J2 J, ,) (oil-j2))..... ((oi- i)-  (oj,-:~)) 

where the sum is over the same set of indices il < i  2 < " ' "  < i  k as in (5); 
J1," J2, ... , Jl are also defined in (5)�9 Then Sjel q/7' and 0~_ 1 S~ belongs to the 
left q/~-ideal generated by ~ _  1 and (01 - i) - (2  - J )  - 1 for any a, 2 _< a < n. 

(SOd (O~')t (SJ')a (a > b; l > _ 1) More generally the element ~ belongs to q/~ and I ~  d ! 

(0~i)~ (a> a'>b'>_b, s> l )  and belongs to the left Yg~-ideal generated by ~ _ _ 
(01 - i ) -  ( 0 j - j ) -  d. We have the equality 

(S~)d=s~ ] J  [(E N: ) ! (d - -Z  N:)!] l~ (~)Ng 
d[ ~'~ i<~<j ~ . i<.<b_<j (N~)! 

[(0 I -  i) - (0~-  c)] 
I7 ~ d _  Z N; 1. i<c<j  

These statements can be easily deduced from (5), (17) and 2.7 using the 
following obvious 

Lemma. Fix i, l < i < n  and t~Z .  Then any u~ql  z can be written 
uniquely in the form:  

t>=o l ' 

Notice also that 

d! = e! ~ ' ( t - (d -1 ) ) . . . . .  r ] ( t -1)  r](t)+ F~ ~, 
l_>l 

where v I ~ q/~. 
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For the main application in 3.12 the elements 

I T ] ( t - ( d -  1))....- Ti ( t -  1) Tj(t), (S~)d 
d! d! 

are indistinguishable since there we work modulo the left q/7-ideal 

3. The Tensor Space 

3.1. Let V be a free Z-module of rank n and let TV= Y'. V | be the 
r_>_0 

tensor algebra of V; we use the notation V| V|  V@... @ V (r factors). 
Z Z Z 

The symmetric group Sr acts in V | by place permutation: if 
(tr(1), a(2) . . . .  , o-(r)) is a permutation of (1, 2, ..., r) we have 

G (/)1 |  |  | Dr) =/)a(1) | |  | (r) 

for any vl, v2 . . . .  , vr~ V. In this way V | becomes a left Z [Sr] module. 
Let GL(V) be the group of automorphisms of V. Then GL(V) acts naturally 
on V | Let X1, X2, ..., X, be a basis for V; the non-commutative 
monomials XilX~2.....X~r in 1-1 correspondence with sequences 
(i l ,  /2,  " " ,  ir) of integers between 1 and n form a basis for V | (Here we 
use the abbreviation X~I| Xi2 |  | X/r = Xil X i . . . . .  Xi .  ) In terms of 
the basis (Xi), GL(V) ~- GL, (Z) and if g ~ GL, (Z) we have 

(24) g(XjXj~ Xj,)= ~ ,~ i2 ' �9 ...- g j, gj . . . . .  g~ X~ Xi -...- X~ 
(il, i2 . . . . .  Jr) 

where g (X) = Y' g~ X,. 
i 

Let 0~: TV-* TVbe the unique derivation of the tensor algebra such 
that O~ (X~) = X), O~ (Xh) ---- 0 (h 4= i); it is clear that O~ ( V | ,) ~ V | r. 

O~ is related to the GL~(Z) action on V | as foUows: 
Let g~ (u) ~ GL~ (Z), u ~ 7Z be defined by g~(u) (X~)-- X~ + u X j, g~ (u) (Xh) = 

X h (h~i) in case i4:j and by 

g~(u)(Xi)=(l +u)Xi, g~(u)(Xh)=X h (h:~i), u:~O, 

in case i=j. 
Then on V | 

(25) 
E s! 

s>=O 

z (~ s>=O 

in case i 4: j 

in case i=j, 
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(0 3 (These are finite sums since ~ and are zero on V ~' for large s.) 

This shows that ~ (i~ej) and map V | into itself rather than into 

V|174 Q. It is clear that the operators 0}E End (V| satisfy the relations (1) 
so that we get a left ~z-module structure on V ~ commuting with the 
action of Z [S~]. 

Theorem. (i) The natural ring homomorphism 

2~ [S,] ---, Endez(V| 

is an isomorphism provided n > r. 
(ii) The natural ring homomorphism qlz---~ Endzts~ l (V | is surjective. 

Proof It is easy to see in terms of coordinates that for any commutative 
ring A, 

End~a (V | @A) ~ Endouz (V | |  
and 

Enda [sr] ( V| |  - Endztsr ] (V | |  

(where by definition q/a = ~ z |  similarly we put 

0gf = ~ |  ~//~ =q /~174  

It is then enough to prove that for A an arbitrary infinite field, the 
natural homomorphisms 

(i') A[S,]--,EndouA(V|174 (n>r) 
(26) 

(ii') qlz|  --~ EndA[srl(V| QA) 

are surjective. (The first one is clearly injective.) 

Here we have used the following general fact: let u: LI-* L 2 be a 
homomorphism between two free Z-modules of finite rank. Then u is 
surjective if and only if u |  LI@A---~L2@A is surjective for any 
algebraically closed field A. 

We have the following 

Lemma. I f  A is an infinite field, the natural homomorphisms 

(i") A [S~] --~ End~,(A)(V | |  (n >- r) 
and 

(ii") A [GL,(A)] --, EndAts,j(V| | 

are surjective. 

15 Math.Z., Bd. 136 
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To conclude the p roof  of the theorem note that  (i") and (ii") imply (i') 
and (ii') using (25) and the fact that  g}(u), u~A, i#j  and gi(u), u # - 1  
generate  GL,(A). 

Proof of the Lemma. (i") Let t e  End,~L,(a)(V| | A). Then  

t(XjtXj~'"" Xjt.)= Z t~t~ ..... ~t.Xit'"" X,. 
(Jr . . . . .  it.) 

where i, ..... i, i t)t ..... j eA. Let  g: V --~ V b e  given by g X j = ~ g j X  i. 
Then  g acts on V | by the formula  (24). Since t and g c o m m u t e  

on V | we mus t  have:  

, . . . .  r " i2 it. ~ ..... ~ g~ gj~'... 'gj.X~t'"" Xk~ 
(i~ . . . . .  i~) 
(kl . . . . .  kr) 

E ~rklork2 . . . .gl~rir lt . . . . .  ir . = o~, ~,i~ �9 t) . . . . . .  j~ Xk~ . . . ' X ~ t .  
(i l  . . . . .  i . )  
(kl . . . . .  kr) 

It  follows that  

(27)  E .. . . . .  i, . . . . .  :. t i t  . . . . .  ir g j ~ ' " "  " g j , =  Z Jt . . . . .  J ,  gJ~ " "  
(il . . . . .  it.) (Jr . . . . .  J r )  

for any (k x . . . . .  kr), (Jl . . . .  ,Jr), and any g} with det(g~)#0: Since A is 
infinite (27) must  be true even wi thout  the restriction de t (g) )*  0. So (27) 
can be regarded as an identity in the indeterminates  g}. 

C o m p a r i n g  coefficients in (27), it follows that  t~,'.'.'."~ ~ = 0  if (kt, . . . ,  k,) 
is not  a pe rmuta t ion  of (i~, . . . ,  it). 

Assume now that  ka, . . . ,  k r are distinct and (i~, . . . ,  it) are distinct. 
It follows f rom (27) that  

a(k~)  . . . . .  a(kt . )  - -  i t  . . . . .  i .  

Hence  there exists a unique function ~o: S r ~ A  such that  ~t(k~';,'~[,,(kr)= 
~0 (a) whenever  kl, . . . ,  k r are distinct. 

Assume  now tha t  k a . . . . .  k, are a rb i t ra ry  but  i 1 . . . . .  i r are distinct 
(this is only  possible if r < n). It  follows f rom (27) tha t  

t k t  ..... k. is a sum of  expressions t~(io, .:.,,(it.) 
a ( k t )  . . . . .  a ( k r )  tt . . . . .  t~ 

where z runs over  a certain subset of  S r. 

It  follows that  all coefficients of t are linear combina t ions  of  r! pa- 
rameters  ~o (a), aE St. 

This  shows tha t  d im EndaL,(A)(V*r| and (i") is proved.  Fo r  a 
s t ra ightforward p roo f  of  (ii") we refer to Thral l  [13]. 
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3.2. Weyl Modules. Let A be a commutative ring with 14= 0 i.e. with 
non empty spectrum and let V be a free A-module of finite rank, n say. 

Let # = (#x >-- #2 > " "  >/as > 0) be a partition of r =/ax +/a2 + " "  +/as 
into s integers. (s is the number of parts of the partition.) It will be useful 
to make the convention that/ah is defmed for all h > 1,/ah = 0  for h > s. 
/a defines a decomposition of the set {1, 2 . . . .  , r} into subsets Ix, 12 . . . .  , Is 
where 

Ih={UeZ, l~U--(/al+/a2+."+/ah_l)<'~/ah}, l<<-h<_s. 

Let V* = Horn (V,, A). There is a canonical pairing ~ |174  ~ ,  |  which 

will be denoted by ( , ). a 
Here V| = V| V@... @ V (r factors). The symmetric group S~ acts 

A A A 
on V ~ by the formula 

and on V* | by a similar formula, so that we have 

(o(~1| ~:2 |  | ~,.), ~ |174174 

for e x . . . . .  ~,e V,, e' x . . . . .  e ;eV* (p=a-1) .  

Define V~ to be the set of all tensors X ~ V | satisfying conditions (28) 
and (29) below: 

(28) (X,  ~ | e~ |  | ~;7 = 0 

- - t  -- t  - - ~  whenever v x . . . . .  v,~ V are such that there exist i:~j in the same subset 
Ih (1 <_< h < s) such that ~'i=-~}. 

(29) For any 1 < h < s = 1 and any J, J c I h + 1, J :t: ~ we have 

y~ ~(,r)ax=o 
o~ad(J) 

where a runs over the set fg(J) o f  all permutations o f  {1, 2 . . . .  , r} which 
are the identi ty outside Ih u J  and such that a( i )<a( j )  for  i< j in I h and 
for  i < j in J. 

Note that i f /a=(1)  the conditions (28) and (29) are empty so that 
~(1)= ~.. On the other hand if/ah >n  for some h then VZ = 0  (cf. (28)). 
We also remark that in case 2 is invertible in A, (28) is equivalent to the 
equation a X = e (a )X where ~r is any transposition interchanging i + j  
in the same subset Ih. The symmetric and exterior powers are special cases 
of this construction, in fact S" V = V ~ for/a = (1 >_ 1 >_.-- >_ 1), r components, 
and A' V = V ~ for/a = (r). 

15" 
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Note that in the presence of the alternacy condition (28) and assuming 
n! invertible in A, condition (29) is equivalent to 

(30) (Z e (a) a )X  = 0 where a runs through all permutations of {1, 2 , . . . ,  r} 

which are the identity outside I h vo J. 

In fact this is just Eq. (29) multiplied by the numerical factor/*h ! IJI ! 
which is invertible in A since we can assume/~h<n, ]J[ <#h+~ <n. 

It is clear that condition (30) for J arbitrary is equivalent to condi- 
tion (30) for J such that IJI = 1. 

It follows that V u can be defined by conditions (28) and (29) with 
IJI = 1, provided n ! is invertible in A. 

Returning now to the general case we prove that in the presence of 
(28), condition (29) is equivalent to 

(31) ( 
a~'(J)  

where a runs through the set f~'(J) of all permutations in N(J) (see (29)) 
such that a (J) c I h . 

To prove the equivalence of (29) and (31) let Ua be the  left hand side 
of equality (31). Note that u: makes sense also when J is empty so that 
(31) states that 

(32) u s = ( -  1)lJlu~ for any J = l h +  2 . 

It is clear that in the presence of (28), condition (29) is equivalent to" 

(33) ~,, u s,=O for J non-empty fixed, JcIh+l .  
J ' c J  

Assume first that (32) is true. We have 

Z us'=( Z (- l)IS'l)u~ =0 
l ' c J  J ' ~ J  

since J : ~ Z  hence (33) follows. Assume now that (33) is true. If IJ[ = 1, (33) 
is the same as (32), assume now (32) true whenever IJl~=a, a~=l and let 
J be such that IJI = a +  1. Then 

u j = -  ~, u s , = - (  Z (-1)lJ' l)u~=(-1)tJLuz 
J ' ~ J  J ' ~ J  
IJ'l<a IJ'l~a 

and the equivalence of (32) and (33) and hence that of (29) and (31) is 
proved. 

Note that in case #h=l~h+, and J=Ih+ 1 the equality (31) takes the 
form of a symmetry condition 

(34) a X = X ,  X s  V ~' 

where a is the unique permutation in f~'(J). 
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We shall call V u the Weyl module associated to V and/~. It is clear 
that V--* V" is a covariant functor from the category of all free A-modules 
of finite rank to the category of all A-modules. (We shall actually prove 
that V" is also a free A-module of finite rank.) Indeed if V, V' are two free 
A-modules of finite rank and t: V ~  V' is an A-homomorphism it is clear 
that t| V |  F ' |  takes ~u into V'". In particular V" becomes a 
GL(V)-module. 

Example. Take # = ( 2 > 2 ) .  ~u can be described in this case as the set 
of all tensors 

X =  Z x(i jkl)XiXjXkXt eV| 
i , j ,k,l  

1 < i,j, k, l<n, x( i jk  l)eA such that 

x ( i j k l ) = - x ( j i k l ) = - x ( i j l k ) ,  x(iikl)=x(ijkk)-=O, 

x( i jk l )+x(jki l )+x(ki j l )=O, x(i jkl)=x(kli j) .  

These four conditions are precisely the identities satisfied by the 
Riemannian curvature tensor in Riemannian geometry. The third condi- 
tion is known as the Bianchi identity. 

Note that the symmetry condition x (ij k l)= x(klij)  follows from the 
other conditions provided 2 is invertible in A. 

3.3. We wish to describe some A-basis for V" and to do so we recall 
some classical notions concerned with partitions. 

Let 2 be the partition (21 > 22 ~_~"" ~> 2u > 0). The partition diagram [2] 
associated to 2 consists of 21 + 22 + " "  + 2, = r squares arranged in con- 
secutive rows so that the first row has 21 squares, the second row has 22 
squares and so on. The rows are counted from top to bot tom and arranged 
so that they all start from the same left extremity. The columns are 
counted then from left to right. It is clear that the i-th column must have 
,~i squares where 2 is the partition dual to 2. We assume that ]~=#, 

=(#1 >#z  > " "  > #~ >0). 
A A-tableau is by definition a way to distribute r natural numbers 

(not necessarily distinct) in the r squares of [2], one number in each square. 
A A-tableau is said to be standard if it contains all numbers from 1 

to r so that they increase from left to right along each row and form top 
to bot tom along each column. There is a unique standard A-tableau such 
that any entry in the ( i+ 1)-th column is greater than any entry in the 
i-th column for all i. This is called the leading standard A-tableau. 

A A-tableau is said to be semistandard if its numbers (which are not 
necessarily distinct) increase strictly from top to bot tom along each 
column and increase in the wide sense from left to right along each row. 
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A 2-tableau is said to be of type 2', 2' =(2~, 2~ . . . .  ) (2'i not necessarily 
decreasing) if it contains the number i precisely 2'i times for all i > 1. 

Let :-(2,  2') be the set of all 2-tableaux of type 2' and let Joo(2, 2') 
be the set of all semistandard 2-tableaux of type 2'. 

There is a unique tableau in ~00(2, 2); it is called the leading semi- 
standard 2-tableau. It has the number i in each square of the i-th row, 
for all i. 

Define the k-th position in a partition diagram to be the square in 
which the leading standard tableau has the number k (1 < k< r). 

Let a be any permutation of { 1, 2 . . . . .  r} and let T be any 2-tableau. 
Suppose that in the k-th position T has the entry T(k). Let a(T) be the 
2-tableau which in the k-th position has the entry T(~l(k)) ( l < k < r ) .  
In this way, the symmetric group S, acts on the set 3-(2, 2'). 

We consider functions f :  J-(2, 2 ' ) ~  G with values in some abelian 
group G satisfying properties (35), (36), (37) below: 

(35) f ( T ) = 0  if T has equal entries in two distinct squares in the same 
column. 

(36) Let T, T ' e J ( 2 ,  2') such that T' is obtained from Tby  a transposition 
interchanging two squares in the same column. Then 

f ( r ) + f ( r ' )  =0 .  

(37) Let I s, I2 , . . . ,  I s, J c lh + l , f~' ( J) be as in 3.2, so that I h can be regarded 
as the set of squares in the h-th column. Then 

~(a) f (a  T ) = ( -  1)lsl f (T ) .  
ae~'(d) 

Note that if #, = Ph + 2, (37) implies 

(38) f ( a  T) = f ( T )  where tr is defined as in (34). 

Lemma. Let f :  9-(2, 2') ~ G be any function satisfying (35), (36), (37) 
and hence also (38). Then the image o f f  lies in the subgroup of G generated 
by f(~oo(2, 2')). 

Proof. The result is obvious for partition diagrams with 1 square. 
We assume the result for all partition diagrams with r - 1  squares. Let 
[2] be a partition diagram with r squares. 

Let G' be the subgroup of G generated by f(Joo(2, 2')). We want to 
prove that f (T )E  G' for all Te~'-(2, 2'). Let l (T)> 1 be the smallest integer 
such that the set of entries of T in the last l(T) columns of [2] includes 
one of the maximal entries of T. 

Assume that f (T )  e G' for all T such that l(T) < lo (lo > 1). Let T be 
such that I (T)= lo + 1. Then the maximal entry of T, say N, must occur 
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in the (l 0 + 1)-th column C (counted from right to left). We can assume that 
this column is strictly longer than 10-th column C (counted from right to 
left). Indeed if C and C' have the same length we could apply (38) and get 
that f (T )=f (T ' )  where l(T')=lo and the induction hypothesis would 
show that f (T)~ G'. 

If C is strictly longer than C' then it ends in a corner square Q of [2]. 
Using (36) we can assume that N actually occurs in Q. 

By removing the corner square Q_ from [2] we get a new partition 
diagram [2] with r - 1  squares. Let 2' have the same components as 2' 
excent for the N-th component: 

--!  t 2N = 2N - 1. 

There is a natural map t: J-(2, 2')---, J-(2, 2') obtained by adding to a 
2-tableau T the corner square Q with the entry N. 

Moreover the image of any semistandard tableau under i is either 
semistandard or has two entries equal to N in the same column (in which 
case it annihilates f,  cf. (35)). 

Consider the function fo t: ~'-(,~, 2') ---) G. This function clearly satisfies 
(35) and (36). It does not satisfy (37). However, a close look at the defini- 
tions shows that fo ~ satisfies (37) modulo terms of the form +_ f(T') with 
l(T')< l o. It follows from the inductive hypothesis with respect to l(T') 
tha t  f(T')~G' if l(T')<l o. We conclude that the function Hofoz: 
J-(2, 4')---> G/G' where 1I: G---+ G/G' is the canonical projection, satisfies 
(35), (36), (37). Note that Ilofo Z(Joo(2, 2'))=0. If T =  t - l (T)  the inductive 
hypothesis with respect to r implies that Hofo t(T)--0 hence f(T)eG'. 
This proves the validity of the induction step from 1 o to l o + 1. The first 
step of the induction (lo = 1) is proved in a completely similar manner. 
This completes the proof of the Lemma. 

3.4. Now let ~--(2) be the set of all k-tableaux whose entries are all 
the numbers 1, 2 . . . . .  r without repetition. Let ~oo (2) be the subset of ~-(2) 
consisting of standard tableaux. 

Consider functions F: ~--(2) --+ G with values in some abelian group G 
satisfying properties (39) and (40) below: 

(39) Let T, T'~--(2) be such that T' is obtained from Tby a transposition 
interchanging two squares in the same row. Then F(T)= F(T'). 

Let [h be the set of entries in the h-th row of the leading standard 
k-tableau (l__<h__<u). Let J be some non empty subset of [h+l, h fixed, 
1 _< h_< u - 1. Let ~'(J) be the set of permutations of (1, 2 . . . . .  r) which are 
the identity outside i h u J ,  satisfy a(i)<a(j) for i<j  in [h and for i<j  in 
Z and are such that a ( J )c  [h. Then 

(40) ~ F(a(T))=(-  1) IJr F(T) for any Te~'--(2). 
ae~'(J) 
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Note that if J~h = J~h+l,  (40) implies 

F(a(T)) = ( -  1) IJI F(T), 

where a is the unique element of (q'(Ih+ O. 
Let f~(J) be the set of permutations defined in the same way as f~'(J) 

except that the condition a (J) c Ih is dropped, The condition (40) is then 
equivalent to 

(41) ~_ _F(a(r))=O, TEY(2) 
a~(J) 

provided it is known that F satisfies (39). The equivalence of (40) and (41) 
is proved in exactly the same way as the equivalence of (29) and (31) 
(see 3.2). 

Lemma. Let F: ~-'(2)--~G be any function satisfying (39) and (40). 
Then the image of F lies in the subgroup of G generated by F(Yo(2)). 

The proof is completely similar to the proof of Lemma 3.3 (use double 
induction on r and on l(T), where l(T) is the smallest integer > 1 such 
that the maximal entry of T occurs in one of the last l(T) rows). 

3.5. We have already remarked (3.2) that V" = 0 if some part of # is 
strictly greater than n = rank V (We use the notation of 3.2.) 

On the other hand if all parts of p are < n, we have V ~ 4: 0. In fact let 
X~, X2, ..., X, be an A-basis of V. The choice of this basis amounts to a 
choice of an isomorphism V ~  V|  where V is the free Z-module with 

z 

basis X1, XE . . . .  ,32,; we have -gi = X~ | 1. 
Then 

~#= 2 ~(ffl) Xal(1)Xal(2)'"" Xcr,(lq) 
O't ESbt 1 

(42) Z 
O'2 ES/~ 2 

�9 . . . "  F ,  

f f s~S1 . t  s 

satisfies (28), (29) (by elementary properties of determinants) hence it lies 
in V"; it is clear that ~b" + 0. Note that ~" is not defined if #h > n for some h, 
l<_h<_s. 

Since V | is a ~z-module (see 3.1) we get a natural ~llA=~174 - 
T 

module structure on V|  V|174 by extension of scalars. We now 
z 

claim that Vu is a ~ of F | In fact since ~A commutes with 
the place permutations (i.e. S" on V| the set of tensors X s  V | satis- 
fying (29) is ~#A-invariant (the condition (29) involves an element in Z IS J). 
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We prove now that the set of tensors X e V  | satisfying (28) is also 
- - O r  q/A-invariant. Consider the set S , j ( V  ) of all tensors X e  V | satisfying 

(X, ~ |  |  | = 0 whenever ~;, ~ . . . . .  ~',~V* 

and vi = vj (i < j fixed). Let | r -' -' _ S i j ( V  ) be the similar set constructed from 
V instead of V. 

It is easy to see t h a t  Si, j (v |174174 h e n c e  Si, j(v| = 
A 

& , i ( V | 1 7 4  Hence it is enough to prove that | &, j (V  ) is q/rinvariant. 
z 

But since 2 is not a zero divisor in Z we have 

(43) 

and 

& , j ( V |  { X  e V | a X =  - X }  

where a is the transposition (i j). Now this again involves an element of 
Z [S,] and the claim follows. 

The elements 0 {N) q~" (see (2)) must then belong to V u for all matrices 
N = (Nj), N] > 0 N]~Z. 

It is clear from (42) that 

(0})$' ~ " = 0 ,  n > i > j > l ,  Nj_>I 
(Nj)  

(44) / i  x[0i_2i] ~ " = 0 ,  lN i<-n ,  Ni/>l .  
\ N ; I  = 

(Recall that 2 is the partition dual to #.) Next we study the effect of 
applying elements of ~ 2 to ~u. Let T be a 2-tableau with entries T(1), 
T(2) . . . . .  T(r) in the positions 1, 2 . . . . .  r, such that T(i) < n for all i. Con- 
sider the element 

X(T) = E g (0-1) XT(aI(1)) XT(a*(2)) " ' ' ' "  XT(aI(#I)) 

(45) " 2 ~ ( ~  XT(~2(/zl +1))" . . . "  XT(a2(tq+#2)) 
cr 2 

. . .  Z + ... + , s - ,  + , , )  . . . "  + ... 
ffs 

where o h runs through the group of  all permutations of  the 14 numbers 
#1 "~- IJ2 -~ " "  "~t- # h - 1  -~ 1, . . .  ~ 1~1 ~- I~t2 - } -""  "At- l~lh �9 

Then ~u=Xcr) where T is the unique semistandard 2-tableau of 
type 2 (see 3.3 and (42)). 

The following formula follows by applying repeatedly the definition 
ofO}: ~| ~| 

(46) [ I  (Nj)' 
l<=i<j<=n 
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where the sum is over all 2-tableaux T such that T has Nj entries equal to j 
(1 =< i< j ~ n )  and (2 i -  • Nj) entries equal to i in the i-th row. (The factors 

j , j>i  
in the product are taken in lexicographic_ order (see 2.1).) 

Since V" is a q/A submodule of V | we see that the left hand side of 
(46) must lie in V". 

Theorem. Let # = (#1 >= #2 >""  > #~ > 0) be a partition of r = #1 + 
#2 +""  + #~ such that #h < n (1 N h < s), n = r a n k  V, and let 2 be the partition 
dual to #. 

Then the elements (46) in 1-1 correspondence with the set of integral 
matrices N] (1 __< i < j <= n) such that Nj' >_0 and 

,+1 
(47) Nj+(NJ'+I ,+1 , ,+1 -N, '  )__<2,-2,+ 1 

(l<=i<j<=n) 
form an A-basis of V ~. 

These basis elements are also in 1-1 correspondence with the set of 
semistandard 2-tableaux. 

Proof We first prove that the elements described in the theorem are 
linearly independent. 

Let T, T' be two 2-tableaux. We say that T is equivalent to T' if and 
only if the sum of entries in the i-th column of T equals the sum of entries 
in the i-th column of T', for all i. Let IT] denote the equivalence class of 
T. On the other hand we say that T >= T' if and only if the sum of entries in 
the first i columns of T is greater or equal to the sum of entries in the 
first i columns of T' for all i. Clearly T__> T' and T' _> T imply IT] = IT']. 
We get then a partial order on the set of equivalence classes of 2-tableaux. 

Let N=(N])a_<i<j__< . be an integral matrix with Nj__>0. Let 0 (N) ~" be 
the left hand side of (46) and let 5g N be the set of 2-tableaux T occurring 
in the right hand side of (46). It is clear that 5r is non-empty if and only if 

NL1 ' +Ni+2+'"+N~'==_2~ for all i, l<_i<_n-1. 

Assume that 5PN is non-empty. There is a unique tableau T n in 5PN whose 
equivalence class is strictly less than the equivalence class of any other 
tableau in 5g u . TN is characterized by the fact that its entries are increasing 
in the wide sense along each row from left to right. It is easy to see that 
TN is semistandard if and only if N satisfies (47). Note that the condition 
N/+ 1 + N ] +  2 + "'" +Nin<=2i (1 < 1 -<n -  1) is a consequence of (47). We have 
hence a 1-1 correspondence between the set of matrices N satisfying (47) 
and the set of semistandard 2-tableaux with entries from 1 to n. 

Assume now that 

(48) ~ as" 0 (N) ~u = 0 
N 
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where the sum is over all N satisfying (47), and aNsA. Replacing 0 (N) ~u 
by Z X m ,  wefind Z (as Z X(T))=0" N~ sumcan be decomposed 

T E ~ N N T ~ ,9~N 

in sums over T in a fixed equivalence class and each of these sums must 
be zero. Consider some minimal equivalence class among the equivalence 
classes IT], T~ U ~N. The tableaux Te U ~N which belong to this minimal 

N N 

equivalence class must be all of the form TN for some N (i. e. they are 
semistandard). We find hence a relation ~ a N X(TN)=0 where N takes all 

N 
values such that TN is in the minimal equivalence class considered. Since 
the elements {X(T,O I TN semistandard} are clearly linearly independent 
we conclude that aN=0 for at least one N. Introduce this in (48); we can 
then repeat the same reasoning and find successively that all aN are 
equal to 0. This proves that the elements 0 (N) ~u where N satisfies (47) 
are linearly independent. For  any 2-tableaux T with entries from 1 to n 
define XT=XT(1)'XT(2)'...'XT(r)6V | where T(i) is the entry on the 
i-th position of T. Then an arbitrary tensor X in F | can be written 
uniquely in the form 

R=ZaTX- , aT A 
T 

where T runs over the set of all 2-tableaux with entries from 1 to n. 
Hence X can be regarded as an A-valued function f~ on the set U ~--(2, 2') 

2'  

where 2' runs over all sequences (2~, 22 . . . .  ,2',) of integers such that 
2 ;>0  ( i > 1 ) a n d  2 ~ + 2 ~ + . . - + 2 " = r  (see (3.3)). We have f~(T)=ar.  
Moreover X belongs to V u if and only i f fx  restricted to J-(2, 2') satisfies 
(35), (36) and (37). This shows that ~u can be considered as the kernel of 
L ~ | A "| a ~ Lz | A where u: L a ~ L 2 is a homomorphism independent 
of A between two free Z-modules of finite rank L~, L2. It follows that 
~u is a free A-module with basis as in the theorem for arbitrary A if and 
only if this is true whenever A is a field. [Here we have used the following 
general fact: let 0 ~ Lo ~ L~ --% Lz be a sequence of free Z-modules of 
finite rank and homomorphisms u, v such that u o v = 0. Then this sequence 
is exact if and only if 0 ~ L0 | A ~ | z ~ L~ | A "| ~ ~ L 2 | A is exact for 
any field A or if and only if the latter sequence is exact for any ring A. 
We take for L0 the abstract free Z-module with basis in 1-1 correspond- 
ence with the set of semistandard 2-tableaux.] 

Assume now that A is a field. The Lemma in 3.3 applied for G =  A 
shows that dima V u_-_ ~ ]Joo (2, 2')[ = number of semistandard 2-tableaux 

2'  

with entries from 1 to n=d(2)  (the last equality is a definition). But we 
know that the d(2) elements 0 (m ~ (N satisfying (47)) are linearly 
independent; they must hence form a basis for V" and the theorem is 
proved. 
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Corollary. Let V be a free Z-module of rank n; and let V= V@A, 
There is a canonical isomorphism of GL(V)-modules VuQ A ~- V". 

3.6. We now describe some &-modules inside V~', Let Y~ be the set 
of all tensors X~ V | satisfying properties (49) and (50) below: 

(01+~Nf+l _~=0, l < i < n - I ,  N/+~>I ,  (49) (N/+I) ! 

t (50) \ N/ I_<i_<n, N/>I. 

Recall that 2 =(21 >22 =>'" ~, l~> 0) is a partition of 21 +22 + . . .  +k~=r.  
We assume that 2 has at most n parts i.e. u < n. Note that (49) is equivalent 
to the following apparently stronger condition (cf. (22)): 

(51) (0})~} X = 0 ,  n > i > j > l ,  N j > I .  

It is clear that ~ is an A [S,]-submodule of V | ~. Note that ~ depends on 
the choice of basis in V, 

Let 
Y * =  X ,<  ..... , . . . . .  Y ,  . 

( i , , . . . ,  i~) 

Let J~ be the set of multiindices (il, ia, .,., ix) which contain h 2 h 
times (l=<h=<n). Then X satisfies (50) ff and only if a~t ..... i = 0  unless 
(it, ia, ..., i ,)aJa. Assuming that X satisfies (50), it is easy to see that X 
satisfies (49) if and only if the condition (52) below is satisfied: 

(52) For any (il , i  2 . . . .  , i ~ ) ~ ,  any l<_h<_n-1, and any non-empty 
subset d of the set {kll <=k<=r, ik=h+ 1} we must have: 

.~, a i l ,  i~ . . . . .  i;. ~ 0 

where the sum is over all multiindices (i'1, i'2, ... , i',)eor a such that tk ~k" if 
ik:~h, h + l  or if ik=h+ 1 but k~J  (1 <_ k<r). 

Note that if A is a field of characteristic zero, we can assume N/+~ = 1 
in (49) i N = 1 in (50) and I JI = 1 in (52) and the conditions are not changed. 

Returning to the genera/case we see from (43) and (44) that q~ue ~ .  
More generally for any o'eS, we have a O~ue~Fs 

Theorem. The elements a ~", in 1-1 correspondence with the set of 
permutations a of (1, 2, ..., 1") such that a applied to the leading standard 
k-tableau gives another standard tableau, form an A-basis for ~ .  

Proof As in the proof of the Theorem in 3.5 there is no loss of generality 
if we assume that A is a field. Let F: J-(2) --~ A be a function defined on 
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the set of all 2-tableaux with entries 1, 2 . . . .  , r without repetition. Assume 
that F satisfies condition (39). We associate to F a tensor XreV | 
defined by 

X--F= ~ F(T h ..... ,,) Xh ' . . . 'X i r  

where T=  T/ ...... i, is any tableau in J-(2) with the property that the 
entry k occurs in the ik-th row of T(1 =< k_< r); note that F(T) is independent 
of the choice of T, cf. (39). 

The correspondence F -*  XF induces an isomorphism , between 
and the A-vector space o~ consisting of all functions F: J-(2)--~ A saris- 
fying (39) and (41); this isomorphism describes r in a way extremely 
similar to the definition of Vu (see 3.2); (39) is analogous to (28) and (41) 
is analogous to (29). Note that (41) corresponds to (52) under L We have 
observed in 3.4 that in the presence of (39) the conditions (40) and (41) 
are equivalent. It follows then from Lemma 3.4 that dim A ~ is not 
greater than the number of standard 2-tableaux. 

We can identify the set of functions F: J-(2) --~ A with the A-vector 
space with basis {TI Te3--(2)}. Then any element in ~ can be written in 
the form F =  ~ a T �9 r .  Given any T~--(2) define m ( T ) = ~  T' where 

TeJ-(2) 
the sum is over all T' in ~--(2) which are obtained from Tby row preserving 
permutations. Define now M(T)=  ~ e(a) m(a T) where the sum is over 

the set K~ of all column preserving permutations. It is easy to see that 
the elementsM(T) with T standard correspond under z precisely to the 
dements crr described in the Theorem. In particular M(T)6~.  It 
remains to be shown that the elements M(T) with T standard are linearly 
independent. This would imply that they form a basis by our earlier 
remarks. 

The proof of this fact is very similar to the independence proof in 
Theorem 3.5. We say that T, T'EY(2) are equivalent if the sum of entries 
in the i-th row of T equals the sum of entries in the i-th row of T!, for all i. 
Let [T] denote the equivalence class of T. We say that T> T' if and only 
if the sum of entries in the first i rows of T is greater or equal to the sum 
of entries in the first i rows of T' for all i. Clearly T > T' and T' > T imply 
IT] = [T']. We get then a partial order on the set of equivalence classes 
of tableaux in ~--(2). Assume now that ~ a T M(T) =0. We have then 
also re~o(3,) 

(53) Z aT( Z m(aT))=O. 
Te~(2) aeK.~ 

This sum can be decomposed in sums over tableaux in a fixed equivalence 
class and each of these sums must be zero. Consider some minimal 
equivalence class among the equivalence classes [T'],  T'=a T, a~K~, 
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Te~oo(2). The tableaux in this equivalence class must be all standard, 
since IT] < [ a  T] for Te~oo(2), aeK~,  o-4= 1. We find hence a relation 

aT re(T)=0 where T takes all values in the minimal equivalence class 
considered. Since the elements {m(T)IT standard} are clearly linearly 
independent we conclude that ar=O for at least one TeJoo(2). Introduce 
this in (53); we can then repeat the same procedure and find successively 
that all aT are equal to 0. This completes the proof of the Theorem. 

Corollary. Let V be the free Z-module with basis X1, X2 . . . . .  X ,  and 
V = V |  Then ~ |  as A[S~]-modules where ~ is constructed 

z z 

from V the same way as ~ is constructed from V. 

Example. Take 2=(2>2) ;  ~ can be described in this case as the set 
of all functions F on the set of all standard 2-tableaux with values in A 
such that 

for any standard 2-tableau (~ ~). Note that the last symmetry condi- 

tion follows from the other conditions if 2 is invertible in A. This is a 
free A-module of rank 2. 

3.7. It is useful to change our notation slightly. We shall write 
V~ = V,, ~ = ~ where # and 2 are dual partitions of r (2 has at most n 
parts). Note that ~ is the ~ of V| generated by ~ (cf. 
Theorem 3.5) and similarly ~ is the A [S,]-submodule of V| generated 
by ~ (cf. Theorem 3.6). In particular we have ~ae Va c~ ~/~. It is an easy 
consequence of Theorem 3.5 that in fact ~ c~ ~7~ is the free A-module on 
one generator ~ .  

Theorem. Let 2, 2' be two partitions of r into at most n parts. There 
exist natural A-homomorphisms 

Hom*a (V~', Vz) ~ Vz c~ ~U z, ~0~  HOmAts,l(~zz, r 
such that 

(i) P is an isomorphism, 

(ii) Q is injective, 

(iii) I f  2 is not a zero divisor in A then Q is an isomorphism. 
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m 
Proof Let X e  V~ n ~ , .  We must have 

R = s . ~ z , = u . ~ z  for some sea[sr] ,ueqla.  

Define_ P_X~Hom~a(Vz,, V~) by (PX)(XO=sX1, XI~ V~,. We must have 
Xa =ul ~ , ,  ul~q/a hence 

sY,1 =sul ~ , = u l  s ~'~,=ul Y, eu~ v~= V~. 

It is clear that PX is a q/a-homomorphism from ~ ,  to ~ .  PX isindepe_nd- 
ent of the choice of s: assume X=sxr sleA[Sr]: then s X ~ - s l X ~ =  
u~ X - u~ X = 0. Hence P is well defined. 

We shall define an inverse P' to P. Let deHomouA(V~,, Vz); define 
P'(d)=d(~a,_). It is clear that P'(d)e ~ .  Actually P'(d) must also lie in ~Uz,. 

In fact, ~ ,  satisfies (49) and (50) with 2 replaced by 2' (see (43) and (44)) 
and d commutes with elements of q/a, hence d(~z,) must satisfy (49) and 
(50). This proves that P': Hom~a (Va, , V~)~ ~ n ~ ,  is well defined. One 
checks immediately that PP'= 1, P 'P=I  and (i) isproved. Define now 
QXeHomats~l (~ ,~ , )  by (QX)(X2)=uYx2, X2E'~. Then Q is well 
defined (the proof is completely similar to the case of P). Assuming that 
2 is not a zero divisor in A we shall construct an inverse Q' to__Q. In fact 
under this assumption the conditions (28) and (29) defining V~ involve 
only elements in the group algebra of S~ (this is not the case with (28) if for 
example 2 = 0 in A). Then the same proof as in the case of P' shows that 
6--~ Q'(6)= 6(~)  defines a map 

Q': Homats,l(~, ~ , ) ~  ~c~.~,  

which is the inverse of Q. This proves (iii). 
Returning to the general case we prove that Q is injective. In fact 

assume Qx=o.  Then in particular O=QX(~a)=u~2=X. Hence Q is 
injective and the Theorem is proved. 

Remark. We shall give an example to show that Q is not necessarily 
an isomorphism in general. 

Take A = field with 2 elements, V= A-vector space with basis X1, X2, 
2 = (1, 1), 2' = (2). Then with respect to the basis X~ X1, X~ X2, X2 X~, X 2 X 2 

of V| we  have: V~ = ~ has a single basis element X~ X2 + X2 X~ = 44, ~ ,  
has a single basis element X~ X~ = ~a,, Va, has a basis 

{X1 X1, X 2 X2, X 1 X2 --[- X 2 X1}. 

Then V~ n ~/~, =0;  however Homats~(~/~, ~r is one dimensional. 

3.8. We have the following 

Theorem. Let 2, 2' be two partitions of r into at most n parts. Assume 
that H o m ~  (V z,, Vz)4= 0 and that A is a field. 
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Then there exists a permutation a of { 1, 2 . . . .  , n} such that 

(54) 2i- i=2'~i)-a( i )  inA (l<_i<n).  

(We recall that if 2 = (2x > ' "  > 2, > 0) with u < n, we put 2i = 0 for u < i < n.) 

Proof According to 2.2, the elements Ck ( l < k < n )  defined in the 
Corollary 2.2 can be considered as elements in the centre of ~ a . 

Expanding the determinant Ck we get 

c k =  Y (oll " i2 ix �9 �9 ( 0 ~ - z k )  - h) ( O i l -  i2) ..." 
l <--il < , , . < i k  <=n 

+ left u//A-multiples of elements of form 0} (i > j ) .  

Let 2(Ck)----k-th elementary symmetric function in 

2t - 1, 2 2 - -  2 . . . . .  2 . -  n. 

It follows that 
c~(~)  =2(c~) ~,. 

More generally for any X~ V~ we must have 

c~ (.~)= 2 (ck) .7. 

This follows from the fact that X = u  ~ for some U~~ and from 
u. Ck=Ck'U. 

NOW let d: ~ , - ~  ~ be a non-zero ugA-homomorphism. Since d( (b~, )~  
we must have Ckd(~,)=2(Ck)d(~,).  On the other hand 

c~ d ( ~  ,) = d (C~ ~ ,) = d (2'(Ck) ~, ,) = 2'(C~) d (~, ,). 

It follows that (2(Ck)-2'(Ck))d(~,)=O. Since d=~0 we must have 
d(~x,)+0 and hence 2(Ck)=2'(Ck) since A has no zero divisors by 
assumption. 

It follows that 
n n 

(55) F [  (t + 4 , -  i) = l- [  (t + 21 - i) 
i = 1  i = 1  

in the polynomial ring A [t]. Since the roots of a polynomial with coeffi- 
cients in a field must be unique up to permutation the Theorem follows. 

Remarks. 1) In certain situations one can prove that the conclusion 
of the Theorem holds even if A has zero divisors. For  example, take 
A=7Z/ph7l (h__>2) and let f t=7l /p~ be the quotient of A modulo its 
unique maximal ideal Let Vbe a free A-module with basis X 1, X2, ..., X, 
and let d: ~ , - +  ~ be some ~#A-homomorphism such that d |  lx is non- 

A 

zero. Then the method of proof of the Theorem shows that (55) must 



General Linear and Symmetric Groups 225 

hold in A [t]. Making now the genericity assumption 2 i -  i ~ 2 ) - j  (mod p) 
for i=t=j, it follows from the Hensel lemma that we must have 2 i - i - -  
2'~( 0 - a ( i )  (mod ph) 1 <_ i < n  for a unique permutation a. 

2) It is easy to prove that if 2, 2' are two partitions of r (resp. s) into 
at most n parts and if Hom~uA (Va,, Vz)~=0 (A a field) then we must have 

r=s .  In fact, the element (C1) is in the centre ofq/A for any integer m, 

m > 1, It follows as in the proof of the theorem that 

in A for all m �9 2g, m > 1. This clearly implies ~ (2i -  i) = ~ (2'~ - i) in 7l and 
hence we must have ~ 2 i - -~  2'i in •. i i 

i i 

3.9. We introduce a partial order in the set of partitions of r. Given 
two partitions 2, 2' of r we say that 2 > 2' if and only if 21 > 2~, 21 + 22 > 
2~ + 2~, and so on. It is well known that 2 > 2' if and only if [2] can be 
obtained from [-2'] by a sequence of elementary steps, each step con- 
sisting in raising the last square of the j-th row (say) to the end of the 
i-th row (j >/) of some partition diagram so that the result is still a parti- 
tion diagram. 

We say that an element X �9 V~ is a weight vector of weight 

{Oi--vi'~ -,Y=0, l <--i<-n, Nii>_l v=(vl,v2 . . . . .  v,) if \ Nii ] _ . 

For example the general element of the basis of Va described in the 
Theorem 3.5 is a weight vector of weight v given by 

vi = 2i + (Nit + Ni2 + . . .  + Ni i -  1) _ (N+ I + Ni+ 2 + " "  + Ni). 

It follows easily that 

1"J1 -~ •2 "~- " " " ~- l/k ~" 21 "~ 22  J r - ' "  -~- 2k - -  2 NJ i" 
(i, J) 

l<-i<_k<j<__n 

In particular v 1 + v2 + , . .  + Vk N 21 + 22 + " "  -I- Jtk for_k = 1, 2 . . . . .  n -  1 and 
this becomes equality for k=n .  Now let d: V~,-* V z be a non-zero q/a- 
homomorphism. Then d(~z,) must be a weight vector of weight 2' hence 
it must be a linear combination of standard basis elements in ~ of 
weight 2'. It follows that we must have 2 '<  2. 

3.10. From now on we shall assume that A is an infinite field. Let T 
be the subgroup of GL,(A)  consisting of diagonal matrices and let U 

16 Math.Z. Bd. 136 
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be the subgroup of GL, (A) consisting of matrices (g}) with g} = 0 for i > j 
and gl = 1 for all i. Let T be the group of all rational homomorphisms 
from T to A*. Then T is a free abelian group of rank n. The elements of 

will be called the weights of GL,(A). An arbitrary element x~T is of 
the form )~(g)=(gl)~l(g~) ~2.....(g~,)~" where geT and 21,2z . . . . .  2, are 
integers, so we can identify Z with the vector 2=(21, 22 . . . . .  2,)eTZ" and 
consider 2 itself as a weight in T. By definition the set of dominant weights 
in T is the semigroup T+ c ~ consisting of all 2 e T such that 21 _-> 22 _->-" 
__>2,>0. Clearly T+ is in 1-1 correspondence with the set of partitions 
with at most n parts. 

3.11. A polynomial representation of GL, (A) is a homomorphism from 
GL,(A) into the group of automorphisms of some finite dimensional 
A-vector space whose components are given by polynomial functions on 
GL, (A). Any invariant subspace or quotient space of a polynomial GL,(A) 
representation is again a polynomial GL, (A) representation. Note that 
the dual of a polynomial GL,(A) representation is not in general poly- 
nomial. Any polynomial GL, (A) representation restricted to the torus T 
splits into one dimensional representations of T and hence gives rise to 
a family of weights. If M is an irreducible polynomial GL, (A) representa- 
tion, there is up to a scalar a unique vector voeM which is fixed by U; 
v o is a weight vector corresponding to the highest weight of M with respect 
to the partial order of partitions introduced in 3.9. The torus T leaves 
invariant the line generated by Vo. We get thus a weight defined by 

g~T---~ gvo ,  which must necessarily lie in 7"+. We get thus a 1-1 cor- 
Vo 

respondence between the set of isomorphism classes of irreducible 
polynomial GL,(A) representations and T+. We shall denote by Ma the 
representation associated to 2 s T+ under this correspondence (2 is called 
the highest weight of M~). It is obvious that ~| is a polynomial GL,(A) 
representation hence so must be V~c V | for 2e T+. 

Vz has a unique_U-invariant vector of weight 2 (up to a scalar); this is 
�9 ~-~bz generates Va as a GL,(A)-module (since it generates Vx as a 
~a-module and A is an infinite field). It follows that Va contains a unique 
maximal GL, (A)-submodule, and the quotient by this must be isomorphic 
to M~. If A has characteristic zero we have actually Va = Mz. In fact 
since ~ c~ ~z is clearly 1 dimensional we see from Theorem 3.7 that 
Hom~A (Vx, Vz) = HomGL, (A) (g~, g~.) is one_ dimensional. Since ~ must be 
completely reducible this implies that V~ is irreducible. A similar proof 
shows that ;U~ is an irreducible St-module if A is a field of characteristic 
zero. Note that in our case (A any infinite field--)~ can be regarded as 
the set of all U-invariant tensors of weight 2 in V | 

If A has characteristic p > 0, the corresponding ~ can be regarded as 
the reduction mod p of the V~ in characteristic zero using a "minimal 
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admissible lattice", see [2] or [7]. Note that in characteristic p > 0, ~ is 
in general reducible (see Corollary 2 in 4.1). 

3.12. Let 2, 2' be two partitions of r into at most n parts. If A is a 
field of characteristic zero and ~c~ ~ , # : 0  we must have 2=A' because 
V4 is irreducible. 

We have the following 

Theorem. Let A be a field of characteristic p > O. Assume that A and 
2' are related by the formula 

A'i=Ai-d, A)=Ai+d, A~,=A h, l<h<_n,  h # i , j  

for some 1 < i < j < n. We assume further that 

(56) ( 2 i - i ) - ( 2 j - j ) = - d ( m o d p ) ,  0 < d < p ,  

(57) (Ai - i ) -  (Ah-- h) ~ 0, 1, 2 . . . . .  d -  1 (rood p) 

for all h, i < h <  j. 

Then ~ c~ ~ ,  # O. 

Proof. Let 
1 

X~, 4, = ~ I  TJi (2i - i -  ( d -  1)) .... ~j (2i - i -  1) Tj i (2i -  i) ~4 

_ _ 1 ( s } )  d ~ 
d~ 

�9 1 
where the operators T] are defined by (5), and ~.~ (S~) d is defined in 2.9. 

It is clear that X--~, 4, s ~ and it follows from Theorem 2.7 and from (56) 

that X4, 4, = 0 for any n > a > b > 1 and any l > 1. 

It is easy to see that X4, 4, =0  for any 1 _< iN n and any l>  1. 

This shows that X4, 4,e ~ n ~ , .  
Next we show that under the assumption (57) we have X4,4,~0. 
Using (17) we can write 

x ,4,=2 H 
(N) i<c<j a a 

(58) (0~,) Ng [ (A i - i) - (A~ -- c)] 
< I~ ,<c~<j ~ d _ A N c  a / ~4 ~ = . < b _ < j  ( N D !  �9 

a 

where (N) runs over a certain set described in (17). To prove that (58) is 
non-zero we introduce the following notion. We say that a A-tableau of 
type 2' is distinguished if its entries are increasing strictly along columns 

16" 
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from top to bottom. Let 3~d (A, 2') be the set of all distinguished A-tableaux 
of type 2'. The elements {~'tr)[ Ts ~ (2, A')} are clearly linearly independent 
tensors in ~| (see (45) for the notation -'Ytr)). Let T~sJ~(2, A') be the 
unique semistandard A-tableau whose entries in the h-th row are all 
equal to h (h # i) and which has d entries equal to j, (2i-d) entries equal 
to i in the i-th row. Using (46) and appropriate column-preserving per- 
mutations we can clearly write 

X4, 4' = Y', aT X~r) 
Te~-d(A, ~') 

where areA are uniquely determined (note that column preserving 
permutations change X m at most in sign). 

Moreover it is easy to see that X~rl) can only come from the term 

(d!y_~_ , (0)d 17 

corresponding to taking Nb"=0 unless a=i and b=j in the sum (58). It 
follows that we must have 

a T , :  I'-[ ( I-I  ( ( A i - i ) - ( A c - c ) - e ) ) .  
i<c<j e 

O<_e<d-1 

I 
Now the assumption (57) implies that at1 # 0  in A. It follows that Xz, z' #0  
and the theorem is proved. 

Remark. There exists an alternative way to describe -~4.4,. According 
to Theorem 3.6 we can write .g~, z, = ~  a~o-~z where a runs through 

the set of all permutations of {1, 2 , . . . ,  r} such that a applied to the 
leading standard A-tableau gives a standard A-tableau, and a, eA are 
uniquely determined. The precise values of a~ can be determined (in 
principle) from (58) but this is complicated in practice. They are known 
in case d = 1 (M. Beetham, not yet published). 

4. The Lattice of Weights and the Affine Weyl Group 

4.1. We shall now place our results in a geometric framework. We 
shall assume that A is a field of characteristic p > 0. Recall that T denotes 
the diagonal subgroup of GL. (A) and T its group of rational characters 
(see 3.10). We can identify T with the set of all sequences A=(A 1, 2 z ... . .  A.) 
of integers. 

The real vector space T|  IR has a natural euclidian structure defined 
by(A, 2 ' ) = 2  ~ A,A' i. 

l<i<n 
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Let xi: T |  IR ~ P,. be the affine-linear function defined by 2i(2) = h i -  i 
(i fixed, 1 < i < n). 

Let W, be the group of all affine transformations w of T |  ~ such 
that there exists a permutation a of { 1, 2 . . . . .  r} such that 

2i(w(2))=Yc,,to(2)+ki. p ( l < i < n )  

where k i (1 < i< n) are integers such that k 1 q-k 2 + . . .  + k , = 0 .  IV, is called 
the affine Weyl group. It is clear that W,(~)= T,, and that all elements 
of ~ are distance preserving. Consider the affine hyperplane 

IAj(k)={2eT@lRl2,(2)-2i(2)=kp} (l < i<j<n ,  keZ).  

The orthogonal reflection with respect to/Jj(k) is given by the element 
w=s}(k)e W, such that 

~, (w (4)) = ~j (4) + k p 

~j(w(X))=~,(~)-kp 
Xh(W(2))=Xh(2), h*i,j. 

The reflections s}(k) generate W, as a group (actually ~ is already gener- 
1 (1) and is in fact a Coxeter group on these ated by s~ (0), s~ (0) . . . . .  ~ -  1 (0), s, 

generators). An element 2 r 1 7 4  is said to be p-singular if and only if 
2 belongs to at least one of the hyperplanes s An element 2~ T | 
is p-regular if and only if it is not p-singular. The set of all p-regular 
elements in T | I (  is a disconnected open set; its connected components 
are called alcoves. For example 

Co = {xe ~ | ~R I Y,(O > ~ (,~) > . . .  > ~,(~), Y~(O- Y,(,~) <p}  

is an alcove (the fundamental alcove). Its closure C0 is a fundamental 
domain for the action of W, on T | 1R. W~ acts transitively on the set of 
alcoves with trivial isotropy. In particular any alcove is of the form w Co 
for a unique wE W,. Note that any alcove is the cartesian product of an 
open ( n - 1 )  simplex and the real line. 

We introduce now a relation ~1" on the set of dominant weights. 
Given 2', 2 in ~+ we say that 2' 11" 2 if and only if 2' < 2 and the condition 
(59) below is satisfied. 

(59) There exists a reflection s}(k)~ Wa such that s}(k)2' =2. Moreover, if 
d denotes the distance from 2' (or 2) to the reflecting hyperplane Idj(k), we 
must have 0 < d < p. 

Note that the reflection sj(k) in (59) is uniquely determined. 
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If 2' TT 2 we must clearly have 

~i(2') =21(2 ) -d  

~j(2') = ~ j ( 2 ) + d  
(60) 

2h(2')=~h(2), h* i , j ,  i<j  

Yci(2)-2j(2)=kp+d,  0 < d < p  

and conversely (60) implies 2']7" 2. Given 2', 2 in ~+ we say that 2' ]'2 if 
and only if 2' ]]" 2, but we cannot find a sequence hi, 22, ..., 2k (k > 1) of 
elements in T+ such that 2' ]1" 21,21 ]1" 22 . . . . .  2k- 1 ~]" 2k, 2k ]~ 2. 

Lemma. Let 2', 2 in T+ be such that (60) holds and 2' T 2. Assume that 
xi (2) - Xh (2) + 0 (mod p) for all h, i < h <j. Then we have also Yc i (2) - Xh (2) 
1, 2, ..., d (mod p) for all h, i < h <j. 

Proof Assume that (60) holds and that for some h, i<  h < j  we have 
Xi(2)--Xh(2)= lp+d '  for some I~Z and some d', O<d'<=d. We can, of 
course, assume that h is minimal with this property. 

It follows that 

Yci(2)--Ych_l(2)=mp+d" , m~TZ, d<d"  <p,  

provided i+  1 < h < j .  
Define 2 m, 2~2)~ T by 

Y c i ( 2 0 ) ) = Y c i ( 2 ) - d '  , Y C h ( 2 t l ) ) ~ - Y C h ( 2 ) w d  ' , ~s(2C1)) = ~s(J~) 

for s=~ i, h. 

xi ( 2{2 )) = xi ( 2m ) - (d - d'), ~j (2( 2 )) = Xj (2 (1)) + (d - d') 

2,(2{2)) =~s(2m ) for s+i , j .  

Then we have (cf. (60)): 

~ r  ' , ~ r  ' , Xs(2') = Xs(2 (2)) 

for s~=h,j. 
It follows that 

2(1) ---= s~(l) 2, 2(2) = sj(k) 2 m, 2'=s~(k- l )  2 Cz) . 

It is clear that 2, 2 m are at distance d' from/~h(l); 2 ~1), 2 C2) are at distance 
(d-d ' )  from/2j(k) and 2 ~2~, 2' are at distance d' f rom/2j(k- l ) .  

We now prove that 2 m, 2 ~2) are dominant. For this it is enough to see 
that 

2h_l(2)--YCh(2)>d', h > i + l  

Yq(2)-Yci+l(2)>d+d', h = i + l .  
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Assume first h > i + 1. We have 

YCh_ l (2)- Y%(2)=(lp + d')-(mp + d " ) = ( l - m -  1) p + (p-d"  + d'). 

This must be > 0 since 2 is dominant; on the other hand 0 < p -  d" + d' < p. 
It follows that l -  m -  1 > 0 and hence 

Ych_l(2)-2h(2)>p-d"+d'>d' since p-d">O.  

Assume now that h = i + i. From the fact that 2' is dominant, it follows 
that 

Xi()~)-- Xi+I (J,) > d .  
We have 

2i(2)-  2i+1 (2) = lp + d' >d. 

Hence (1-1)p+(p-d+d')>O. Using O<p-d+d '<p ,  it follows that 
l>  1 hence 

t r 2i(2)-2i+1 ( 2 ) = p + d  >d+d.  

We have proved that 2 (1) ~ 2, 212) ]i" 2~), 2' ~ 2 ~2) which contradicts the 
hypothesis 2' T 2. The conclusion of the Lemma follows. 

We can now reformulate our results from 3.8, 3.9 and 3.12 as follows: 

Theorem. Let 2,2eT+' ^ . 

(i) I f  HOm~L,(A)(V~, , V~)+O we must have 2=w(2') for some w~W~ 
and 2'<2.  

(ii) If2, 2' are p-regular and 2'T2 then HOmGL, tA)(V~,, V~)+0. 
, <  Proof The inequality 2 _ 2 follows from 3.9. According to Theorem 

3.8 the hypothesis of (i) implies the existence of a permutation a of 
{ 1, 2, ..., n} such that 

2i- i=2'~o-~(i)+kip,  i = 1 , 2  . . . . .  n, ki~Z. 

According to the Remark 2 in 3.8 we must have kl + k2 + ' . .  + k, =0  and 
the assertion (i) follows. (ii) follows from Theorem 3.12 and the Lemma. 

Remarks. 1. The conclusion of (ii) remains valid if instead of assuming 
that 2, 2' are p-regular we assume only that 2~(2)-2h(2)~g0 (rood p) for 
all h, i<h<j. (According to the Lemma this implies 2h(2)-2~(2)~0 
(mod p).) 

2. It is rather plausible that with the hypothesis of (ii) we actually 
have 

dim A HOmaL,(A)(Vz, , V~)= 1.2 

z Dr. J.C. Jantzen has informed us that he is able to prove this when 2' is maximal (for <)  
among the 2" with 2" T 2. 
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3. The following questions are not yet decided: Let 2~=2'~T+ be 
p-regular. Assume that HomGL, Cx)(Va,, Va)*0; is it true that we must 
have 2'l"2ta)T 2t2)T...T 2Ck)1"2 for some 2 tl), 2 t2), ..., 2 tk) in T+ ? 

Conversely assume that such a sequence 2 ta), A t2) . . . . .  2 tk) exists. When 
is it true that HomoL,~x)(V~,, V~)=0? A special case of this last question 
is:Assuming 2' T T 2, is it true that HOmGz, ta)(V a,, V~)* 0 ? 

4. It is amusing to note_ that whenever Hom~L, ta)(Va,, Va)~=0 we 
must have dim Va,-= +_ dim Va (mod p), provided p > n. In fact the func- 
tion d: T+ --+ Z defined by Weyl's dimension formula 

[ [  (s 
d(2)=dim ~ =  l<i<j<n 

l~ (j--i) 
l<=i<j<__n 

clearly satisfies the property 

d(w2)-det(w)d(2)(modp) ,  w~W~, 2~T+, 

(note that I-I ( J -  i) ~ 0 (mod p) for p > n), and our claim follows from 
l<i<j<n 

part(i) of the Theorem. 
We also note that in case p>n a weight 2~ ~+ is p-regular if and only 

if dim ~ ~ 0 (mod p). On the other hand no weight in T is p-regular in 
case p < n. 

Corollary 1. Let 2, 2' be two partitions of r into at most n parts. We can 
regard 2, 2' as elements of T+. 

(i) I f  Homatsrl(~/~, f/~,).0, and char A # 2  we must have 2=w(2 ' ) fo r  
some w~ W~ and 4 '<2.  

(ii) I f  4, 4' are p-regular and 2'T 2 then Homats~j(~,  ~ , ) *  0. 

Proof Use 3.7. 

Corollary 2. Let 2E T+ be a p-regular weight. Then ~ is an irreducible 
GL,(A)-module if and only if 2 lies in the alcove Co. 

Proof Assume first that 2zCo,  i.e. ( 2 1 - 1 ) - ( 2 , - n ) < p .  In order to 
prove that Va is irreducibleit is sufficient to prove that there is no non-zero 
U-invariant vector in V~ of weight 2', 2 ' . 2  or, equivalently, that 
Hom~L,~a)(V~,, Va)=0 for 2 '#2 .  But if HOm~L,(A)(Va,, Va)*0 we must 
have 4 '=  w (2), w ~ W~, 4 '<  4, 2'~ ~+, (ha-  1 ) -  ( 2 , -  n)< p. It is easy to see_ 
that these conditions are incompatible, and the irreducibility of V~ 
follows. Assume now that 4r Co. Suppose 2 belongs to the alcove C *  Co. 
Then we can find an alcove C' such that C' and C have a wall in common, 
and such that, if 4' denotes the unique element of C in the W:orbit  of 4, 
we have 2'~ T+ and 2'1"2. It now follows easily from part (ii) of the 
Theorem that V a is reducible and the Corollary is proved. 
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Remark. If 2~ T+ is not necessarily p-regular the problem of deciding 
when V~ is irreducible is not solved apart from low cases. The fact that 

is irreducible for 2~Co (and even for 2~Co) was first proved by 
Verma [14], using a result of Humphreys [6]. 

4.2. There is a natural interpretation of the relation 2' T 2 in terms of 
partition diagrams. 

First, 2' TT 2 means that the partition diagram [2] is obtained from 
the partition diagram [2'] by raising the last d squares in the j-th row 
of [2'] to the end of the i-th row of [;t'] (1 < i < j < n, 0 < d < p) so that each 
of the raised squares moves through a number of squares equal to a 
multiple of p. 

For example, take 

A B 

2' = (6, 4, 2) 2 = (6, 6, 0) 

(n = 3, p = 5). The movement of the square A from the old to the new 
position can be described by the diagram 

tL' 
~- r r 

similarly the movement of the square B from the old to the new position 
is described by the diagram 

Both processes clearly involve 5 steps. The process of raising squares is of 
course very old; it was already present in the work of Young on the 
symmetric group. The idea of raising squares through a number of steps 
divisible by p in order to obtain information about the p-modular 
representations of the symmetric group appears in the book of Robin- 
son [11] and also in more recent work of Kerber [8]. The process of 
raising several squares at the same time has not, to our knowledge, been 
previously considered. 

Clearly, 2']'2 means that [2] can be obtained from [2'] by raising 
squares as described above but not by a composition of such processes. 
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This is true in the example considered above, but not in the example 

~ B T B A' T ' A ' B I  

A B A 
4' 2 

(n = 3, p = 3) where we have 2' TT 4 but not 2' 1" 4. 

4.3. As an application consider the weight 

4 ( k ) = ( p - k ,  1, 1 . . . . .  1, 0 ,0  . . . . .  
n--k--1 

O_ k_< min (p - l, n "  1), p = char (A). 

The partition diagram corresponding to 2(k) is a p-hook: 
p~k 

I I I l  I 

Note that 2 (k )T2(k-1  ), l_<k_<min(p-1,  n - l ) .  In fact, [ 2 ( k - l ) ]  is 
obtained from [2(k)] by raising one square from the (k+ 1)-th row to the 
first row, or equivalently 2(k-1)=s~+l(1)2(k) in the notation of 3.14. 
Note that 2(k) is p-regular if and only if p>n. However, without any 
assumption on p and n we have 

(~ (k -  1)1 - 1 ) - ( 2 ( k -  1)k+1 - - (k+ 1)) = p  + 1 
and 

(2(k--lh--1)--(4(k--1)h--h)~O, modp,  l < h < k + l ,  

which is a somewhat weaker condition than p-regularity. We can apply 
Theorem 3.12 and conclude that there exists a non-zero GL,(A)-homo- 
morphism d: V~k) ---~ VZCk-1 ) �9 

According to a theorem of Thrall [13], V~(k) has either one or two 
irreducible composition factors. It follows that d must be unique up to 
a non-zero scalar. 

We could, of course, describe d in terms of the element Tk~+l(t) used 
in the proof of Theorem 3.12. However in this case there is a more attrac- 
tive way to define d in terms of the symmetric group. It follows from 3.2 
that V~(k) can be regarded as the set of all tensors X e  V | such that 
( X , ~  | 1 7 4  |  is alternating in the variables ~ , ~  . . . . .  ~+~, 
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-' . . . , - '  V and satisfies the condition symmetric in the variables Vk+2, / ) p - l ,  p 

2 ~ (0")(X, ~'a(1)@ ~'a(2)@""" @/)-; (k+ 2) @ VCk+ 3 (~)"'" @Up> = 0  
o" 

where a runs through all cyclic permutations of (1,2 . . . . .  k+2)  and 
--! --t --t vl, v2, ..., vp are arbitrary elements in V*. 

Define d: VZ~k) ~ V~tk-1 ) by the formula 

<dx, vl @~i @ -.. @ (,,} 

= ~  <.2, 4. @v:, @... @~;,@ ~;~k+l~ @~',~k+ 2~ @-.. @ ~;c,,~> 
o" 

where a runs through all cyclic permutations of ( k + l ,  k+2 , . . . , p ) .  
One checks easily that dXsVz(k_l) if XeVa(k) and that d(~a(k))4=0 
(l <k<_min(p-  l , s -1) ) .  

It is obvious that d is a GL,(A)-homomorphism hence it must be 
the same (up to a scalar) as the one given by Theorem 3.12. Let s =  
m i n ( p -  1, n -  1). We have the sequence 

(61) 0 ~ ~ ( ~ ) ~  ~(~-i) d, .... ~ ~(2) ~ ~, , )  ~ ~ , o ) - ~  Mz~o)~ 0 

where e is the natural projection of ~(o) onto its unique irreducible 
quotient Mz(o). 

Note that Vz(~)is irreducible. In fact, if p>n we have 

2 ( s ) = 2 ( n - 1 ) = ( p - n +  l, 1, 1 . . . . .  !) 

and as this lies in the alcove Co, V~c,_l ) is irreducible by Corollary 2 in 
4.1. On the other hand, if p<n ,  we have 

2(s) = 2 ( p -  1)=(!,  1 . . . . .  !, 0 . . . . .  0) 
n - - p  

and in this case ~(p_~) is just the p-th exterior power of V and this is 
again clearly irreducible. 

On the other hand according to the result of Thrall mentioned above 
~.(0 has two irreducible composition factors. This implies easily that the 
sequence (61) must be exact. Note that M~(o) is just the natural representa- 
tion V, twisted by the Frobenius automorphism of A. 

Remarks. 1) If char A=0 ,  the sequence (61) cannot be defined. How- 
ever, it has been pointed out to us by M. Atiyah that the identity 

(--1) i Vz(0 = 0P(V) 
O < _ i < s  

holds in the representation ring of GL.(A); here g,P denotes the Adams 
operation (see [1]). 
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2) For the symmetric group Sp there is an exact sequence of A [Sp]- 
modules, similar to (61) and due to Peel [10] : 

(62) 0 <--r r ~-- r ~-r162 

(we assume here n=p). Note that ~p_1)=~/~1,1 ..... 1) is the sign rep- 
resentation of Sv (trivial if p = 2) and ~(o) is the trivial one dimensional 
representation of S v. 

3) It would be very interesting to generalize (61) as follows. Let 
2~ T+ be a p-regular weight satisfying ~i(2)- xi+t (2) < p  (1 < i_< n -  1) or 
equivalently 

(63) 2i-2i+1 < p -  1 (l<i__<n). 

Let SX, k be the set of all 2'E T+ such that there exists a sequence 

/~(1) 2(2) . . . , /~ (k- -1)~+ 
such that 

2' 1" 2 (1) T 2(2) T"" T 2(k-') T 2. 

Note that S~, k is empty for k sufficiently large, and finite for all k. 
Let Rz(k) = | Vz,(k> 1) and Rz(0)= V~. 

2'eS;t, k 
Define a map D: R~ (k + 1 ) ~  Rz(k) by a matrix of homomorphisms 

~o,,~" V~ ~ V~, ueSz, k+l, veSz , ,  

where ~0u, v is the homomorphism constructed in 3.12 in the case #Tv 
and is zero otherwise. 

Form the sequence 

O--+Ra(s ) 0 , . . .  ~ ) ~ D-~Rz(O)---~Mz--~O, 
(64) 

s = max {kiRk (k) +- 0}. 

We speculate that (64) might be an exact sequence. This would give in 
particular a formula for the character of M~ as an alternating sum of 
characters of Weyl modules. (A somewhat analogous exact sequence in 
the infinite dimensional case has been proved recently by I. L Bernstein, 
I.M. Gelfand and S.I. Gelfand see [5].) The significance of the condi- 
tion (63) is that the set of weights 2 E T satisfying (63) is in 1-1 correspond- 
ence with the set of irreducible p-modular representations of GL. (Z/p 7Z). 

4) An exact sequence similar to (64) might also exist in the case of S,. 
Let 2~T+ be as in Remark3 and such that 2 x + 2 2 + . . . + 2 , = r .  

Assume n < p < r. (If p < n, 2 cannot be p-regular, and if p > r, all A [Sr] 
modules are completely reducible.) Let ~ ,  k be the set of all 2'e ~+ such 
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that there exists a sequence/~(1) 2(2) . . . . .  2(k--1)ff T+ such that 

~" J" 2(1) T ,~(2) J" " " "T ,~(k-- 1) T "~," 

Note that 5a~, k is empty for k sufficiently large and finite for all k. 
Let N~(k)= (9 ~U~, ( k > l )  and N a ( 0 ) = ~ .  

2 ' ~ .9~ k 
Define a map N: ~a(k  + 1)---> Nz(k) by a matrix of homomorphisms 

where ~b,, ~ is the homomorphism constructed in 3.12 (see also 3.7) in the 
case v T # and is zero otherwise. 

Form the sequence 

(65) 
0 ---, Nz (s') ~ -  :. _~e ~z  (2) ~ Nz (1) ~ Na (0) ---> ~'~ ~ 0, 

s' = max {kl ~ (k)} + 0. 

Here JC/a is defined as the cokernel of ~ x ( 1 ) ~ a ( 0 ) .  It might be con- 
jectured that (65) is exact and that J/~ is an irreducible A IS,I-module. 
This would imply a formula for the character of dg~ as an alternating 
sum of characters of ~ s. 

5. Generalisation to Algebraic Groups of Other Types 

Our results on the existence of non-trivial homomorphisms may be 
expressed in terms of SL,(A)-modules instead of GL,(A)-modules. Let 
T'= Tf~ SL, (A). By restricting characters of Tto  T' we obtain a surjective 
map n: T--~ T'. We note that n(#)=n(v) if and only if #i=vi+c, ceT/, 
where c is independent of i. The affine Weyl group W~ operates effectively 
in T' by the rule w (n (2)) = 7~ (w (2)) for 2 e T,, w e 141,. In this way W, can be 
regarded as a subgroup of the affine orthogonal group of T' Q P~, which 
inherits a Euclidean structure from T | ]R via n. As such Wa is generated 
by the reflections in the hyperplanes Ej(k)=7~(l~j(k))cT', and is the 
affine Weyl group of SL,. The images under n of the alcoves in T are 
alcoves in T' with respect to the hyperplanes Ej(k) and are (n-1) -  
simplices. Note that the map ~: T---, T' corresponds to restricting 
GL,(A)-modules to SL,(A)-modules. 

Let T~ =n(T§ The elements in T~_ are the dominant weights of the 
irreducible rational SL,(A)-modules and we have an example of the 
situation encountered in the theory of semi-simple algebraic groups. 
The Ej (k) are affine hyperplanes orthogonal to the roots of SL. (A). The 
elements of T~_ are the non-negative integral combination of the funda- 
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mental weights ql, q2 . . . . .  q , - i  of SL,(A) given by 

re(l, O, ..., O) =qi  

re(l, 1,0, . . . ,0)=q2 

7r(1, 1 . . . . .  1 ,0)=q,_l .  

Let p = qt + . - .  + q,_ 1 be the sum of the fundamental weights. If we denote 
the weight kl q~ + . . .  + k,_l q ,_ le  T~. by [kl, k2, .. . ,  k,,_ 1], we have 

(21,2z . . . . .  2,) = [A1 -42 ,42  - 4 s  . . . .  ,4,_ 1 - 4 , ] .  

We observe that the affine hyperplanes E} (0) all pass through the weight 
--p.  

We represent in the figure the case n = 3. We have shown only alcoves 
in T' whose closures have non-empty intersection with T+. Pairs of 
points re(2), re(4') such that 4'T4 are joined by a dotted line oriented 
towards 2. The dominant weights (i. e. those in T+) lie in the closed acute 
cone with vertex 0. 

L'~ (0} 
/ 

- / i ' " .  \1i \ 
X , '  r ' - \ - - ,  I t A 

, I I I / \  

/"\ Y \.->'/.2-.. / ' 

L' io) 
-# 

It is intriguing to consider how the result on the existence of non- 
trivial homomorphisms between Weyl modules for SL,,(A) might 
generalise to other simple algebraic groups. 
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Let G be a simple simply-connected algebraic group over the complex 
field, let T be a maximal torus of G and T be the group of rational charac- 
ters of T. Let ~+ be the set of dominant weights with respect to a suitable 
ordering on T. For each 2~ 7"+ let V~ be the irreducible G-module with 
highest weight 2. Let V~,2, b e  a minimal admissible lattice in V~ (see 
Humphreys [7] p. 159) and V~= V,~,z| where K is an algebraically 
closed field of characteristic p. Le_t G(K) be the simple algebraic group of 
type G over the field K. Then V~ is a rational G(K)-module, which is 
however not in general irreducible. 

Given 2, 2'~ T+ we consider under what circumstances 

HomG~K)(Va,, Vx)* O. 

The real vector space T |  admits a positive definite scalar product 
invariant under the action of the Weyl group, and we can decompose 
the resulting Euclidean space into alcoves in the following way. For each 

2r 
root r let h ~ = ~ -  be the corresponding coroot. For each ke;g let Lr(k) 

be the set of he ~ |  R satisfying the condition 

(h,, 2+p)=kp 

where p is the sum of the fundamental weights. Observe that this relation 
is obtained by equating to an integral multiple of p one of the factors in 
the numerator of Weyl's dimension formula. An element he T |  is 
called p-singular if 2 belongs to some affine hyperplane L,(k) and p- 
regular otherwise. The set of p-regular elements in T| R is a disconnected 
open set, whose connected components are called alcoves. Let s,(k) be 
the reflection in L~(k), and let W~ be the group of affine transformations 
of 7"| R generated by s,(k) for all r, k. 

Given two p-regular elements 2, 2' of T+ we define 2' ]'T 2 if 2 '< 2 and 
sr(k) 2' =2 for some r, k such that L~(k) intersects the closure of the alcove 
containing 2. We define 2'~2 to mean that 2']'T2 but there do not exist 
2 (1), 2 (2) . . . . .  2 (k) (k_> 1)~ T+ such that 

2TT21, 2a~T22 .... ,2k_ITT2k, 2k~T2. 

A natural generalisation of our theorem in 3.14 would be given by 
the following conjecture: 

Let 2, 2'~ 7"+. If HomG(r)(V~., Va)+0 then 2=w(2') for some weW~, 
and 2'<2. If2, 2' are p-regular and 2'T2 then Homa(r)(V~,, V~)40. 

The former of the two statements was conjectured by Verma [14] and 
proved by Humphreys when p is greater than the Coxeter number of G. 
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It appears from the results of the present paper that the existence of 
such non-trivial homomorphisms could be established by first proving 
the existence of certain elements in ~#z, the Konstant Z-form of the envel- 
oping algebra q / o f  the Lie algebra g of G, which have favourable com- 
mutation properties. One such element S,,d is needed for each positive 
root r and each positive integer d. 

Let I) be a Cartan subalgebra of g and e~, f ,  be root vectors in g 
corresponding to roots r , - r  respectively such that [e, , f ,]=h, eh. By 
analogy with the results of 2.9 we seek elements S,,ee~ satisfying the 
following conditions (i), (ii). 

(i) Sr, a = ~ %  ...... ~f,~f,2...f~u,, ...... ~ where % ...... ke77, u~l ..... ,~ lies in 
the Z-form q/2,(I)) of the enveloping algebra q/(t)) of [), and the sum extends 
over all partitions of dr into a sum of positive roots. Moreover in the 
leading term (in which each r~ is a fundamental root) we have u, ....... ~ = 1 
and % ,~ is some suitable normalizing factor in 77. 

, ..,, eri  
(ii) For all positive integers l and all fundamental roots r~, ~-.t S,,d 

k 
�9 e s 

lies in the left 1deal of ~/6, generated by TT for all positive roots s and all 
integers k > 1, and by h~ + (h~, p ) -  d. k. 

We have proved the existence of such elements S~, d when G =SL, 
is a simple algebraic group of type A,_ ~. In this case we have one positive 
root r~j for each pair of integers i,j such that O<i<j<n.  Let e~j=e,,j, 
f i j=frj ,  hij=h,,j. Identifying with our previous notation we have 
e,j = 0~, f~ = 0}, h,j-- Oi - 0 i (i < j). The element S~ = S~,~ of the enveloping 
algebra q6, is then given by 

Sr,j= ~ f ,  lfhi2.....fikj(hij~ +j l - i ) (h i j2+j2- i ) . . . . . (h i j ,  + j t - i  ) 
i< i l  < . . .< ik<  j 

summed over all subsets {il . . . . .  ik} of {i+ 1 . . . .  , j - -  1}, where {Jl, .-. ,Jr} 
is the complementary subset of {il, . . . ,  ik} in {i+ 1 . . . . .  j--1}. Moreover 
the element S,, d is given by S,, d = Sa~/d! 

We observe that an element S, eq/z satisfying conditions (i), (ii) for 
d = 1 is not uniquely determined since the terms url . . . . .  k e q/z(t)) can always 
be modified by adding multiples of hr+(hr, p)- ' l .  Apart from this 
ambiguity, however, we have observed that in the simple groups of 
rank 2, viz A2, Bz, G2, conditions (i), (ii) for d = 1 and l=  1 are sufficient 
to determine Sr to within a scalar multiple. We conclude by describing 
these elements Sr for each positive root r in a system of type A2, Bz or 

1 
G 2. We write [e r, es] =N~,~ er+ s and Mr, s,i= i~. N~,s N,,r+~.....N~,(i_l),+ ~ 

and recall that in a Chevalley basis of g both Nr, ~ and Mr, ~,, are rational 
integers. (See [4], p. 62.) We also write ~ir = hr+ (hr, p ) -  1 e q/z(I)). 
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T y p e  A 2 . Root  system _+ {a, b, a + b}. 

So=Z 
Sb =A 
Sa+b=fafb--Na,bfa+bhb 

]'~a ~ ha 

hb = hb 

]'la+b =ha + hb-'l- 1. 

T y p e  B 2 . Root  system _+ {a, b, a+b, 2a+b} .  

Sa =fa 

Sb =A 
Sa+b=faA--Na, bfa+bhb 

S2a+b=LLA-Na, bLL+bhb 
+ M~,b, 2 f2~+b hb(hb+ 1) 

ha ~ ha 

ha+b=h~+ 2hb + 2 

h2.+b=h~+hb+ 1. 

T y p e  G 2 . Root  system -+ {a, b, a+b, 2 a + b ,  3 a + b ,  3a+2b} .  

Sa =fa 

Sb =A 
So+b=Lfb--N.,bL+bhb 

S2a+b=LLA-N.,bLL+bhb 

+Mo,b,~A.+~ ~-  

hd ~ ha 

hb = hb 

ha+b =ha + 3 hb + 3 

h2a+b=2ha+ 3hb+4 

241 

or, alternatively (with the elements in q/(D)in integral form): 

S2a+b= fafafb-- Na, bfafa+bhb W ma, b, 2 f2a+b(h3a+2b + 2) (3 h3a+ 2b W 7) 

S3o+b=L L L fb- Na, b L L fa+bhb 
"[- Ma,  b, 2 f~fz.+b hb(hb + 1)--Ma, b, 3 f3a+b hb(hb + 1)(hb + 2) 

h3.+b =h,, + hb + 1 

S3a+ 2b=f~f~f~A fb--2Na,bf~fafbf.+b(hb - 1) 

+ L L+b L+b hb(hb- O + Ma, b, 2 L A Aa+b(hb-1)(hb- 2) 
Na,a+b 

- 2 L+bAa§ b, 3AAa+bhb(hb--1)(hb+4) 

+ M~,b, 3 Nb, 3~+bf3a+2b(hb + 4)(hb + 1) hb(h b -  1) 

~3a+ 2b =h~ + 2hb + 2. 

(In fact we have Nr, ~ = _+ 1 in all the above formulae, except for Na, a+b = --+2 
in B 2 and G2. We also have Mr, ~, i = -+ 1 in these formulae.) 

In order to prove that these elements of q/z give rise to homomor- 
phisms of the required type it would also be necessary to verify that 
they satisfy the commutation condition (ii) for arbitrary values of l. 

17 Math. Z.,Bd. 136 
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Since completing this work we have learned of a recent paper of 
Shapovalov [12] in which the existence and uniqueness of elements St ,  d 

of the above type is proved in quite a different context. However in this 
paper analogues of the conditions (i), (ii) are used involving ~ rather 
than ~z. It is likely that, by showing that Shapovalov's elements satisfy 
the commutation formula (ii) over ~r the existence of the conjectured 
homomorphisms could be proved for any semi-simple group. We note, 
however, that the leading term in S,,d which is used in this paper to 
prove the non-triviality of the homomorphisms is the term involving i f ,  
rather than the leading term f d f ~ . . . f d  given by Shapovalov, where 
r = r 1 + . . .  + r k is the decomposition of r into a sum of fundamental roots. 
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