Presentations

of

Finite Simple Groups

Berlin, September 2009
Overview

Summary

Standard Presentations

Transitive Groups

Bounded Presentation for \(\text{Sym}(n) \) and \(\text{Alt}(n) \)

Optimizing the number of relations

Short Presentations

\(\text{SL}_2(q) \)

Other rank 1 groups

\(\text{SL}_3(q) \)

High rank groups
Summary

- Presentations
- Easy Bounds
- Interesting Questions
- Main result
- Comments
- Cyclic groups
- Holt's Conjecture

Standard Presentations

Transitive Groups

Bounded Presentation for $\text{Sym}(n)$ and $\text{Alt}(n)$

Optimizing the number of relations

Short Presentations

$\text{SL}_2(q)$

Other rank 1 groups

$\text{SL}_3(q)$

High rank groups
Theorem *Every finite group is finitely presented.*

There are many invariants associated with a given presentation like:

- number of generators
- number of relations
- total length of the relations

What are the minimal values these invariants?

Nice presentations have many applications in the computational group theory.
Easy Bounds

- If G is finite then the number of relations is at least the number of generators.

- If G is finite then the number of relations is at least the number of generators plus the minimal number of generators of the Shur multiplier.

- If M is a G module then the number of generators of a G is at least $\dim H^1(G; M) / \dim M$.

- If M is a G module then the number of relations of a G is at least $\dim H^2(G; M) / \dim M$.

- Some bounds for general groups can be obtained using bounds for the finite simple group.

Question Are these bounds exact?

How to compute $\sup_M \dim H^2(G; M) / \dim M$?
Interesting Questions

- What is the “smallest” presentations of a finite simple groups?
- Does there exist a presentation of S with a bounded number of generators and relations, where the bound is independent on the finite simple group S?
- What is the “shortest” presentations of a finite simple groups?

Small presentations of FSG are used to obtain bounds of the subgroup growth group and other asymptotic invariants.
Main result

Theorem There exist a constant C such that: Almost all non-abelian finite simple group G of rank n over a field with q elements has a presentation with

- C generators
- $2C$ relations
- length $C(\log n + \log q)$

We do not have a proof in the case of Ree groups 2G_2. In fact $C = 1000$ suffices.
Comments

If we do not insist of having “short” relation the bound can be significantly improved:

- The symmetric/alternating groups have presentations with 3 generators and 7 relations.
- The groups $\text{SL}_2(q)$ and $\text{PSL}_2(q)$ have presentations with 3 generators and 9 relations.
- The groups $\text{SL}_n(q)$ and $\text{PSL}_n(q)$ have presentations with 10 generators and 30 relations.
- Any non-abelian finite simple group G which is not of Ree type (2G_2) has presentation with 15 generators and 80 relations.
Cyclic groups

The theorem is not valid for simple groups of prime order:

- They have bounded presentations

\[C_n = \langle x \mid x^n = 1 \rangle. \]

- They also have short presentations

\[C_n = \langle x_0, \ldots, x_k \mid x_i^2 = x_{i+1}, \prod x_i^{a_i} = 1 \rangle \]

where \(n = \sum a_i 2^i \).

- However there are not bounded and short ones, because any presentation with \(k \) relations has length at least \(n^{1/k} \).
Holt’s Conjecture

Knowing presentations of a group G with small number of relations one can obtain bounds for the cohomology groups $H^2(G; M)$:

Theorem For every finite simple group G every prime p and every simple $\mathbb{F}_p[G]$-module M we have

$$\dim H^2(G, M) \leq 1000 \dim M.$$

This result is also valid for the Ree groups because they have a pro-finite presentations with small number of relations. Using co-homological arguments the constant 1000 can be improved to 20.

Guralnick has conjectured that there exist a constant C such that

$$\dim H^k(G, M) \leq C,$$

for any finite simple group G and any irreducible module M.
Standard Presentations

- Coxeter Presentation
- Burnside and CarMichael Presentations
- Gluing – Bernside Lemma
- Another presentation of \(\text{Sym}(n) \)
- Presentations of Rank 1 groups
- Curtis-Steinberg-Tits presentations of high rank groups
- The Baumslag Group

Transitive Groups

- Bounded Presentation for \(\text{Sym}(n) \) and \(\text{Alt}(n) \)
- Optimizing the number of relations

Short Presentations

- \(\text{SL}_2(q) \)
- Other rank 1 groups
- \(\text{SL}_3(q) \)
- High rank groups
The Coxeter presentation of $\text{Sym}(n)$ has $n - 1$ generators and $(n^2 - n)/2$ relations:

$$\text{Sym}(n) = \langle t_1, t_2, \ldots, t_{n-1} | t_i^2, (t_i t_{i+1})^3, [t_i, t_j] \rangle$$

Sketch of the proof: Use induction on n – any word in t_i-es can be re-written to one of the following:

$$w(t_1, \ldots, t_{n-2}) \quad \text{or} \quad t_i t_{i+1} \cdots t_{n-1} w(t_1, \ldots, t_{n-2}).$$

There is a variant of this presentation where the generating set consist of all transpositions t_{ij}, and “Coxeter” type relations.
Burnside and CarMichael Presentations

The Burnside presentation of $\text{Sym}(n)$ also has $n - 1$ generators (all transpositions with a common point) and $\sim n^3$ relations

$$\text{Sym}(n) = \langle s_1, s_2, \ldots, s_{n-1} | s_i^2, (s_i s_j)^3, (s_i s_j s_k)^2 \rangle$$

Sketch of the proof: Uses that any 3 generators generate $\text{Sym}(4)$ and reduce to the Coxeter presentation.

The Carmichael presentation for $\text{Alt}(n)$ has $n - 2$ generators (all 3-cycles with two common points) and $(n - 1)(n - 2)/2$ relations

$$\text{Alt}(n) = \langle c_1, c_2, \ldots, c_{n-2} | c_i^3, (c_i c_j)^2 \rangle$$
Gluing – Bernside Lemma

Lemma Let $G = \langle X \mid R \rangle$ be a presentation of the group G and let $H = \langle Y \mid R' \rangle$ be a group acting on G which fixes the generating set X. Then

$$\langle Y \cup X/H \mid R', R/H, R'' \rangle$$

is a presentation of the group $H \ltimes G$, where

- X/H is a set of orbit representatives of X under H;
- R/H is a set of orbit representatives of R under H, where we have replaced each generator by a conjugate of the orbit representative by H;
- R'' are the relations $[x, Stab_H(x)] = 1$ for each $x \in X/H$.

Another presentation of $\text{Sym}(n)$

The Coxeter presentation of $\text{Sym}(n)$ is “almost” invariant under the action of the cyclic group $\mathbb{Z}/n\mathbb{Z}$. Using the Bernside Lemma we obtain the following presentation

$$\mathbb{Z}/n\mathbb{Z} \rtimes \text{Sym}(n) = \langle c, t \mid c^n, t^2, (tt^c)^3, [t, t^{ck}], (\prod t^{ci})^n \rangle$$

However we have

$$\mathbb{Z}/n\mathbb{Z} \rtimes \text{Sym}(n) = \mathbb{Z}/n\mathbb{Z} \times \text{Sym}(n),$$

which gives that

$$\text{Sym}(n) = \langle c, t \mid c^n, t^2, (tt^c)^3, [t, t^{ck}], \prod t^{ci} = c \rangle$$

$$\text{Sym}(n) = \langle c, t \mid c^n, t^2, (tt^c)^3, [t, t^{ck}], (ct)^{n-1} \rangle$$
Presentations of Rank 1 groups

A presentation of a rank 1 groups can be obtained by

- presentation of the Borel subgroup $B = T \rtimes U$;
- presentation of $N = Norm(T) \quad N = \mathbb{Z}/2\mathbb{Z} \rtimes T$;
- $|U| - 1$ relations of the form
 \[u_0^t = u_1 h t u_2, \]
 for each $u_0 \in U \setminus \{1\}$.

It is sufficient to add one relation of the final type for each orbit of T in $U \setminus \{1\}$.

Curtis-Steinberg-Tits presentations of high rank groups

Theorem *Up to a central extension a high rank Lie group has the presentation:*

\[G = \langle G_\alpha | R \rangle, \]

where \(G_\alpha \) the (rank 1) root subgroups and the relations \(R \) guarantee that any two of them generate the correct rank 2 subgroup.

There is a “messier” form of the presentation – the generating subgroups are the torus \(T \) and root subgroups \(U_\alpha \) and the relations are

- \(T \) acts on each \(U_\alpha \),
- if \(\alpha \neq -\beta \) then the commutator \([U_\alpha, U_\beta] \) can be expressed as product of elements in other root subgroups.

The relations of this type can be very complicated, e.g., in the case of \(^2F_4 \).
The Baumslag Group

One of the main difficulties in obtaining bounded presentations of $SL_2(q)$ is the fact the root subgroups are elementary abelian and does not have bounded presentations.

Baumslag discovered a finitely presented group with an infinitely generated commutator subgroup:

Lemma The group defined by the presentation

$$G = \langle a, b, t \mid [a, b], tt^a = t^b, [t, t^a] \rangle$$

contains the group the infinitely generated abelian group $H = \langle t \rangle^G$ and $G/H \simeq \mathbb{Z}^2$.

Sketch of the Proof: Use induction to show that $[t, t^{a_i b_j}] = 1$.