Modular representation theory

The algebra $\mathbb{F}_\ell W$ is not semi-simple when $\ell \mid |W|$. It is a product of indecomposable algebras (blocks), corresponding to primitive central idempotents. These blocks can also be studied in characteristic 0.

Choose an extension K of \mathbb{Z}_ℓ such that KW splits, and let \mathcal{O} be the corresponding ring of integers (the integral closure of \mathbb{Z}_ℓ in K); it is a complete discrete valuation ring, whose quotient by the maximal ideal is a finite field \mathbb{F}, an extension of \mathbb{F}_ℓ. The idempotents of $\mathbb{F}W$ lift to $\mathcal{O}W$, and thus the blocks of $\mathcal{O}W$ are in bijection with those of $\mathbb{F}W$. The K-representations of W admit invariant lattices and give rise to representations of $\mathcal{O}W$; they can thus be grouped under blocks.

Broué’s conjecture for the principal block

The problem is to understand the structure of the blocks. Sometimes a block can be shown to be

- isomorphic to some simpler block (occurring in a smaller group),
- or Morita equivalent (the module categories are equivalent)
- or derived equivalent.

(Broué conjecture for the principal block)

If the ℓ-Sylow S of G is abelian, then the principal block (the one containing the trivial representation) of G is derived equivalent to the principal block of $N_G(S)$.

This says in particular that there should be a bijection between the characters in the two blocks.

For finite reductive groups, this conjecture has been proved for GL_n by Chuang and Rouquier. It is open in general, but gives a particularly nice description of the principal block since $\mathcal{O}(N_G(S))$ is the algebra of a complex reflection group acting on a power of $(\mathbb{Z}/\Phi_d(q))^r$.

Bimodule induction, Harish-Chandra induction

If G and L are finite groups and M is a G-module-L, given E an L-module we define the induced via M as $M \otimes_{OL} E$.
If $L < G$ and $M = OG$, we get the usual induction. We get also restriction the same way, by considering the dual module.

The idea of Harish-Chandra induction is to build representations of G^F by starting with a smaller group of the “same type”, that is a Levi subgroup; we start with an F-stable Levi decomposition $P = V \ltimes L$. Harish-Chandra induction R^G_L takes a representation of L^F, inflates it (extends it trivially) to P^F and then induces. The first idea would be to consider $\text{Ind}^{G^F}_L$ but this has too many components.
It is equivalently bimodule induction through the module $O(G^F/V^F)$. One can show that it does not depend on the parabolic chosen.
Harish-Chandra restriction $^*R^G_L$ is defined through the dual module.

Cuspidal representations

A representation ρ of OG^F is cuspidal if every proper Harish-Chandra restriction of ρ is trivial.
The main theorem about Harish-Chandra induction is

Theorem

Let γ be an irreducible OG^F-module. Then

- there is, up to G^F-conjugacy, a unique pair (L, λ), where L comes from an F-stable Levi decomposition of a parabolic subgroup, and λ is a simple L^F-module, such that γ is a composition factor of the head of $R^G_L(\lambda)$.

- (over K) the components of $R^G_L(\lambda)$ correspond to $\text{Irr}(W_G(L, \lambda))$ with multiplicities the corresponding dimensions, where $W_G(L, \lambda) = \{ g \in N_G(L) \mid g \lambda = \lambda \}/L^F$.

Over O, the same remains true if one replaces $W_G(L, \lambda)$ by the corresponding Hecke algebra.
Morita equivalence

If A and B are Morita equivalent, there exists an A-module-B say M, such that the equivalence $\text{mod } B \rightarrow \text{mod } A$ is given by $X \mapsto M \otimes_B X$. The typical example of Morita equivalence is between $\text{Mat}_n(A)$ and A.

Choose $\ell|q - 1$ and $\ell \nmid |W|$. Then the ℓ-Sylow is a subgroup of the Φ_1-Sylow, which is a subtorus of T where $B = U \times T$ is an F-stable decomposition.

Theorem (Puig)

*In the above situation, the Harish-Chandra induction R^G_T induces a Morita equivalence between the principal ℓ-block of G^F and that of $N_{G^F}(T)$.***

The principal ℓ-block of T^F consists of characters of order a power of ℓ. What is not obvious is that $\text{End}_{G^F}(O(G^F/U^F)) \simeq O(N_{G^F}(T))$. The action of T^F is clear but W^F acts through an isomorphism of the Hecke algebra with the algebra of W.

Derived equivalence

Similarly to the result for a Morita equivalence, Rickard’s theorem says that if $\text{mod } A$ and $\text{mod } B$ are derived equivalent there exists then a *tilting complex* T, a complex T in $D^b(A)$ of finitely generated and projective A-modules, such that

- $\text{Hom}_{D^b(A)}(T, T[k]) = 0$ for $k \neq 0$.
- $\text{End}_{D^b(A)}(T) \simeq B$.
- T “generates” the derived category, that is for any other complex X there exists i such that $\text{Hom}_{D^b(A)}(T, X[i]) \neq 0$.

The equivalence is then given by $X \mapsto T \otimes_B X$.

For Broué’s conjecture, we take an abelian ℓ-Sylow S_ℓ, set $A = \text{principal block of } G^F$ and $B = \text{principal block of } N_{G^F}(S_\ell) = N_{G^F}(S)$ where S is the unique Φ_d-Sylow containing S_ℓ.

The conjectural construction of T uses ℓ-adic cohomology to define an induction from L^F where $L = C_G(S)$ to G^F.
Characters from ℓ-adic cohomology
Assume that the finite group G acts on the variety X, the action commuting to that of F. Then for $g \in G$ and any n, the endomorphism gF^n of X is the Frobenius for an \mathbb{F}_{q^n}-structure.

The virtual character of G given by $g \mapsto \sum_i (-1)^i \text{Trace}(g | H^i_c(X, \mathcal{O}))$ is given by $\lim_{t \to \infty} -\sum_{n=1}^{\infty} |X^{gF^n}| t^n$.

Indeed, consider a basis of H^i_c where F is triangular and g diagonal. Given an eigenvalue λ of F in H^i, let λ_g be the corresponding eigenvalue of g and set $\epsilon_{\lambda} = (-1)^i$. We then get

$$-\sum_{n=1}^{\infty} |X^{gF^n}| t^n = -\sum_{n=1}^{\infty} \sum_i (-1)^i \text{Trace}(gF^n | H^i_c(X, \mathcal{O})) =$$

$$-\sum_{\lambda} \epsilon_{\lambda} \lambda_g (\sum_n \lambda t)^n = \sum_{\lambda} \epsilon_{\lambda} \lambda_g \frac{-\lambda t}{1 - \lambda t}$$

Deligne-Lusztig induction

This generalizes Harish-Chandra induction to the case of an F-stable Levi L which is in no F-stable parabolic subgroup. Let $P = V \times L$ be the Levi decomposition of P. The Deligne-Lusztig variety

$$Y_V = \{ gV \in G/V \mid gV \cap F(gV) \neq \emptyset \}$$

has a left action of G^F and a right action of L^F.
If $F(V) = V$ it reduces to the discrete variety G^F/V^F since the equation for g is $g^{-1}F(g) \in V$ and we apply Lang’s theorem in the connected group V to write $g^{-1}F(g) = v^{-1}F(v)$ and find an F-stable $g v^{-1}$.

$$\sum_i (-1)^i H^i_c(Y_V, \mathcal{O})$$ is the (virtual) G^F-module-L^F defining
Deligne-Lusztig induction $R^G_{L^F}$.
If $F(V) = V$ it reduces to $\mathcal{O}[G^F/V^F]$, giving Harish-Chandra induction.
Broué conjectures

We have a similar setup to the Puig case when Lusztig-inducing from the centralizer of a Φ_d-Sylow:

Take $\ell \nmid |W|$, $\ell \nmid |\Phi_d(q)|$. Let $L = C_G(S)$, where S is a Φ_d-Sylow; recall that $W_{GF}(L) = N_{GF}(L)/L = N_{GF}(S)/S$ is a complex reflection group. Let λ be a linear character of L.

Then the constituents of the Deligne-Lusztig induced $R^G_L(\lambda)$ correspond to $\text{Irr}(W_{GF}(L))$ with multiplicities equal up to sign to the corresponding dimensions (this should result from the existence of a representation of a “cyclotomic” Hecke algebra for $W_{GF}(L)$ on the cohomology, but has been checked case by case).

The principal ℓ-block of L consists of the linear characters of order a power of ℓ. In this context the Broué conjecture more precisely states that the ℓ-adic cohomology complex giving rise to R^G_L, cut by the idempotent corresponding to the ℓ-characters of L, is a tilting complex giving rise to a derived equivalence.

d-Harish-Chandra induction

Define a d-split Levi as the centralizer of some Φ_d-subgroup of G; when $d = 1$ this is thus the centralizer of a split torus, the same as a Levi of an F-stable parabolic subgroup.

Say that an irreducible representation γ of $\mathbb{Q}_\ell G^F$ is d-cuspidal if $\rho(1)_{\Phi_d(q)} = |(G')^F|_{\Phi_d(q)}$.

Theorem (d-Harish-Chandra induction)

Let γ be an irreducible $\mathbb{Q}_\ell G^F$-module. Then

- there is, up to G^F-conjugacy, a unique pair (L, λ), where L is a d-split Levi and λ a d-cuspidal irreducible representation of $\mathbb{Q}_\ell L^F$, such that $\langle \gamma, R^G_L(\lambda) \rangle_{GF} \neq 0$.

- The components of $R^G_L(\lambda)$ are in bijection with $\text{Irr}(W_G(L, \lambda))$ with multiplicities the corresponding dimensions up to sign, where $W_G(L, \lambda) = \{g \in N_{GF}(L) \mid g\lambda = \lambda\}/L^F$.

- $W_G(L, \lambda)$ is a complex reflection group.