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ABSTRACT

A new form of the Hyperbolic Pythagorean Theorem, which has a striking
intuitive appeal and offers a strong contrast to its standard form, is presented. It
expresses the sguare of the hyperbolic length of the hypotenuse of a hyperbolic
right angled triangle as the "Einstein sum" of the squares of the hyperbolic lengths
of the other two sides, Fig. 1, thus completing the long path from Pythagoras to
Einstein.

Following the pioneering work of Varicak it is well known that relativistic
velocities are governed by hyperbolic geometry in the same way that prerelativis-
tic velocities are governed by Euclidean geometry. Unlike prerélativistic velocity
composition, given by the ordinary vector addition, the composition of relativistic
velocities, given by the Einstein addition, is neither commutative nor associative
due to the presence of Thomas precession. Following the discovery of the
mathematical regularity that Thomas precession stores, it is now possible to
extend Thomas precession by abstraction, (i) allowing hyperbolic geometry to be
studied by means of analogies that it shares with Euclidean geometry; and, simi-
larly (ii) allowing velocities and accelerations in relativistic mechanics to be stu-
died by means of analogies that they share with velocities and accelerations in
classical mechanics. The abstract Thomas precession, called the Thomas gyration,
gives rise to gyrovector space theory in which the prefix gyro is used extensively
in terms like gyrogroups and gyrovector spaces, gyroassociative and gyrocommu-
tative laws, gyroautomorphisms, gyrotranslations, etc. We demonstrate the
superiority of our gyrovector space formalism in capturing analogies by deriving
the Hyperbolic Pythagorean Theorem in a form fully analogous to its Euclidean
counterpart, thus contrasting it with the standard form in which the Hyperbolic
Pythagorean Theorem is known in the literature. The hyperbolic metric, that sup-
ports the Hyperbolic Pythagorean Theorem, has a dual metric. We show that the
dual metric does not support a Pythagorean theorem but, instead, it supports the
11— Theorem according to which the sum of the three dual angles of a hyperbolic
triangle is Tt



1. Introduction

Some time in the sixth century B.C. Pythagoras of Samos discovered the theorem that now bears his
name. The conception of the Pythagorean Theorem is one of the most profound accomplishments in the history
of mathematics, marking the first known intellectual leap from empirical speculation into deductive reasoning.
This celebrated theorem is one of the most important theorems in the whole realm of geometry and is known in
history as the 47th proposition, that being its number in the first book of Euclid's Elements. Not unexpectedly,
therefore, Stillwell’s Mathematics and Its History book begins with the theorem of Pythagoras.?) The
Pythagorean theorem attracts remarkable attention, as evidenced from the number of proofs that have been
given to it.? It allows the concept of orthogonality to readily be accepted in mathematics, playing an important
role in the theory of vector spaces which, in turn, form the setting for Euclidean geometry - the geometry that
underlies classical mechanics.

Our recent extension of vector spaces into their hyperbolic counterparts, called gyrovector spaces,®
accommodates the setting for hyperbolic geometry - the geometry that underlies Einstein’s relativistic mechan-
ics. The Hyperbolic Pythagorean Theorem appears in the present article as an identity in a gyrovector space
that expresses the square of the hyperbolic length of the hypotenuse of a hyperbolic right angled triangle as the
Einstein sum of the squares of the hyperbolic lengths of the other two sides,

IAI2@ IBI?=ICII? (1.1)

shown in Fig. 1 and in Theorem 4.3, where the binary operation @ is the Einstein velocity addition, Eg.
(2.12). As such, it extends the validity of the Pythagorean theorem in its original spirit beyond Euclidean
geometry, and highlights the long path from Pythagoras to Einstein.

FIGURE 1

Clearly, a modified hyperbolic Pythagorean theorem fails when one applies the ordinary addition, +, in
(1.2) instead of the Einstein addition, @. The failure of (1.1) with + instead of @ has been emphasized by
Wallace and West. Since the validity of (1.1) has gone unnoticed in the literature they concluded that "the
Pythagorean theorem [in its original spirit, expressing a sum of squares as a square] is strictly Euclidean."® It
is therefore interesting to realize that the Pythagorean theorem is valid in non-Euclidean geometry as well if it
is appropriately linked to the Einstein theory of relativity.

Physicists and mathematicians tend to think of symmetry as being virtually synonymous with the theory
of groups and their actions.”® However, being nonassociative, the Einstein velocity addition demonstrates that
also some non-group groupoids can measure symmetry. Unlike velocity addition in classical mechanics, which
is a group operation, the Einstein velocity addition is not a group operation. |s the breakdown of the associa-
tivity of the velocity composition law in the transition from classica to relativistic velocity addition associated
with loss of symmetry? It has been discovered in 1988 that the seemingly lost symmetry is, in fact, concealed
in the relativistic effect known as Thomas precession, or, Thomas gyration.®”) Taking the role played by the
Thomas precession into consideration, the Einstein velocity addition appears to be a gyrocommutative gyro-
group operation,® in full analogy with its classical counterpart, which is a commutative group operation.
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The grand scientific achievement of this century in mathematical beauty and experimental verifications
has been specia theory of relativity, with its Einstein addition and Thomas gyration. The theory of gyrogroups
and gyrovector spaces that has been presented in Ref. 3 captures the symmetry that has seemingly been lost in
the transition from the ordinary vector addition to the Einstein velocity addition. It is particularly interesting to
realize in this paper that the Einstein velocity addition law captures the lasting beauty of the Euclidean
Pythagorean Theorem that has seemingly been lost in its transition to hyperbolic geometry; it can now be seen
by inhabitants of hyperbolic worlds as well.

Furthermore, the Hyperbolic Pythagorean Theorem in its present, new form constitutes an important step
towards our envisaged axiomatic approach to gyrovector spaces, guided by analogies shared with vector spaces
and Euclidean geometry, to which Thomas precession gives rise. The basic role that Thomas precession plays
in our gyrovector space theory and in hyperbolic geometry highlights Gravity Probe B, a NASA project aimed
at the measurement of the Thomas precession of gyroscopes in Earth orbit,® to test general relativity.

The fascinating journey from Pythagoras to Einstein presents itself in this article by means of our gyro-
vector space theory that we have developed in Ref. 3. It alows, by means of the Einstein velocity addition, the
Hyperbolic Pythagorean Theorem to be presented in a form fully analogous with the form originally derived by
Pythagoras, as shown in Fig. 1. The long path from Pythagoras to Einstein has been described (i) by Friedrichs
in his book From Pythagoras to Einstein,® tracing the Pythagorean Theorem through its various metamor-
phoses leading to E =mc?; and (ii) by Lanczos in his book Space Through the Ages The Evolution of Geometri-
cal Ideas from Pythagoras to Hilbert and Einstein.®® Our presentation of the Hyperbolic Pythagorean Theorem
as an identity that expresses the square of the hyperbolic length of the hypotenuse of a hyperbolic right angled
triangle as the Einstein sum of the squares of the hyperbolic lengths of the other two sides, exhibits a novel
feature of the path from Pythagoras to Einstein.

By deciphering the agebraic structure concealed in the Thomas precession of the special theory of rela-
tivity it became possible to understand the Einstein velocity addition in terms of analogies that it shares with
the vector addition of Euclidean geometry. More generally, the Thomas precession is abstracted to the Thomas
gyration, giving rise to a grouplike structure called a gyrogroup. Exploring the resulting gyrogroup theory
aong lines parallel to group theory,® we introduce a scalar multiplication into some gyrocommutative gyro-
groups in the same way that scalar multiplication is introduced into some commutative groups to construct vec-
tor spaces. The resulting gyrovector spaces then provide the setting for hyperbolic geometry in the same way
that vector spaces provide the setting for Euclidean geometry. Interestingly, there are more gyrovector spaces
than vector spaces since two vector spaces with equal dimensions are isomorphic while any two non-isomorphic
symmetric spaces give rise to corresponding non-isomorphic gyrovector spaces.*V

The name "hyperbolic geometry" for the Non-Euclidean geometry of Bolyai and Lobachevsky was intro-
duced by Klein in 1871.%2 Five years after Einstein’s 1905 paper that founded special relativity theory,*? a
Croatian mathematician, Vladimir Varidak,*¥ pointed out that relativistic velocity spaces are governed by
hyperbolic geometry. Following Vari¢ak’s pioneering work and recently discovered analogies shared by hyper-
bolic and Euclidean geometries, hyperbolic geometry can now effectively be used in the study of velocity
spaces in relativistic mechanics in the same way that Euclidean geometry is employed for the study of velocity
spaces in classical mechanics. Specifically, (i) following the discovery of the mathematical regularity stored in
the relativistic effect known as Thomas precession in 1988;© (ii) following the abstraction of the Thomas
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precession into the Thomas gyration in 1991;(” and (iii) following the introduction of compatible scalar multi-
plication in 19929 it is now possible to study hyperbolic geometry by means of novel striking analogies that
it shares with Euclidean geometry, resulting in corresponding analogies shared by relativistic mechanics and
classical mechanics.

In order to develop the setting for Euclidean geometry one considers a commutative group of elements,
called vectors, for which inner product and scalar multiplication are defined. In full analogy, to develop the set-
ting for hyperbolic geometry we consider a gyrocommutative gyrogroup of elements called gyrovectors, for
which inner product and scalar multiplication are defined. The prefix "gyro" that we extensively use stems from
the underlying Thomas gyration.

Historically, the concept of gyrogroup evolved from the 1988 discovery of the gyroassociative law that
the Einstein velocity addition obeys.® Our first axiomatic approach was proposed in 1989.19 The various
forerunners of gyrogroups and gyrocommutative gyrogroups were K-loops, proposed in 1989, WAGs
(Wesakly Associative Groups) and WACGs (Weakly Associative Commutative Groups), proposed in 1990.17
WACGs were later termed gyrogroups in 1991, a term which was modified in 1997 into gyrocommutative
gyrogroups to accommodate non-gyrocommutative gyrogroups as well.®) Gyrocommutative gyrogroups that
admit scalar multiplication became gyrovector spaces in Ref. 3. It is the exotic grouplike structure to which the
Thomas gyration gives rise which accommodates the gyrovector space that alows the Hyperbolic Pythagorean
Theorem to be presented in this article.

We prefer the term "gyrogroup”, that we have coined in 1991,() over the term "K-loop" that we have
coined in 1989, since it is an integral part of our gyroterminology, in which we emphasize by means of Tho-
mas gyration analogies shared by Euclidean geometry and hyperbolic geometry, as well as corresponding analo-
gies shared by classical mechanics and relativistic mechanics. Thus, for instance, the Einstein velocity addition
is a gyrocommutative gyrogroup operation, in full analogy with the ordinary vector addition, which is a com-
mutative group operation.®® Similarly, the (homogeneous, proper, orthochronous) Lorentz group is the gyrosem-
idirect product of a gyrogroup of left gyrotrandations and a group of rotations in full analogy with the (homo-
geneous) Galilei group which is the semidirect product of a group of translations and a group of rotations.(8 19
The latter, in turn, is isomorphic with the group of Euclidean rigid motions and the former, by analogy, is con-

sidered as the group isomorphic with the group of relativistic "rigid motions".®

Of particular interest are analogies shared by gyrovector spaces and vector spaces and analogies shared
by their respective geometries, the hyperbolic and the Euclidean ones. Thus, for instance, the unique geodesic
line that contains two given points a (for t =0) and b (for t =1) of a vector space is given by the parametric
equation

a+(-a+b)t, t OIR (1.2

where + is a commutative group operation and where the product between a vector and a scalar is the common
scalar multiplication in a vector space. In full analogy, it has been shown in Ref. 3 that the unique geodesic
line that contains two given points a (for t =0) and b (for t =1) of a gyrovector space is given by

a®@(-—a®@b)ot, t OIR (1.3

where @ is a gyrocommutative gyrogroup operation and (@ is the scalar multiplication in a gyrovector space
that we define in Defs. 2.1 — 2.3 of Section 2.
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Furthermore, curves that describe uniform acceleration in velocity spaces are geodesics.®Y Hence, as
explained in Ref. 3, the time dependent velocity vy (t) of an initial, relativistically admissible velocity v, and a
constant, relativistically admissible acceleration a is given in relativistic mechanics by the equation

Vg(t) = vo@aQt, t OIR (Fig.2) 1.9

in full analogy with its classical mechanics counterpart, v(t)=vp+at. The curves (1.4) are the well known
geodesics of hyperbolic geometry relative to the hyperbolic metric (5.8) that will be presented in Section 5.
One of these curves in the Poincare disk model of hyperbolic geometry is shown in Fig. 2.

FIGURE 2

Since we wish to emphasize analogies shared by classical and relativistic mechanics that correspond to
analogies shared by Euclidean and hyperbolic geometry, we explore in Section 5 the dua metric, relative to
which the curves

va(t) = a@t @V, t OR (Fig.3) (15)

are geodesics, called dual geodesics. Since the Einstein velocity addition is gyrocommutative, Def. 2.2, rather
than commutative, the curves (1.4) are different from the curves (1.5) whenever vy and a are nonparallel. The
curves (1.5) are known in hyperbolic geometry as hypercircles or equidistant curves.®?® One of these curves in
the Poincare disk model of hyperbolic geometry is shown in Fig. 3.

FIGURE 3

Being equal, vpo+at and at +v, are equally significant in classical mechanics, where they describe the
velocity of a uniformly accelerated object. If analogies are to be validated, the physical and the geometric
significance of the curves in (1.4) and (1.5) should be equal as well. Promising results indicating that, indeed,
(1.5) is likely to be found as significant as (1.4) are presented in Section 5. It is shown in that section that, like
(1.4), the curves (1.5) are also geodesics, but relative to a dual metric that emerges naturally in Section 5. We
then discover that the Euclidean Pythagorean Theorem has no hyperbolic counterpart in the dual metric. As to
compensate for this loss, we show in Section 5 that the sum of the three dual angles of any dual triangle in
hyperbolic geometry is Tt This observation strengthens our conjecture that no Euclidean property has been lost
in the transition from Euclidean geometry to hyperbolic geometry. The seemingly lost properties, like paralel-
ism, in fact reappear with the dual metric and its dual geodesics and dual angles.

It is interesting to realize from Figs. 2 and 3 that in hyperbolic geometry geodesics and equidistant curves
are closely related by the noncommutativity of the gyrogroup operation @ in Egs. (1.4) and (1.5). We will see
in this paper that (i) on one hand, only the curves (1.4) give rise to the Hyperbolic Pythagorean Theorem, in
Section 4. But, (ii) on the other hand, only the curves (1.5) give rise to the hyperbolic Tt— Theorem, in Section
5.
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2. The Poincar € ball model of hyperbolic geometry and its associated M obius gyrovector space

Hyperbolic geometry is studied in the literature by means of several standard models. The various models
of hyperbolic geometry are equivalent to each other in the sense that if inhabitants of one model of hyperbolic
geometry were to communicate with those of another model by telephone, they would not be able to tell their
worlds apart. In fact, it was Poincare who analyzed the role of geometry in physics and concluded that one
model of a geometry cannot be more true than another model of the same geometry, it can only be more con-
venient.®® Thus, in particular, in the study of relativistic velocities we are free to select any model of hyper-
bolic geometry. Three mutually isomorphic gyrovector spaces which underlie three attractive models of hyper-
bolic geometry have been studied in Ref. 3. These are (i) the Einstein gyrovector space, (ii) the Mobius gyro-
vector space, and (iii) the Welierstrass gyrovector space, which underlie respectively (i) the Klein disk model of
hyperbolic geometry, (ii) the Poincare disk model of hyperbolic geometry; and (iii) the Weierstrass model of
hyperbolic geometry. The latter is an attractive model of hyperbolic geometry since, unlike other models, its
underlying space is not restricted to the ball or to a half-space of an inner product space.

It seems that the natural choice for the study of special relativity would be the Einstein gyrovector space
since its binary operation is the Einstein velocity addition. However, due to their mutual equivalence, the selec-
tion of any particular model of hyperbolic geometry for the study of relativistic physics is legitimate. Being
conformal, it is the Poincare disk model which is particularly suitable for graphical presentation of the Hyper-
bolic Pythagorean Theorem. Within Euclidean geometry, this model of hyperbolic geometry exhibits Euclidean
angles since the Poincare measure of an angle is given by the Euclidean measure of the angle formed by
Euclidean tangent rays.®” Therefore, we select in this article the Poincare disk model and its generalization
into the ball of the abstract real inner product space for the presentation of the Hyperbolic Pythagorean
Theorem.

Gyrogroups are defined in Ref. 3 in terms of their underlying axioms. Gyrovector spaces, in turn, are
studied in Ref. 3 by means of several concrete examples. We feel that concrete examples of gyrovector spaces
should be further explored before an axiomatic approach can be taken. Our present Hyperbolic Pythagorean
Theorem in Mobius gyrovector spaces in a form that exhibits analogies shared with its Euclidean counterpart
justifies an optimistic outlook for eventual construction of the axiomatic foundation of gyrovector spaces. The
gyrogroup definition and the definition of the Mobius gyrovector space, as presented in Ref. 3, follow.



DEFINITION 2.1 (Gyrogroups) A groupoid (G, @) (that is, a non-empty set with a binary operation) is
a gyrogroup if its binary operation satisfies the following axioms and properties. In G there exists a unique
element, O, called the identity, satisfying

(G1 O@@a=a®0=a | dentity

for all aJG. For any a G there exists in G a unique inverse, —a, satisfying

(G2 —-a®@a=-a®(-a)=0 Inverse

Moreover, for any a,b 0G the map gyr[a;b] of G into itself, given by the equation

gyrfa;b]z = -(@@b) ® @@ (b ®2) (2.1)

for dl zOG, is an automorphism of G (that is, a bijection of G that respects its binary operation @), and the
following hold for al a,b,c 0G.

(G3a) a@®@(b@®c)=(@®db)®agyra;blc Left gyroassociative Law

(G3b) (@a@b)®dc=a@® (b @®agyrb;a]lc) Right gyroassociative Law
(G4a) gyrla;b]
(G4b)  gyr[a;b]

gyrf[a @ b,Db] Left Loop Property

gyrfa,b @ a] Right Loop Property

DEFINITION 2.2 (Gyrocommutative Gyrogroups) A gyrogroup (G, @) is gyrocommutative if for all
a,b0G

(G6) a@b = gyrfa;b](b @ a) Gyrocommutative Law

Examples of gyrogroups, both gyrocommutative and non-gyrocommutative, abound in several areas of
mathematics and physics.®? To gain experience with the beautiful gyrogroup structure, readers may consider
the simplest non-group nongyrocommutative gyrogroup (T4, (O ) where T, is the set of all 4x4 real (or com-
plex) upper triangular matrices with diagonal elements 1,

X1 Xo X3
1 X4 X5
0 1 Xxg
0 01

M(x) = (2.29)

o O O Bk

X = (X1, X2, X3, X4, X5, Xg) JIR® (or €5). The gyrogroup operation @O in T4 is given in terms of matrix multiplica-
tion by the equation

M) O M) = MM (y)M () (2.20)

where M? is the square of a matrix M and M™ is its inverse. The gyrogroup inverse of a matrix
M (x) (T4 @) is, clearly, given by matrix inversion, (M (x))"*=M(x). Hence, for instance, according to Eq.
(2.1) the gyroautomorphisms gyr[M (a), M (b)] of the gyrogroup (T4, () are given in terms of their effects on



M (2) by the equation
oM @,MOIME@) = M@ OMD)™'O M@0 M(bB)O M) (2.2

for al M(a), M (b), M (2) O(T,4, ® ), where we use multiplicative, rather than additive, notation. This and other
related non-gyrocommutative gyrogroups are studied in Ref. 25.

Like groups, some gyrocommutative gyrogroups give rise to gyrovector spaces. Of particular interest in
this article is the Maobius gyrocommutative gyrogroup that has been presented in Ref. 3. In the following
Definition we extend the definition of a Mobius gyrogroup into that of a Mdbius gyrovector space.

A most elegant example of a gyrogroup arises in the study of the Mobius transformation group of the
complex unit disk D, D ={z0O C: |zI<1}, of the complex plane €. Mabius transformations of the disk,

g Z0%Z o

z = e'—— = e%(zp®2) (2.3

1+7z,z

consist of rotations and trandation like maps. The usefulness of (2.3) in string theory is evidenced from
Ref. 26. The complex unit disk and its Mobius transformations (2.3) form the Poincare disk model of hyper-
bolic geometry.??) The binary operation @ that Eq. (2.3) defines in the complex unit disk is a gyrogroup
operation.®® Rather than confining our study to the Poincare disk model of hyperbolic geometry, we will
present in the following definition the (generalized) Mabius transformation of the ball, alowing us to expand

our study to the Poincare ball model of hyperbolic geometry in any dimension, finite of infinite.

The Mobius addition @ in the disk D is studied in the literature as a transformation @, of the disk
rather than a binary operation in the disk. It is known to be useful in the modern geometric point of view in
complex function theory which began with Ahlfors classic paper that demonstrated that the Schwartz lemma
can be viewed as an inequality of differential geometric quantities, curvatures, on the disk.?¥ The usefulness of
the Mobius addition in geometric function theory is evidenced from Ref. 30 where it is noted that the Mobius
transformation @, of the disk,

z+a
1+az

®a(2) =

a,z[D, does not preserve Euclidean distance, but it does preserve Poincare distance. We consider @, (z) as a
left gyrotrandation of a by z, and express it in terms of the Mobius addition as @,(z)=z@®a. The
gualification of ¢,(z) to be viewed as a binary operation @ between a and z stems from the fact that the
resulting binary operation @ is a gyrogroup operation.

Eqg. (2.3) represents a specia Cartan’s decomposition. Further generalization of the Maobius transforma
tion situation in (2.3) and its resulting gyrogroup to the so called Riemannian globally symmetric spaces of non-
compact type is possible, as we will indicate at the end of this article. We are, however, interested in the gen-
eralization of (2.1) to the ball of any real inner product space that we present in the following definition.
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DEFINITION 2.3 (The Mabius Gyrovector space) Let (V,,+, -) be area inner product space, and let
V; be its open s-ball, s being an arbitrary fixed positive constant,

V, = {vmvm: ||v||<s}

The Mobius gyrovector space induced by V,, is the triple (Vs, @ , (O ) equipped with inner product and norm
that it inherits from V,,, where (i) the binary operation @ in Vs is given by the equation

U@V = 1 {(1+%u-v+i||v||2)u+(1—i2IIUI|2)V} (24)
s

2 1 s s?
1+ = uv+— ulPlvI?
) S

representing a generalized Mobius transformation x —>u @ x of the ball; and (ii) the scalar multiplication ©
in Vs is given by the equation

vl \" IvI\"
ov=sts) T0T)
MK I\ v
1+ 0y 4 (-
1+ (t--)
2.5)
= stanh(r tanht Y1y V.
s 7 vl

where r OIR, vOVg, v£0; and by r © 0=0.

The Mobius addition (2.4) in the ball Vs is reducible to the well known Mobius transformation z, ®z, =
(z,+2,)/(1+Z,z,) of the complex disk, Eg. (2.3), as we will show in Eq. (2.18) below. In the limit of large s,
s — oo, the ball Vs expands to the whole of its space V,,, and the Mobius addition reduces to the ordinary addi-
tion of vectors in V,,.

The pair (Vs, ®) forms a gyrocommutative gyrogroup,®? called a Mobius gyrogroup. The triple
Vs, @, @) is accordingly caled a Mobius gyrovector space. The relationship between the Mobius addition
and the Einstein velocity addition is presented in Ref. 3 where the two binary operations in the ball are respec-
tively denoted by ®,, and @¢-

The scalar multiplication in a gyrovector space, consistent with certain elementary properties that one
expects a notion of scalar multiplication to satisfy, is presented in Ref. 3. In addition, one may note for later
reference that for any element v in a Mobius gyrovector space and r IR™ a positive real number we have

rov. - v
Ir vl vl (2.6)

The Lorentz factor vy, in a Mobius gyrovector space (Vs, @ , O ) is given by the equation

YW = i (27)
1_

_\/ Ivi?
52

satisfying
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Voou = Yot \/1+ S—ZZU v+ S—l4llu||2||v||2. 29)

The gyroautomorphism operation gyr of the Mdbius gyrovector space Vs is given by the equation

gyruiviz = -ueVv) ®@ {u® (v® 2} (29

for dl u,v,z0Vs, as wee see from Eg. (2.1). It can be shown that the gyroautomorphism gyr[u;v] in (2.9),
generated by any u, vV, is an orthogonal transformation of V.

A Mobius gyrovector space Vs is a metric space equipped with the Poincare distance function

dx,y) = IxQyl (210)

where we use the obvious notation x@y to denote x@ (-Yy). The Poincare distance function maps Vg xV;
onto the open interval (or, the s-ball) IRy =(-s,s) of the red line IR, satisfying the gyrotriangle inequality

d(x,2) < d(x,y) @ d(y,2) (2.11)

for al x,y,z0Vs, where equality holds if and only if y lies on the geodesic segment which joins x and z. The
binary operation @ in Egs. (2.10) and (2.11) is the Mobius addition. However, the one in Eq. (2.11) can aso
be regarded as the Einstein velocity addition since, when applied to parallel vectors (particularly, vectors of
dimension 1) the M&bius addition is identical with the Einstein velocity addition. The binary operation @ in
the gyrotriangle inequality (2.11) can thus be regarded as the Einstein addition in IR;. The Einstein velocity
addition in IRy follows from Def. 2.3, as explained in Eq. (2.12) below. In the special case when Vg =IR? is the
s-disk of the Euclidean plane V,, =IR?, one recovers from (2.11) the well known geodesics of plane hyperbolic
geometry.®? These are the circular arcs which intersect the boundary of the disk orthogonally,®? as shown in
Fig. 2.

The set of norms of al elements of the ball Vg of V,, is the ball IR, =(-s,s) of the rea line IR. Inhabi-
tants of the Poincare ball model of hyperbolic geometry naturally consider IR as the set of the whole of their
real numbers that describe speeds. Accordingly, their hyperbolic metric spaces involve the gyrotriangle ine-
quality (2.11) rather than the standard triangle inequality in metric spaces, like the one in Eq. (2.14) below.

Redlizing the abstract real inner product space V,, by the real line IR, Def. 2.3 reduces to the definition of
a binary operation @ in IR, turning it into a commutative group (IR, @) with @ given by the Einstein velo-
city addition of paralldl velocities

a+b
1+ab/s?

a@b = (2.12)

a,b0IR;. Moreover, Def. 2.3 aso provides a scaar multiplication & in the commutative group (IRs, @),
turning it into a vector space (IRs, @ , (O ) over IR with (O given by the equation

r@a = stanh(r tanh‘lg) (2.13)

that can be recovered from Eg. (2.5) when V,,=IR.

We may note that while 1) a=a, in genera, r O 1#r. Hence we view 10IR; (when s>1), as well as
every element of IR, as a vector rather than a scalar.
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Incidentally, while the pair (IRs, @) is frequently used in the literature as an example of an exotic
group,® the triple (IR;, @ , ) is not used to exhibit an example of an exotic vector space. In fact, it is due
to the absence of Thomas gyration in one dimensional space that (IR, @) and (IRs, ® , () have their respec-
tive commutative group and vector space structure. It is the presence of the Thomas gyration in dimensions
higher than 1 that distorts these group and vector space structures. It converts (i) the commutative group
(IRs, @) into a gyrocommutative gyrogroup (Vs, @) and (ii) the vector space (IR;, ® , (O) into a gyrovector
Spme (VS’ @ ' O)

The axioms underlying gyrocommutative gyrogroups are well understood in Ref. 3 in terms of analogies
that they share with those of commutative groups. Unfortunately, we cannot presently offer an axiomatic
approach to gyrovector spaces since a gyrodistributive law in (Vs, @ , O ) that reduces to the distributive law
ro@®b)=roa®drobin (R, ®,®), rdR, is, as yet, unknown. The elusive gyrodistributive law
defies, to date, the exploration of concrete examples of gyrovector spaces. We therefore hope that the hyper-
bolic law of cosines and its resulting hyperbolic polarization identity and the Hyperbolic Pythagorean Theorem
that we present in this article constitute an important step towards our envisaged axiomatic approach to gyro-
vector spaces, guided by analogies shared with vector spaces.

The right hand side of the gyrotriangle inequality (2.11) can be written as

s tanh(tanh‘lLS’y) + tanh‘lMS'Z))

Hence the gyrotriangle inequality (2.11) can be written as a triangle inequality,
tanh 2402 (’;' 2 < tanhrdXY) (XS’ R (3;' 2 (2.14)

Eqg. (2.14) involves the standard addition of real numbers in IR as opposed to Eg. (2.11), which involves the
Einstein addition of real numbers in IR;. Hence, it is customary in the literature to define the hyperbolic metric
as

s+d(x,y)

2tanh™(d(x,y)/s) = In s—d(x,y)

(2.15)

with s =1.%% The factor 2 in the metric (2.15) is chosen in order to make the resulting Gaussian curvature -1
when s =1, as opposed to the Gaussian curvature of the Poincare metric (2.10) which is —4/s? according to
Eq. (5.18b) in Section 5. We, however, prefer to leave s as a free positive parameter,®® and employ the Poin-
care metric d(x,y) with its gyrotriangle inequality (2.11) in order to emphasize analogies shared by the hyper-
bolic and the Euclidean geometry. As a result, we will be rewarded in this article by the discovery that the
Hyperbolic Pythagorean Theorem can be presented in a form fully analogous to its Euclidean counterpart,
expressing an Einstein sum of squares as a square, Theorem 4.3 and Fig. 6.

The gyrotriangle inequality (2.11) follows from Eq. (2.8), Cauchy-Schwarz inequality, and Theorem 5.8
of Ref. 3. Details are given in Ref. 31. Mobius addition @, Eq. (2.4), is known in the literature on Mobius
groups in disguise. It has been studied by Ahlfors in connection with the map x — T4(x) that he advocated to
use as a standard conformal map of the ball B" of the Euclidean n-space IR" on itself. It turns out that this
map expresses the Mobius addition @ by means of the equation T,(x) =—a@® x.>%
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Moreover, Ahlfors did present the identity

Ty(x) = —AKXY) TdY) (2.16)

for all x,yOB" that T, obeys as an interesting but an isolated relation, where A(x,y) is an orthogonal transfor-
mation of B". It has gone unnoticed that (i) the Ahlfors rotation A(x,y) is analogous to the Thomas precession
(or, rotation) of the special theory of relativity; that (ii) Identity (2.16) can be interpreted as a relaxed commuta-
tive law for the Madbius addition, our gyrocommutative law (G6) in Def. 2.2; and that (iii) the same Ahlifors
rotation A that gives rise to a relaxed commutative law in Eq. (2.16), gives rise to a relaxed associative law for
the Mobius addition as well, our gyroassociative law (G3) in Def. 2.2. In contrast, we place the Ahlfors rota-
tion (or, eguivaently, the Thomas precession) and its abstraction, the Thomas gyration, in the foundations of
non-Euclidean geometry.®

The Mabius transformation of the ball in higher dimensions, n =3, studied in Refs. 31,35 and 37, is not
well known in the standard literature on hyperbolic geometry. In contrast, its special case n =2, corresponding
to the Poincare disk is well known. To see this let us, therefore, realize the abstract real inner product space V.,
in Def. 2.3 by the Euclidean plane IR? reducing the ball V; into the Poincare disk IR? whose points can be
represented by the points of the complex s-disk Dg of the complex plane C,

D, :{zmc:|z|<s} (2.17)

Méhius addition @, Eq. (2.4) reduces to the well known Mobius transformation of the disk,?

Zl'f'Z2

2,0z, = (2.18)

1+7;2,/s?
when V,, is realized by IR? and when complex number representation for vectors in IR? is employed. Accord-
ingly, the distance function (2.10) reduces to the well known Poincare distance function

d(z;,z,) = 12,02z, =

Z,—Z
| —L1 2 | (2.19)

1_21 22/52
in the Poincare disk. The Einstein velocity addition for parallel velocities, Eq. (2.12), is recovered from Eq.
(2.18) when z, and z, are real and when s represents the vacuum speed of light.

The binary operation (2.18) in the complex unit disk Dg-; is known in the literature in disguise. It is
viewed in the literature as a Mobius transformation of Dg_; rather than as the Mobius addition. Similarly, also
the scalar multiplication (2.5) for the special case when the ball Vg reduces to the complex unit disk Dg-, is
known in the literature, in disguise. It is viewed in the literature as a means of generating geodesics for the
Teichmiiller metric,®® rather than as the Mébius scalar multiplication in a Mobius gyrovector space.
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3. Hyperbolic geometry of the ball in a real inner product space

In physics vectors appear as a geometric concept. A basic notion in geometry is that of the point. Hence,
if we wish to find a geometry closely tied to a gyrovector space we will have to establish a relationship
between gyrovectors and points. This relationship is naturally analogous to the one between vectors and points
in vector spaces; see, for instance, Artzy.®

Let Vs=(Vs, @, ® ) be the Mdbius gyrovector space of the ball Vg of a rea inner product space V.,
with its natural metric d(x,y)=1-x@Yl, known as the Poincare metric. We call the elements of Vy points
and associate a nonzero geometric gyrovector, —a@® b, with any ordered pair (a,b) of distinct points a, bOVs.
The geometric gyrovector associated with the pair (a,b) has length d(a,b)=l-a@®bl, and it is viewed as a
geodesic segment directed from a to b. The analogies shared with the Euclidean geometric vector b-a,
viewed as a straight arrow of length b —all directed from a to b are obvious.

The motions of the ball Vg, which determine its hyperbolic geometry, are (i) the left gyrotrandations
Ly: Vs — Vg, given by
Lyv = XxX@®V
X,vOVg, and (ii) the rotations of Vg, that is, those isometries of Vg that possess a fixed point.

The length of geometric vectors in Vs is invariant under the motions of V. The invariance under rota-
tions is obvious, and the invariance under left gyrotrandations follows from Theorem 5.8 in Ref. 3 noting that
gyrations are rotations. Specificaly, let (x@a,x@b) a be a left gyrotrandated pair of the pair (a,b) by x in
V. It then follows from Theorem 5.8 of Ref. 3 that

-L,a @ Lyb

-x®a) @ x®Db)
(3.2)

ayr[x; a] (—a@b)

so that, noting that gyrations are isometries, both the geometric gyrovectors associated with the pair (a,b) and
with its left gyrotranslated pair (L,a,Lyb) = (x® a,x@ b) have equal lengths

I-Lya @ Lyl = I-a@bl (3.2)

Hence, following Klein's Erlangen Program that Klein announced at the University of Erlangen in 1872,%% the
length of a geometric gyrovector has geometric significance in the geometry that is determined by the group of
motions of V.

Egs. (3.1) and (3.2) show that, unlike Euclidean geometry, in hyperbolic geometry a geometric vector
from ato b is, in general, not equivalent to its left gyrotrandated gyrovector; it is only its length which remains
invariant under a left gyrotrandation.

The origin is, however, a specia point in hyperbolic geometry in the sense that every geometric vector
from a to b is equivalent to a geometric vector from the origin, 0, to —a@®b. This follows from Eq. (3.1) with
X=-a, noting that gyr[ —a; a] =id is the identity transformation. Specifically, thus, the two geometric gyrovec-
tors determined by the two ordered pairs (a, b) and (0,—a@® b) are equivalent.

A vector in physics is determined by its length and relative orientation. By analogy, we wish that also a

geometric gyrovector be determined by its length and relative orientation. Being guided by analogies, to accom-
plish this task we define the cosine of the angle a between the two geometric gyrovectors associated with the



-14 -

pairs (a,b) and (a, c), of which the first entries are coincident, Fig. 4, by the inner product

-—a@b -a®c (3.3)
[—-a@bl lI-a@®cl

cosa =

Eqg. (3.3) determines the angle between two rays emanated from a common point. The angle is either + a or
T+ 0, depending on the direction of the rays, Osasg, in full analogy with angles between directed rays in

Euclidean geometry.

FIGURE 4

The angle a in (3.3) is in fact the angle between two geodesic rays, L, , and L, ,, emanated from a com-
mon point, a, and containing respectively two given points, b and ¢, Fig. 4. To show that a is independent of
the choice of the points b and c on the two directed rays L, , and L, . that are emanated from a, we note that
the two rays are given in our analytic hyperbolic geometry by the parametric equations

La,b a@(_a®b)®t

and

La,c a@(—a@c)@t

where t is area parameter running over IR*=(0, «).®) Let therefore b* and c* be any two points other than a
onL,,andon L, respectively as shown in Fig. 4. Then, there exist t; and t, in IR* such that

b*

a@(-a@®b)Ot1
(3.9

C*

a@®(-a@0Ot;

To show that a is independent of the choice of b* and c* on the geodesic rays L, 1, and L, . that define
o we will show that the cosine of the angle a between the two geometric gyrovectors associated with the pairs
(a,b*) and (a,c*) is independent of the choice of t,t,0IR" in (3.4).

According to eg. (3.3), the angle between the two geometric vectors associated with the pairs (a, b* ) and
(a,c*) isgiven by

-—a@b* _-a@cr _ _(fa@b)Oti (ra®@9Ots
-a@b* | [-a@c* | I(—a@b)O tll I(-a@c) O tsll
_ _~a@b _-a®c (3.5)
I-a@®bl lI-a®cl
= cosa

The first equality in (3.5) follows from an application of the left cancellation law, e.g.,
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~a@b* = -a@fa@(-a@b ot} = (-a@boh

The left cancellation law is presented in Ref. 3 as well as in Eq. (5.1) of Section 5.1. The second equality in
(3.5) follows from Eg. (2.6).

The angle a is invariant under the motions of Vg as we see from Egs. (3.1) - (3.3), noting that the inner
product is preserved by rotations. Moreover, hyperbolic angles keep their numerical value invariant in the tran-
sition between the gyrovector spaces of Einstein, Mobius and Welerstrass. Hence, finally, geometric gyrovec-
tors have geometric significance in Vg since their lengths and relative orientations are preserved under the
motions of V. Unlike Euclidean geometric vectors, however, geometric gyrovectors are not invariant under
(left or right) gyrotrandations, as we see from Eqg. (3.1) according to which a left gyrotranslation of a geometric
gyrovector results in a Thomas gyration (that is, a rotation) of the gyrovector.

Two geometric gyrovectors are orthogonal if the cosine of the angle between them is zero. By defining
orthogonality in Vs we have completed setting the stage for the Hyperbolic Pythagorean Theorem in a Mobius
gyrovector space, that is, in the Poincare ball model of hyperbolic geometry.
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4. The Hyperbolic Pythagorean Theorem in the Poincare ball model of Hyperbolic Geometry
THEOREM 4.1 Let (Vs, @, O ) be a Mobius gyrovector space. Then

la@® bl? la® 5 1 2a-b
- e e L, la\ by ,ab *
)+ 2) *2,
for al a,bOVs.
In particular, if a and b are orthogonal then
la@ bl lal? Ibll?
@b - @ 4.2)

S S S

Proof The proof is by straightforward algebra, noting that the @ between elements of Vg, given by Eq.
(2.4), is neither commutative nor associative, while the @ between elements of IR;, given by Eq. (2.4) as well,
is both commutative and associative as shown in Eq. (2.12). Specifically, one can readily show that each of the
two sides of (4.1) equals a+bl%(1+2a-b/s?+ al?Ibl?/s*, QED.

Noting that
2a
20a=a@a= ——m—
© ® 1+ al?/s?
Eq. (4.1) can be written as
1
= 20a-20b
ja@bl? _ lal2 _ b2 1 2 ¢030Ob)
s = 975 O 1 (43)
1+ = 20a-(20b)
2s
which, in turn, can be manipulated into the hyperbolic polarization identity,*%
la@ bll? la@ bl? 20a)(20Qb
@Z o G?S _ (20O )S( Qb) (4.4)

in Mébius gyrovector spaces (Vs, @ , O ) in full analogy with the polarization identity in rea inner product
spaces (Ve , +, +),

la+bl?> - la-bl? = 4a-b
We will now relate the identities in Theorem 4.1 to hyperbolic triangles thereby obtaining the hyperbolic

law of cosines and the Hyperbolic Pythagorean Theorem. Let Aabc be the triangle in a Maobius gyrovector
space V, whose vertices are a, b, cOV;. The special case of V; =IRZ is presented graphicaly in Fig. 5.

FIGURE 5

The sides of the triangle Aabc are formed by the three geometric gyrovectors A=-c@b, B=-c®a and
C=-a@®b. By Eqg. (3.1), we have
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(-c@b) © (—c@a) = gyr[-cbj(boa)
which, by the gyrocommutative law, can be written as
A©B = gyrf-c;blgyr[b;-a]C
Hence, noting that gyr[ —c; b] and gyr[b; —a] are isometries, we have
ICI> = IA@BI?

Noting that A @B =A @ (-B), we have, by Eq. (4.1)

ez 2
—C —lIAGB
S|| I S|| e Bl

4.5
1 2AB
s NG IBI2y _ 2
(1+ 2 )(1+ 2 —?A-B
thus obtaining the hyperbolic law of cosines for a hyperbolic triangle Aabc with vertices a,b,c and sides
A,B, C in the Poincare ball model.

1 1
= A2 @ = IB|?
s|| [ @Sn 12 @

By Eg. (3.3), the inner product A-B in (4.5) satisfies the equation A-B = | Al IBll cosy, where A,B and y
are shown in Fig. 5. The hyperbolic law of cosines can therefore be presented as

THEOREM 4.2 (The Hyperbolic Law of Cosines) Let A, B and C be the three sides of a triangle in a
Mobius gyrovector space (Vs, @ , O ), and let y be the hyperbolic angle between A and B. Then

1 2 Al IBIl cosy

Al2 B2 2
(1+ ”52” (1+ ”52“ - 5 IAIIBI cosy

1 1 1
= Te} 2 — = A2 = BZ
S|| Il S|| 1< ® S|| < e

Finally, the Hyperbolic Pythagorean Theorem is recovered from the law of cosines when the two sides A
and B of the hyperbolic triangle are orthogonal, Fig. 6.

THEOREM 4.3 (The Hyperbolic Pythagorean Theorem) Let Aabc be a hyperbolic triangle whose ver-
tices are the three points a,b and ¢ in a Mobius gyrovector space (Vs, @ , (O ), and whose sides are (if directed
counterclockwise) accordingly

A = -b®c
B = -c®a
C = —a@®hb

If the two sides A and B are orthogonal then

1 0 1 5 1
= IA =IBIZ = =|C 4.6
S AP @ < IBI S Icl (4.6)
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FIGURE 6

Fig. 6 shows a practical way to draw hyperbolic right angled triangles in the Poincare ball model. Since
geodesics through the origin of the ball are Euclidean straight lines, it is easy to identify the specia right
angled triangles Aa* b* c* with a right angle at the origin. More genera hyperbolic right angled triangles Aabc
can then be generated by left gyrotrandations and rotations.

Because of the large potential research rewards at stake for the exposition of more analogies to which
Thomas gyration gives rise, natural selection made by various explorers is likely to favor a terminology which
emphasizes analogies shared by Euclidean and non-Euclidean geometries and, correspondingly, analogies shared
by classical mechanics and relativistic mechanics. Our gyroterminology, in which we extensively use the prefix
gyro, is indeed sensitive to the need to accommodate new terms to describe further discoveries in gyrovector
space theory that are likely to emerge from time to time. Thus, for instance, the term gyrodistributive law is
waiting for the discovery of some unknown law that relates the two operations @ and (¢ in gyrovector spaces
Vs, @, ) in such a way that it reduces to the common distributive law in vector spaces when Thomas gyra-
tion vanishes.

The Hyperbolic Pythagorean Theorem is well known in the literature on hyperbolic geometry,224 where
it appears in a form that exhibits no obvious analogies shared with its Euclidean counterpart. Our gyrovector
space version of the Hyperbolic Pythagorean Theorem, however, exposes analogies shared by the concept of
Euclidean Pythagorean orthogonality,*" and its hyperbolic counterpart that we may naturally call a hyperbolic
Pythagorean orthogonality. It is therefore hoped that the present exposition of the Hyperbolic Pythagorean
Theorem, as viewed in gyrovector space theory, will encourage further exploration of our analytic hyperbolic
geometry approach, resulting in the discovery of more analogies shared by hyperbolic and Euclidean
geometries.

The Hyperbolic Pythagorean Theorem provides a way to select elegant distance functions in the various
models of hyperbolic geometry. Thus, for instance, the elegant form of the Pythagorean identity (4.6) results
from the selection of the Poincare distance function d(x,y) of Eqg. (2.10) rather than, for instance, the hyper-
bolic distance function 2tanh™(d (x, y)/s) (with s =1) that some authors prefer.(343%
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5. Isthere a dual hyperbolic Pythagorean theorem?

We have emphasized in Ref. 3 that gyrovector spaces are bimetric, possessing the two distance functions
(5.8) and (5.9) that are presented below. A gyrogroup (G, @) possesses a dual binary operation expressi-
ble in terms of the gyrogroup operation @ and its Thomas gyration. The introduction of the dua binary opera-
tion into a gyrogroup G is natura since the binary operation @ in G gives rise to a left cancellation law but
not to a right cancellation law. It is with the help of the dual binary operation in G that aright cancellation
law emerges. The left cancellation law and its two associated right cancellation laws are

-a@@@®b) = b (5.1
(a@b)Eb) = a (5.2)
(aEb)ob) = a (5.3)
The duality between the two binary operations @ and in G is expressed by the three relations
afb = a@®agyr[a;—b]b (5.9
a@b = a[# gyr[a; b]b (5.5)
Aut(G, ®) = Aut(G, ) (5.6)

that they satisfy, as shown in Theorem 4.2 of Ref. 3, where Eq. (5.4) constitutes the definition of . Further-

more, in a gyrocommutative gyrogroup the dual binary operation is commutative (but not associative), by

Theorem 5.10 of Ref. 3. It can be shown by methods of Ref. 31 that the dual gyrogroup operation =Hu

Eqg. (5.4), in a Mobius gyrogroup (Vs, ®,,), where @,, is the Mobius addition @ in Eq. (2.4), can be written

as

(1-1Ibl%s?)a+ (1- lal?s?)b
1 - llal?Ibl?/s*

a@,b = (5.7)

While the dua Mobius addition [#,, in Eq. (5.7) is far from being associative, it is commutative and looks
simpler than Mobius addition @ = @®,, in Eq. (24). It is interesting to realize that despite of being so
different, the two binary operations @ = ®,, and [#,,, Egs. (24) and (5.7), in the bal Vs are dua to one
another in the sense of the duality symmetries (5.1) — (5.6).

In a gyrovector space (Vs, @ , (O ) the gyrogroup operation (® gives rise to the natural metric (2.10),
d(ab) = la@bll (5.8
Similarly, its dual binary operation gives rise to the dual metric
d.(ab) = laz bll (5.9)
The introduction of the dual gyrogroup operation in a gyrogroup (G, @) isinitidly justified by the
need to have a right cancellation law, (5.2), in addition to the left cancellation law (5.1) that the gyrogroup

operation @ offers. More justifications follow. The introduction of the resulting dual metric (5.9) is justified as
well, as we will see in the sequel.
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The curves a@b(O t, a, bV, tOR, in the various gyrovector space models of hyperbolic geometry
(e.g., the Einstein, the Mobius, and the Weierstrass gyrovector spaces that underlie respectively the Klein-
Beltrami, the Poincare, and the Weierstrass models of hyperbolic geometry) describe analytically the standard
geodesics of hyperbolic geometry; see Fig. 2 in Section 1 of the present article and Figs. 2, 3, 6 and 7 of
Ref. 3. This observation raises a natural question: Why are the curves

a@bOt (5.10)

which form the standard geodesics of hyperbolic geometry, seemingly more significant than the curves

bOt@a (5.12)

which are not geodesics? The two families of curves in (5.10) and (5.11) are different since their gyrocommu-
tative gyrogroup operation @ is noncommutative. In the special case when @ is the Mobius addition of
Definition 2.3 in the Poincare disk V, =IRZ_,, the two curves are shown in Figs. 2 and 3. The curves (5.10) in
the disk, Fig. 2, are circular arcs that intersect the boundary of the disk orthogonally, while the curves (5.11) in
the disk, Fig. 3, are circular arcs that intersect the boundary of the disk diametrically.

A most elegant answer, according to which both (5.10) and (5.11) are geometrically significant, is pro-
vided by the dua metric. While the former curves, (5.10), are geodesics relative to the natural hyperbolic
metric (5.8) of a gyrovector space, the latter curves, (5.11), are geodesics relative to the dual metric (5.9).
Accordingly, the curves (5.11) are called dual geodesics, and triangles made out of these are called dual trian-
gles. The dual geodesics are known in hyperbolic geometry as hypercircles or equidistant curves.?? The term
"equidistant curve" is explained in terms of gyrogroup formalism in Ref. 42.

In the Poincare disk the geodesics (5.10) are circular arcs that intersect the boundary of the disk orthogo-
nally, Fig. 2, and the dual geodesics (5.11) are circular arcs that intersect the boundary of the disk diametrically
(at antipodal points, that is, at diametricaly opposite points), Fig. 3. As such, every dual geodesic has a sup-
porting diameter. The hyperbolic orientation of the dual geodesic is, suggestively, defined to be the Euclidean
orientation of its supporting diameter. It can be shown that, as a result, the dual angle between two dual geo-
desics is the one given by Eq. (5.12) below, which shares obvious analogies with the analytic description of
Euclidean angles. Several geodesics in the Poincare disk are shown in Figs. 2,4-6. Several dual geodesics are
shown in Fig. 3, and in Figs. 1a, 2a, 3, 5a, 5b, 10 and 12 of Ref. 32.

The usefulness of geodesics in differential geometry and in mathematical physics is well known. Due to
the similarity between the two families of curvesin (5.10) and (5.11), and since they are both geodesics relative
to their respective metrics, one should expect that duality in geodesics and in angles that they generate will be
found useful as well. This expectation is indeed justified, as we will see in Egs. (5.13) below.

It has been demonstrated in Ref. 3 that the two metrics, (5.8) and (5.9) of a gyrovector space interplay
harmoniously. In addition, it was shown there that while

(i) triangle medians in hyperbolic triangles are concurrent (satisfying a corresponding Euclidean geometry
property),

(ii)  dua triangle medians in hyperbolic dual triangles are not concurrent (violating a corresponding Euclidean
geometry property).
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In contrast, however, it was shown in Ref. 3 that while

(i) the pardlel postulate is not vaid in geodesics in hyperbolic geometry (violating a corresponding
Euclidean geometry property),
(ii) the parallel postulate is valid in dual geodesics (satisfying a corresponding Euclidean geometry property).
It is thus clear that the hyperbolic geometry as we presently know in the literature is only half of the
story; the other half is concealed in the structure to which the dua metric gives rise. We say "story" rather
than "theory" since at this early stage of the development our demonstration is anecdotal in nature. Thus, for
instance, (1) the paralel postulate that has seemingly disappeared in the transition from Euclidean to hyperbolic
geometry, reappears with the dual metric of hyperbolic geometry. Accordingly, the sum of the three angles of
any hyperbolic triangle is less than 11, but the sum of the three dual angles of any dual triangle equals T, as we
will see in Eg. (5.13b) below. (II) Conversely, the triangle median concurrency is a property that did not disap-
pear in the transition from Euclidean to Hyperbolic geometry. "Hence", it is being violated relative to the dual
metric. The two dua hyperbolic geometries to which the hyperbolic dual metrics give rise are thus comple-
mentary, mutually making up what is lacking.

Having two metrics in hyperbolic geometry, it is natural to explore whether a hyperbolic Pythagorean
theorem is valid relative to the dual metric as well. The complementarity of the two dual hyperbolic geometries
that we have just observed suggests that the Hyperbolic Pythagorean Theorem is not valid in the dual metric
"since" it is valid relative to the standard hyperbolic metric, as shown in Eg. (4.6). But, in compensation of los-
ing the hyperbolic Pythagorean theorem in the dual metric, another important property of Euclidean triangles
which is not valid in the standard hyperbolic metric (5.8) will hopefully be found valid relative to the dual
metric. This is indeed the case. The compensation for the loss of the Hyperbolic Pythagorean Theorem in the
dual metric is fully paid for by the dual metric establishing the 11— Theorem according to which the sum of the
three dual angles (to be defined below) of any dual triangle is Tt Thus, the complementarity of the dual hyper-
bolic geometries emerges again. While

(i) right triangles obey the hyperbolic Pythagorean identity in the Poincare model of hyperbolic geometry
(satisfying a corresponding Euclidean geometry property),

(if)  dual right triangles do not obey it (violating a corresponding Euclidean geometry property).
In contrast, however, while

(i) the sum of the three angles of a triangle in hyperbolic geometry is less than 1t (violating a corresponding
Euclidean geometry property),

(ii) the sum of the three dua angles of a dua triangle in hyperbolic geometry equals 1t (satisfying a
corresponding Euclidean geometry property).
To establish our claim about the hyperbolic 1 we have to define in a natural way dua angles, that is,
angles relative to the dual metric (5.9), and show that the sum of the dual angles of any dual triangle equals Tt

Let us, accordingly, consider two arbitrary dual geodesics, that is, geodesics relative to the dual metric
(5.9), that contain respectively the pair of points (a, b) and (c, d),
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t OIR, in a Mobius gyrovector space (Vs, @ , ® ). The cosine of the angle a between the two dual geodesics
is defined by the equation

-afb -cHd
I-a@ bl lI-cHAdI

cosa = (5.12)

in full analogy with the definition of Euclidean hyperbolic angles, and in partial analogy with the hyperbolic
angle definition in Eq. (3.3).

Supporting no parallelism, the two geometric vectors that define a hyperbolic angle a must be emanated
from a common point, as we see from Eq. (3.3) and as illustrated in Fig. 4. In contrast, dual rays do support
paralelism, and accordingly, the two dual geometric vectors that define a dual angle a in (5.12) need not be
emanated from a common point, as is the case in Euclidean geometry. This is clearly seen in Fig. 2a of
Ref. 32.

One can verify by means of arguments illustrated by Fig. 2a of Ref. 32 that the dual angle between dual
geodesics is well defined (that is, it is independent of the choice of the two ordered points (a,b) and (c, d) that
one selects on each of the two dual geodesics that L, 1, and L 4 generate the hyperbolic dual angle o), and that
the sum of the three dual angles of any dual triangle is 1. In symboals, if a, b and ¢ are any three points in a
gyrovector space (Vs, @ , ) which do not lie on a dual geodesic, and if the dual angles of the dual triangle,
whose vertices are these points, are a, 3 and vy, then

a = cos™( —a@b | _-afc )
[-a@E bl lI-amcl
B = cos( “bra _-bc ) (5.133)
I-bEAal I-bMEAcl
y = cos‘l( -CHa _-cHb )
I-cHal lI-cmHbl
and
a+B+y =1 (5.13b)

The geometric meaning of identity (5.13b) in the Poincare disk model of hyperbolic geometry is clearly
seen in Fig. 2a of Ref. 32. Both angles and dua angles in hyperbolic geometry are model independent, that is,
they keep their numerical value invariant in the transition between the gyrovector spaces of Einstein, Mobius
and Welerstrass. Dual angles are preserved by rotations. Unlike angles, however, dua angles are not invariant
under left gyrotrandations. Formally, we thus have
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The - THEOREM 5.1 Let a,b,cOVs be any three distinct points in a gyrovector space (Vs, @ , -),
and let a, 3 and y be the three dual angles of the dual triangle formed by these three point, Egs. (5.134). Then,
a+B+y=TL

The defect of a hyperbolic triangle with angles a, B and y is 11— (a +3+Y), and it equals the hyperbolic
area of the triangle.?” The 11— Theorem suggests a natural extension of the notion of defect from the three
angles of atriangle to individual angles.

DEFINITION 5.1 (The defect of a hyperbolic angle) Let (i) a,b,cV, be any three distinct points in a
gyrovector space (Vs, @, ©); let (ii) a be the angle between the two rays L, and L, . that are emanated
from a and contain respectively b and c; and let (iii) dual(a) be its dua angle. Then, the defect of a is given

by
defect(a) = dua(a) - a

that is, by

defect(e) = cos(——2EDL_ _ZAEC y _ goor ZA@D _ca@c
I-a@bl I-aEcl I-a@bl lI-a@cl

Following Def. 5.1 and the 11— Theorem we can now state
THEOREM 5.2 The defect of a hyperbolic triangle equals the sum of the defects of its angles.

The 11— Theorem demonstrates that a well known property of Euclidean triangles that has seemingly been
lost in the transition to hyperbolic geometry, reappears in the novel structure of hyperbolic geometry to which
the dual metric gives rise.

The significance of the definition in Eq. (3.3) of angles in a gyrovector space (Vs, @ , (O ) relative to its
natural metric is exhibited by the resulting Hyperbolic Pythagorean Theorem for hyperbolic right angled trian-
gles in Theorem 4.3. Similarly, the significance of the definition in Eq. (5.12) of dual angles in a gyrovector
space (Vs, @ , (O ) relative to its dual metric is exposed by the resulting 1— Theorem. Unlike angles and geo-
desics, however, dua angles and dua geodesics in a gyrovector space (Vs, @ , () ae not preserved by left
gyrotrandations. Thus, in particular, the defect of a hyperbolic angle is not invariant under left gyrotranda
tions. Interestingly, however, the sum of the defects of the three angles of a hyperbolic triangle is invariant
under left gyrotrandations.

Another indication that geodesics and their dual geodesics are equally significant for mutually dual rea-
sons is provided by the gyrotransitive law (5.14) of successive gyrations along geodesics and its dua law
(5.15), that they respectively obey. Let {a;,a5, a3, - ' - ,a,} be aset of any n points lying on a geodesic in any
order, and similarly, let {by,by, b3, - - - ,b,} be a set of any n points lying on a dual geodesic in any order.
Then
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gyrfag; —ao] gyrlas; —ag] - - - gyrfa,-1;—a,] = gyr[ay;—a,] (5.14)

and
gyr[by; bo] gyr[ba;bs] - - - gyr[b,-1;bn] = gyr[bs;by] (5.15)

Identity (5.15) is verified in Eq. (7.3b) of Ref. 32 and the proof of identity (5.14) is similar. Interestingly, the
duality between gyr[x;y] and gyr[x;—y] exhibited by Egs. (5.14) and (5.15) is dso clear from Egs. (5.4) and
(5.5), as well as from Egs. (4.5a) and (4.5b) of Ref. 3.

We have selected the Poincare ball model of hyperbolic geometry for the presentation of the Hyperbolic
Pythagorean Theorem since, within Euclidean geometry, this model of hyperbolic geometry exhibits Euclidean
angles. The Poincare measure of an angle is given by the Euclidean measure of the angle formed by Euclidean
tangent rays.®¥ From that point of view, the best model of hyperbolic geometry for the presentation of
geometric objects that involve dual angles, rather than angles, is the Welerstrass whole space model
Voo = (Veor @y » Oyy) Of hyperbolic geometry whose underlying real inner product space is Vi, = (V, +, ).® In
this model dual geodesics are Euclidean straight lines, and the measure of dual angles between dual geodesics
is equal to the Euclidean measure of the angle between the corresponding straight lines. Geodesics and dual
geodesics in the Weierstrass gyrovector spaces are shown in Figs. 6-10 of Ref. 3 where the gyrogroup opera-
tion @®,, and its dual operation [#,,, as well as its scalar multiplication ©©,, are presented. Thus, for instance,
the first equation in (5.13a), expressed in a Weierstrass gyrovector space, describes a hyperbolic dual angle a
whose measure equals its Euclidean counterpart. In symbols,

-a[ b -a[f,C - -
o = cos? Hwd Bw ) = cos( atb__-axc ) (5.16)
I-ambl I-am,cl I-a+bl lI-a+cl|
for al a,b,c0V,, since, in particular,
-a[ b -
Hyb _ _-at+b (5.17a)
I-am,,bl I-a+Dbl
or, equivalently,
B, + By
afyb = (a+b) (5.17b)

B.B,+1-a-b/s?

B2 =1+lal¥s? in a Weierstrass gyrovector space. Eq. (5.16) explains why the sum of the three dual angles
of adual triangle in the Weierstrass model is 11, Eq. (5.13b). Unexpectedly, however, while Egs. (5.16) — (5.17)
are valid only in the Weierstrass model of hyperbolic geometry, Eq. (5.13b) is model independent thus possess-
ing hyperbolic geometric significance.

In gyrovector space formalism the duality between the two binary operations @ and , Egs. (2.4) and
(5.7), in a Mobius gyrovector space is obvious from Egs. (5.1) — (5.6). In contrast, this duality is not apparent
in Riemannian geometry. Thus, in particular,
(I) the Riemannian metric dxg corresponding to the hyperbolic metric d,, Eqg. (5.8), in the disk IR? of the

Euclidean plane IR? of the x,x,, - plane is,*®

dx? + dx2
dx2 = (5.18a)

1
[1-2 (x§ +x3)]?
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whose Gaussian curvature,® is a negative constant,
K = -2 (5.18)

and

(1) the Riemannian metric dxé corresponding to the dua hyperbolic metric d , Eq. (5.9), in the disk IRS of the
Euclidean plane IR? is given by the quadratic differential form

Edx{ + 2Fdx,dx, + Gdx 3

dx2 = : (5.19)
[1- 5 (xf +x5)7
s
where
E = [xf +(5-x7[x{ + (s +x2)7/s*
G = [(s-x)*+xZ][(s+x9* + xZ]/s*
F = 4x,x,/s?
and
2 _ 1 2 2 2
EG -F? = [1- ?(xl +x%)?]
having a variable positive Gaussian curvature, 4
K, =2 ! (5.190)
s

1
1+ o) (xf +x3)1*

In the limit of large s, s — o, the Riemannian metric dxé and its dual metric dxé both reduce to the
Euclidean metric dx?=dx? +dxZ and the two corresponding curvatures K, and K, vanish. The hyperbolic
metric dxg is conformal, being proportional to the plane Euclidean metric at each point. Hence, the actual
angles for this metric coincide with Euclidean angles. We see no indication in Riemannian geometry that the
two Riemannian metrics dxg and dxé are dua in any sense. In contrast, gyrovector space theory clearly
exposes their duality symmetries in Egs. (5.1) - (5.6).

Riemann was aware of the possible application of his geometry to physics. In his inaugural address in
1854 on the occasion of joining the University Faculty of Gottingen he said that the value of his geometry can
possibly be to liberate us from preconceived ideas, should ever the time come that in the exploration of the
laws of physics the concepts of Euclidean geometry may have to be abandoned.® These prophetic words were
literally fulfilled fifty years after his death by the Einstein theory of general relativity.X?

Of particular interest in the literature on differential geometry is the case when Gauss curvature is con-
stant, as this is the only known case which permits free mobility of figures on the surface without influencing
their inner connections. It is therefore important to realize that despite the fact that the Gaussian curvature K
is non-constant, dual geodesic segments can freely be rotated (obvious) and right-gyrotransiated on the surface
of this curvature by a family of right gyrotrandations that will be specified in Eq. (5.21a) below.
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Let b[F a=—a[# b be the dual geometric vector represented by a directed dual geodesic segment from a
to b in a gyrovector space (Vs, @ , ©® ). Furthermore, let

May = 5 O@ED) @ b (5.20)

be the midpoint of a and b in Vg, satisfying m, ,=my, 5. Then, two distinct right gyrotransiations of the two
edges a and b of the dual geometric vector —a[] b, specified in Eq. (5.21a), can freely move it without rota-
tion to any point of V. These motions without rotations are given by the identity

-(@a@ayrla,m, p]x) F (b@gyr[b,my ]x) = —aF b (5.218)

which is valid for any xOV;. Eq. (5.21a) presents full analogy with Euclidean geometry where any trandation
of a geometric vector leaves it intact,

-(@a+x) +(b+x) = —a+b (5.21b)

Thus, motions on a surface with the non-constant curvature K are possible. They are given by rotations
and specific right gyrotrandations. The specified right gyrotrandlations of a pair of points a and b involve an
arbitrary xOVg which must be rotated (i) by gyr[a,m,,] when applied to a, and (ii) by gyr[b,my 5] when
applied to b.

Finally we may remark that, following Cartan, a generalization of the hyperbolic Pythagorean theorem as
well as other results of the present article, to some symmetric spaces is possible. Elie Cartan generalized the
situation in (2.3) to Riemannian globally symmetric spaces of nhoncompact type, proving that these spaces are
exactly all quotients G/K, where G is a noncompact semissimple and K is a maximal compact subgroup. Asin
(2.3), G has a Cartan decomposition G =ePK =PK. Cartan's theory is presented in Ref. 46. By methods of
Ref. 25 concerning transversals it can be shown that the factor P in the Cartan decomposition G =PK  turns out
to be a gyrocommutative gyrogroup. The gyrogroup operation @ in the gyrogroup P is determined by the
action of P on itself, and the gyroautomorphisms gyr[a; b], expressible in terms of the binary operation @ by
Eg. (2.1), are Thomas gyrations. Some related results about the Cartan decomposition and its resulting gyro-
commutative gyrogroup in any bounded symmetric domain are presented in Ref. 47.
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FIGURE CAPTIONS

The Hyperbolic Pythagorean Theorem in the Poincare unit ball. Aabc is any hyperbolic right
angled triangle in the Poincare unit ball model of hyperbolic geometry in any dimension, with ver-
ticesa, b, c and sides A, B, C. The two sides A and B are orthogonal. The hyperbolic lengths of
the sides relative to the Poincare metric of the unit ball are, respectively, IIAl, IBIl, ICI, satisfying
the hyperbolic Pythagorean identity (1.1). The specia case when the Poincare unit ball of the
abstract real inner product space is redlized by the unit disk IR?.; of the Euclidean plane IR? is
shown graphically.

The common hyperbolic geodesics in the Poincare ball model of hyperbolic geometry are given by
Vg(t)=vo@aQ't in full analogy with the Euclidean geodesics, given by vp+at, t [JIR. A geodesic
in the Poincare disk model of hyperbolic geometry is shown. The vector a is Euclidean-parallel to
the tangent line of the geodesic at the point v,.%? Here @ is the Mobius addition in the Poincare
disk, given by Eq. (2.2) with Vi=IR2.; being the Poincare unit disk in the Euclidean plane
V,, =IR?

The dua hyperbolic geodesics in the Poincare ball model of hyperbolic geometry are given by
vy(t)=a®t @Vo tOIR. A dual geodesic in the Poincare disk model of hyperbolic geometry is
shown. It is a circular arc that intersects the boundary of the disk at two antipodal points. The vec-
tor a is Euclidean-parallel to the supporting diameter,®? an observation leading to the Tt— Theorem
in Section 5. Asin Fig. 2, @ is the Mobius addition in the Poincare disk IRZ; .

The hyperbolic angle a between two hyperbolic rays emanated from a point a. As in Euclidean
geometry, the angle a between directed rays is independent of the choice of the points b and c,
other than a, on the directed rays, Eq. (3.5). Unlike Euclidean geometry, however, the point a is
unique in the sense that it cannot be replaced by two distinct points on each of the two rays that
define a.

The hyperbolic triangle Aabc in the Poincare disk model: Its vertices are a, b and ¢, and its sides,
if directed counterclockwise, are A=-b@®c, B=—-c®aand C=—-a@b. Itsangle a is given by
Eqg. (3.3). The angular defect of the triangle in plane hyperbolic geometry equals the rotation angle
of the Thomas gyration (or, rotation) gyrfa@b;—-a@®c], as explained in Ref. 3 for plane hyper-
bolic geometry.

The Hyperbolic Pythagorean Theorem. Left gyrotrandations and rotations of a hyperbolic right
angled triangle with right angle at the origin generate other hyperbolic right angled triangles. The
hyperbolic triangle Aabc in the Poincare unit disk model, IR2.,, of hyperbolic geometry has ver-
tices a, b and ¢, and corresponding sides, A=-b@®c, B=-c®a and C=-a@®b, two of which,
A and B, are orthogonal. It satisfies the hyperbolic Pythagorean identity IAI?@ IBI2=ICI?,
expressing the square of the hyperbolic length of the hypotenuse of a hyperbolic right angled trian-
gle as the Einstein sum of the sguares of the hyperbolic lengths of the other two sides. The Hyper-
bolic Pythagorean Theorem in its present form, thus, completes the long road from Pythagoras to
Einstein, a path that has been emphasized by several authors.® 10



