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A

ABSTRACT

new form of the Hyperbolic Pythagorean Theorem, which has a striking

t

e

intuitive appeal and offers a strong contrast to its standard form, is presented. I

xpresses the square of the hyperbolic length of the hypotenuse of a hyperbolic

s

o

right angled triangle as the "Einstein sum" of the squares of the hyperbolic length

f the other two sides, Fig. 1, thus completing the long path from Pythagoras to

Einstein.

Following the pioneering work of Varicak it is well known that relativisticv

-

t

velocities are governed by hyperbolic geometry in the same way that prerelativis

ic velocities are governed by Euclidean geometry. Unlike prerelativistic velocity

c

v

composition, given by the ordinary vector addition, the composition of relativisti

elocities, given by the Einstein addition, is neither commutative nor associative

e

m

due to the presence of Thomas precession. Following the discovery of th

athematical regularity that Thomas precession stores, it is now possible to

e

s

extend Thomas precession by abstraction, (i) allowing hyperbolic geometry to b

tudied by means of analogies that it shares with Euclidean geometry; and, simi-

-

d

larly (ii) allowing velocities and accelerations in relativistic mechanics to be stu

ied by means of analogies that they share with velocities and accelerations in

,

g

classical mechanics. The abstract Thomas precession, called the Thomas gyration

ives rise to gyrovector space theory in which the prefix gyro is used extensively

-

t

in terms like gyrogroups and gyrovector spaces, gyroassociative and gyrocommu

ative laws, gyroautomorphisms, gyrotranslations, etc. We demonstrate the

t

superiority of our gyrovector space formalism in capturing analogies by deriving

he Hyperbolic Pythagorean Theorem in a form fully analogous to its Euclidean

c

P

counterpart, thus contrasting it with the standard form in which the Hyperboli

ythagorean Theorem is known in the literature. The hyperbolic metric, that sup-

d

ports the Hyperbolic Pythagorean Theorem, has a dual metric. We show that the

ual metric does not support a Pythagorean theorem but, instead, it supports the

c

t

π − Theorem according to which the sum of the three dual angles of a hyperboli

riangle is π.

-- --
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Some time in the sixth century B.C. Pythagoras of Samos discovered the theorem that now bears his

o

name. The conception of the Pythagorean Theorem is one of the most profound accomplishments in the history

f mathematics, marking the first known intellectual leap from empirical speculation into deductive reasoning.

h

This celebrated theorem is one of the most important theorems in the whole realm of geometry and is known in

istory as the 47th proposition, that being its number in the first book of Euclid’s Elements. Not unexpectedly,

therefore, Stillwell’s Mathematics and Its History book begins with the theorem of Pythagoras. The(1)

n

g

Pythagorean theorem attracts remarkable attention, as evidenced from the number of proofs that have bee

iven to it. It allows the concept of orthogonality to readily be accepted in mathematics, playing an important

r

(2)

ole in the theory of vector spaces which, in turn, form the setting for Euclidean geometry - the geometry that

underlies classical mechanics.

Our recent extension of vector spaces into their hyperbolic counterparts, called gyrovector spaces, )(3

-

i

accommodates the setting for hyperbolic geometry - the geometry that underlies Einstein’s relativistic mechan

cs. The Hyperbolic Pythagorean Theorem appears in the present article as an identity in a gyrovector space

e

E

that expresses the square of the hyperbolic length of the hypotenuse of a hyperbolic right angled triangle as th

instein sum of the squares of the hyperbolic lengths of the other two sides,

� �
A
� �

+
� �
B
� �

=
� �
C
� �

(1.1)2 2 2�

�
.

(

shown in Fig. 1 and in Theorem 4.3, where the binary operation + is the Einstein velocity addition, Eq

2.12). As such, it extends the validity of the Pythagorean theorem in its original spirit beyond Euclidean

geometry, and highlights the long path from Pythagoras to Einstein.

� ���������������������

�
FIGURE 1

���������������������
��
�

��
�

n

(

Clearly, a modified hyperbolic Pythagorean theorem fails when one applies the ordinary addition, +, i

1.1) instead of the Einstein addition, + . The failure of (1.1) with + instead of + has been emphasized by

W

� �

allace and West. Since the validity of (1.1) has gone unnoticed in the literature they concluded that "the

tPythagorean theorem [in its original spirit, expressing a sum of squares as a square] is strictly Euclidean." I(4)

t

i

is therefore interesting to realize that the Pythagorean theorem is valid in non-Euclidean geometry as well if i

s appropriately linked to the Einstein theory of relativity.

Physicists and mathematicians tend to think of symmetry as being virtually synonymous with the theory

tof groups and their actions. However, being nonassociative, the Einstein velocity addition demonstrates tha(5)

also some non-group groupoids can measure symmetry. Unlike velocity addition in classical mechanics, which

-

t

is a group operation, the Einstein velocity addition is not a group operation. Is the breakdown of the associa

ivity of the velocity composition law in the transition from classical to relativistic velocity addition associated

d

i

with loss of symmetry? It has been discovered in 1988 that the seemingly lost symmetry is, in fact, conceale

n the relativistic effect known as Thomas precession, or, Thomas gyration. Taking the role played by the(6, 7)

-

g

Thomas precession into consideration, the Einstein velocity addition appears to be a gyrocommutative gyro

roup operation, in full analogy with its classical counterpart, which is a commutative group operation.

-

(3)
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he grand scientific achievement of this century in mathematical beauty and experimental verifications

s

a

has been special theory of relativity, with its Einstein addition and Thomas gyration. The theory of gyrogroup

nd gyrovector spaces that has been presented in Ref. 3 captures the symmetry that has seemingly been lost in

o

r

the transition from the ordinary vector addition to the Einstein velocity addition. It is particularly interesting t

ealize in this paper that the Einstein velocity addition law captures the lasting beauty of the Euclidean

n

b

Pythagorean Theorem that has seemingly been lost in its transition to hyperbolic geometry; it can now be see

y inhabitants of hyperbolic worlds as well.

Furthermore, the Hyperbolic Pythagorean Theorem in its present, new form constitutes an important step

s

a

towards our envisaged axiomatic approach to gyrovector spaces, guided by analogies shared with vector space

nd Euclidean geometry, to which Thomas precession gives rise. The basic role that Thomas precession plays

a

in our gyrovector space theory and in hyperbolic geometry highlights Gravity Probe B, a NASA project aimed

t the measurement of the Thomas precession of gyroscopes in Earth orbit, to test general relativity.(8)

-

v

The fascinating journey from Pythagoras to Einstein presents itself in this article by means of our gyro

ector space theory that we have developed in Ref. 3. It allows, by means of the Einstein velocity addition, the

P

Hyperbolic Pythagorean Theorem to be presented in a form fully analogous with the form originally derived by

ythagoras, as shown in Fig. 1. The long path from Pythagoras to Einstein has been described (i) by Friedrichs

-in his book From Pythagoras to Einstein, tracing the Pythagorean Theorem through its various metamor(9)

p 2hoses leading to E = mc ; and (ii) by Lanczos in his book Space Through the Ages The Evolution of Geometri-

cal Ideas from Pythagoras to Hilbert and Einstein. Our presentation of the Hyperbolic Pythagorean Theorem(10)

as an identity that expresses the square of the hyperbolic length of the hypotenuse of a hyperbolic right angled

l

f

triangle as the Einstein sum of the squares of the hyperbolic lengths of the other two sides, exhibits a nove

eature of the path from Pythagoras to Einstein.

By deciphering the algebraic structure concealed in the Thomas precession of the special theory of rela-

t

tivity it became possible to understand the Einstein velocity addition in terms of analogies that it shares with

he vector addition of Euclidean geometry. More generally, the Thomas precession is abstracted to the Thomas

a

gyration, giving rise to a grouplike structure called a gyrogroup. Exploring the resulting gyrogroup theory

long lines parallel to group theory, we introduce a scalar multiplication into some gyrocommutative gyro-

g

(3)

roups in the same way that scalar multiplication is introduced into some commutative groups to construct vec-

t

tor spaces. The resulting gyrovector spaces then provide the setting for hyperbolic geometry in the same way

hat vector spaces provide the setting for Euclidean geometry. Interestingly, there are more gyrovector spaces

s

than vector spaces since two vector spaces with equal dimensions are isomorphic while any two non-isomorphic

ymmetric spaces give rise to corresponding non-isomorphic gyrovector spaces. )(11

-

d

The name "hyperbolic geometry" for the Non-Euclidean geometry of Bolyai and Lobachevsky was intro

uced by Klein in 1871. Five years after Einstein’s 1905 paper that founded special relativity theory, a(12) (13)

(14)C vroatian mathematician, Vladimir Varicak, pointed out that relativistic velocity spaces are governed by

-hyperbolic geometry. Following Varicak’s pioneering work and recently discovered analogies shared by hyperv

bolic and Euclidean geometries, hyperbolic geometry can now effectively be used in the study of velocity

y

s

spaces in relativistic mechanics in the same way that Euclidean geometry is employed for the study of velocit

paces in classical mechanics. Specifically, (i) following the discovery of the mathematical regularity stored in

sthe relativistic effect known as Thomas precession in 1988; (ii) following the abstraction of the Thoma(6)

--- -
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precession into the Thomas gyration in 1991; and (iii) following the introduction of compatible scalar multi-
(

(7)

15)plication in 1992, it is now possible to study hyperbolic geometry by means of novel striking analogies that

c

it shares with Euclidean geometry, resulting in corresponding analogies shared by relativistic mechanics and

lassical mechanics.

In order to develop the setting for Euclidean geometry one considers a commutative group of elements,

t

called vectors, for which inner product and scalar multiplication are defined. In full analogy, to develop the set-

ing for hyperbolic geometry we consider a gyrocommutative gyrogroup of elements called gyrovectors, for

t

which inner product and scalar multiplication are defined. The prefix "gyro" that we extensively use stems from

he underlying Thomas gyration.

Historically, the concept of gyrogroup evolved from the 1988 discovery of the gyroassociative law that

the Einstein velocity addition obeys. Our first axiomatic approach was proposed in 1989. The various(6) (16)

)(16 s

(

forerunners of gyrogroups and gyrocommutative gyrogroups were K-loops, proposed in 1989, WAG

Weakly Associative Groups) and WACGs (Weakly Associative Commutative Groups), proposed in 1990. )

W (7)

(17

ACGs were later termed gyrogroups in 1991, a term which was modified in 1997 into gyrocommutative

tgyrogroups to accommodate non-gyrocommutative gyrogroups as well. Gyrocommutative gyrogroups tha(3)

e

T

admit scalar multiplication became gyrovector spaces in Ref. 3. It is the exotic grouplike structure to which th

homas gyration gives rise which accommodates the gyrovector space that allows the Hyperbolic Pythagorean

Theorem to be presented in this article.

We prefer the term "gyrogroup", that we have coined in 1991, over the term "K-loop" that we have

c (16)

(7)

oined in 1989, since it is an integral part of our gyroterminology, in which we emphasize by means of Tho-

-

g

mas gyration analogies shared by Euclidean geometry and hyperbolic geometry, as well as corresponding analo

ies shared by classical mechanics and relativistic mechanics. Thus, for instance, the Einstein velocity addition

-

m

is a gyrocommutative gyrogroup operation, in full analogy with the ordinary vector addition, which is a com

utative group operation. Similarly, the (homogeneous, proper, orthochronous) Lorentz group is the gyrosem-

i

(3)

direct product of a gyrogroup of left gyrotranslations and a group of rotations in full analogy with the (homo-

geneous) Galilei group which is the semidirect product of a group of translations and a group of rotations.(18, 19)

s

The latter, in turn, is isomorphic with the group of Euclidean rigid motions and the former, by analogy, is con-

idered as the group isomorphic with the group of relativistic "rigid motions". )(20

d

b

Of particular interest are analogies shared by gyrovector spaces and vector spaces and analogies share

y their respective geometries, the hyperbolic and the Euclidean ones. Thus, for instance, the unique geodesic

c

e

line that contains two given points a (for t = 0) and b (for t = 1) of a vector space is given by the parametri

quation

a + ( − a + b) t , t ∈IR (1.2)

s

where + is a commutative group operation and where the product between a vector and a scalar is the common

calar multiplication in a vector space. In full analogy, it has been shown in Ref. 3 that the unique geodesic

line that contains two given points a (for t = 0) and b (for t = 1) of a gyrovector space is given by

a + ( − a + b) . t , t ∈IR (1.3)

�

� � �

�
e

t

where + is a gyrocommutative gyrogroup operation and . is the scalar multiplication in a gyrovector spac

hat we define in Defs. 2.1 − 2.3 of Section 2.

-- --
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urthermore, curves that describe uniform acceleration in velocity spaces are geodesics. Hence, as(21)

0e gxplained in Ref. 3, the time dependent velocity v (t ) of an initial, relativistically admissible velocity v and a

constant, relativistically admissible acceleration a is given in relativistic mechanics by the equation

v (t ) = v + a . t , t ∈IR (Fig. 2) (1.4)g 0 � �

0 n

g

in full analogy with its classical mechanics counterpart, v(t ) = v + at . The curves (1.4) are the well know

eodesics of hyperbolic geometry relative to the hyperbolic metric (5.8) that will be presented in Section 5.

One of these curves in the Poincare disk model of hyperbolic geometry is shown in Fig. 2.´

� ���������������������

� FIGURE 2���������������������
��
�

��
�

o

a

Since we wish to emphasize analogies shared by classical and relativistic mechanics that correspond t

nalogies shared by Euclidean and hyperbolic geometry, we explore in Section 5 the dual metric, relative to

which the curves

v (t ) = a . t + v , t ∈IR (Fig. 3) (1.5)d 0� �
are geodesics, called dual geodesics. Since the Einstein velocity addition is gyrocommutative, Def. 2.2, rather

than commutative, the curves (1.4) are different from the curves (1.5) whenever v and a are nonparallel. The0

)(22 n

t

curves (1.5) are known in hyperbolic geometry as hypercircles or equidistant curves. One of these curves i

he Poincare disk model of hyperbolic geometry is shown in Fig. 3.´

� ���������������������

� FIGURE 3���������������������
��
�

��
�

eBeing equal, v + at and at + v are equally significant in classical mechanics, where they describe th0 0

velocity of a uniformly accelerated object. If analogies are to be validated, the physical and the geometric

,

(

significance of the curves in (1.4) and (1.5) should be equal as well. Promising results indicating that, indeed

1.5) is likely to be found as significant as (1.4) are presented in Section 5. It is shown in that section that, like

e

t

(1.4), the curves (1.5) are also geodesics, but relative to a dual metric that emerges naturally in Section 5. W

hen discover that the Euclidean Pythagorean Theorem has no hyperbolic counterpart in the dual metric. As to

n

h

compensate for this loss, we show in Section 5 that the sum of the three dual angles of any dual triangle i

yperbolic geometry is π. This observation strengthens our conjecture that no Euclidean property has been lost

i

in the transition from Euclidean geometry to hyperbolic geometry. The seemingly lost properties, like parallel-

sm, in fact reappear with the dual metric and its dual geodesics and dual angles.

s

a

It is interesting to realize from Figs. 2 and 3 that in hyperbolic geometry geodesics and equidistant curve

re closely related by the noncommutativity of the gyrogroup operation + in Eqs. (1.4) and (1.5). We will see�
n

S

in this paper that (i) on one hand, only the curves (1.4) give rise to the Hyperbolic Pythagorean Theorem, i

ection 4. But, (ii) on the other hand, only the curves (1.5) give rise to the hyperbolic π − Theorem, in Section

-

5.

- --
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e2. The Poincare ball model of hyperbolic geometry and its associated Mobius gyrovector spac
.. ..

s

o

Hyperbolic geometry is studied in the literature by means of several standard models. The various model

f hyperbolic geometry are equivalent to each other in the sense that if inhabitants of one model of hyperbolic

r

w

geometry were to communicate with those of another model by telephone, they would not be able to tell thei

orlds apart. In fact, it was Poincare who analyzed the role of geometry in physics and concluded that one

m

´

odel of a geometry cannot be more true than another model of the same geometry, it can only be more con-

-venient. Thus, in particular, in the study of relativistic velocities we are free to select any model of hyper(23)

bolic geometry. Three mutually isomorphic gyrovector spaces which underlie three attractive models of hyper-

-bolic geometry have been studied in Ref. 3. These are (i) the Einstein gyrovector space, (ii) the Mobius gyro
..

f

h

vector space, and (iii) the Weierstrass gyrovector space, which underlie respectively (i) the Klein disk model o

yperbolic geometry, (ii) the Poincare disk model of hyperbolic geometry; and (iii) the Weierstrass model of

h

´

yperbolic geometry. The latter is an attractive model of hyperbolic geometry since, unlike other models, its

underlying space is not restricted to the ball or to a half-space of an inner product space.

It seems that the natural choice for the study of special relativity would be the Einstein gyrovector space

-

t

since its binary operation is the Einstein velocity addition. However, due to their mutual equivalence, the selec

ion of any particular model of hyperbolic geometry for the study of relativistic physics is legitimate. Being

-conformal, it is the Poincare disk model which is particularly suitable for graphical presentation of the Hyper´

bolic Pythagorean Theorem. Within Euclidean geometry, this model of hyperbolic geometry exhibits Euclidean

yangles since the Poincare measure of an angle is given by the Euclidean measure of the angle formed b´

(24) ´ n

i

Euclidean tangent rays. Therefore, we select in this article the Poincare disk model and its generalizatio

nto the ball of the abstract real inner product space for the presentation of the Hyperbolic Pythagorean

Theorem.

Gyrogroups are defined in Ref. 3 in terms of their underlying axioms. Gyrovector spaces, in turn, are

s

s

studied in Ref. 3 by means of several concrete examples. We feel that concrete examples of gyrovector space

hould be further explored before an axiomatic approach can be taken. Our present Hyperbolic Pythagorean

tTheorem in Mobius gyrovector spaces in a form that exhibits analogies shared with its Euclidean counterpar
..

justifies an optimistic outlook for eventual construction of the axiomatic foundation of gyrovector spaces. The

gyrogroup definition and the definition of the Mobius gyrovector space, as presented in Ref. 3, follow.
..

--- -
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DEFINITION 2.1 (Gyrogroups) A groupoid (G , + ) (that is, a non-empty set with a binary operation) is
�

e

e

a gyrogroup if its binary operation satisfies the following axioms and properties. In G there exists a uniqu

lement, 0, called the identity, satisfying

y(G 1) 0 + a = a + 0 = a Identit
� �

for all a ∈G . For any a ∈G there exists in G a unique inverse, − a , satisfying

(G 2) − a + a = a + ( − a ) = 0 Inverse
� �

Moreover, for any a , b ∈G the map gyr[a ; b ] of G into itself, given by the equation

)gyr[a ; b ] z = − (a + b ) + (a + (b + z )) (2.1
� � � �

�
e

f

for all z ∈G , is an automorphism of G (that is, a bijection of G that respects its binary operation + ), and th

ollowing hold for all a ,b ,c ∈G .

(G 3a ) a + ( b + c ) = (a + b ) + gyr[a ; b ] c Left gyroassociative Law
� � � �

� � � �
(G 3b ) (a + b ) + c = a + (b + gyr[b ; a ] c ) Right gyroassociative Law

(G 4a ) gyr[a ; b ] = gyr[a + b , b ] Left Loop Property
�

�
(G 4b ) gyr[a ; b ] = gyr[a , b + a ] Right Loop Property

lDEFINITION 2.2 (Gyrocommutative Gyrogroups) A gyrogroup (G , + ) is gyrocommutative if for al
�

(

a , b ∈G

G 6) a + b = gyr[a ; b ] (b + a ) Gyrocommutative Law

E

� �

xamples of gyrogroups, both gyrocommutative and non-gyrocommutative, abound in several areas of

rmathematics and physics. To gain experience with the beautiful gyrogroup structure, readers may conside(3, 25)

4 4
�

-

p

the simplest non-group nongyrocommutative gyrogroup (T , . ) where T is the set of all 4×4 real (or com

lex) upper triangular matrices with diagonal elements 1,

M (x) =

�����
�
0

0

0

1

0

0

1

x

0

1

x

x

1

x

x

x

� ����
�

(2.2a)

1

4

2

6

5

3

41 2 3 4 5 6
6 6 �

-C ). The gyrogroup operation . in T is given in terms of matrix multiplica/

t

x = (x , x , x , x , x , x )∈IR (or

ion by the equation

M (x) . M (y) = M (x)M (y)M (x) (2.2b)
� 2 −1

w 2 −1here M is the square of a matrix M and M is its inverse. The gyrogroup inverse of a matrix

.M (x)∈(T , . ) is, clearly, given by matrix inversion, (M (x)) = M (x). Hence, for instance, according to Eq4
−1 −1�

�
4 n

-

(2.1) the gyroautomorphisms gyr[M (a), M (b)] of the gyrogroup (T , . ) are given in terms of their effects o

- --
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gyr[M (a), M (b)]M (z) = (M (a) . M (b)) . (M (a) . (M (b) . M (z))) (2.2c)
� � � �−1

4
�

for all M (a), M (b), M (z)∈(T , . ), where we use multiplicative, rather than additive, notation. This and other

related non-gyrocommutative gyrogroups are studied in Ref. 25.

Like groups, some gyrocommutative gyrogroups give rise to gyrovector spaces. Of particular interest in

gthis article is the Mobius gyrocommutative gyrogroup that has been presented in Ref. 3. In the followin
..

.. ..
.Definition we extend the definition of a Mobius gyrogroup into that of a Mobius gyrovector space

A most elegant example of a gyrogroup arises in the study of the Mobius transformation group of the
..

..

,C . Mobius transformations of the disk/C : � z � < 1 }, of the complex plane/complex unit disk D , D = { z ∈

z �−−−> e
1 + z

�
z

z + z� ����������� = e (z + z ) (2.3)
0 i θ

0
0

i θ �

m

R

consist of rotations and translation like maps. The usefulness of (2.3) in string theory is evidenced fro

ef. 26. The complex unit disk and its Mobius transformations (2.3) form the Poincare disk model of hyper-
(

..
´

27) �
bolic geometry. The binary operation + that Eq. (2.3) defines in the complex unit disk is a gyrogroup

loperation. Rather than confining our study to the Poincare disk model of hyperbolic geometry, we wil(28) ´

p
..

resent in the following definition the (generalized) Mobius transformation of the ball, allowing us to expand

our study to the Poincare ball model of hyperbolic geometry in any dimension, finite of infinite.´

..
aT

�
he Mobius addition + in the disk D is studied in the literature as a transformation φ of the disk

n

c

rather than a binary operation in the disk. It is known to be useful in the modern geometric point of view i

omplex function theory which began with Ahlfors’ classic paper that demonstrated that the Schwartz lemma

fcan be viewed as an inequality of differential geometric quantities, curvatures, on the disk. The usefulness o(29)

.
t

.. .
he Mobius addition in geometric function theory is evidenced from Ref. 30 where it is noted that the Mobius

transformation φ of the disk,a

aφ (z ) =
1 + a

�
z

z + a�����������

aa , z ∈D , does not preserve Euclidean distance, but it does preserve Poincare distance. We consider φ (z ) as´
a

..
a

�
e

q

left gyrotranslation of a by z , and express it in terms of the Mobius addition as φ (z ) = z + a . Th

ualification of φ (z ) to be viewed as a binary operation + between a and z stems from the fact that thea
�

r
�

esulting binary operation + is a gyrogroup operation.

Eq. (2.3) represents a special Cartan’s decomposition. Further generalization of the Mobius transforma-
..

-

c

tion situation in (2.3) and its resulting gyrogroup to the so called Riemannian globally symmetric spaces of non

ompact type is possible, as we will indicate at the end of this article. We are, however, interested in the gen-

-

eralization of (2.1) to the ball of any real inner product space that we present in the following definition.

- --
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EFINITION 2.3 (The Mobius Gyrovector space) Let (V , + , . ) be a real inner product space, and let

Vs

..
∞

be its open s -ball, s being an arbitrary fixed positive constant,

sV = v∈V : � � v � � <s ∞ � �� �
� �� � �� � �

� �
T

..
∞ she Mobius gyrovector space induced by V is the triple (V , + , . ) equipped with inner product and norm

that it inherits from V , where (i) the binary operation + in V is given by the equation∞ s

�

�

2 4
2 2

2 2
2

2
2 � �� �

� �� � �� � �
u + v =

1 +
s

2� �	� u .v +
s

1� �	� � � u � �
� � v � �
� 1�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	� (1 +

s

2� �	� u .v +
s

1� �	� � � v � � ) u + (1 −
s

1� �	� � � u � � ) v (2.4)

−−−> u + x of the ball; and (ii) the scalar multiplication .�representing a generalized Mobius transformation x
.. � �

i sn V is given by the equation

r . v = s
1 +

s
� � v � �� �	�	� + 1 −

s
� � v � �� �	�	�

1 +
s
� � v � �� �	�	� − 1 −

s
� � v � �� �	�	�

� �	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	� � � v � �� v�	�	�( ) ( )

)

�
( ) (

r r

r r

(2.5)
� �	�	�v

����	�	� ) � � v �
�� � v �

s
= s tanh(r tanh−1

s
�

.where r ∈IR , v∈V , v≠ 00; and by r . 00 = 00

The Mobius addition (2.4) in the ball V is reducible to the well known Mobius transformation z + z =..
s

..

1 2

�
( 1 2 1 2z + z )/(1 + z

�
z ) of the complex disk, Eq. (2.3), as we will show in Eq. (2.18) below. In the limit of large s ,

s → ∞, the ball V expands to the whole of its space V , and the Mobius addition reduces to the ordinary addi-s ∞
..

∞.tion of vectors in V

The pair (V , + ) forms a gyrocommutative gyrogroup, called a Mobius gyrogroup. The triples
(31) ..�

� �
s

.. ..
n

a

(V , + , . ) is accordingly called a Mobius gyrovector space. The relationship between the Mobius additio

nd the Einstein velocity addition is presented in Ref. 3 where the two binary operations in the ball are respec-

tively denoted by + and + .
� �

E

T

M

he scalar multiplication in a gyrovector space, consistent with certain elementary properties that one

r

r

expects a notion of scalar multiplication to satisfy, is presented in Ref. 3. In addition, one may note for late

eference that for any element v in a Mobius gyrovector space and r ∈IR a positive real number we have
.. +

�
�

� � r . v � �
r . v� �	�	�	�	�	�	� = � � v � �� v�	�	� (2.6)

The Lorentz factor γ in a Mobius gyrovector space (V , + , . ) is given by the equationv
..

s
�

√

�

v

2

2
γ =

1 −
s

� � v � �� �	�	�	�
� 1�	�	�	�	�	�	�	�	�	� , (2.7)

-

satisfying

- --
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= γ γ 1 +
s

2� ��� u .v +
s

1� ��� � � u
� ��� �

v
� �

. (2.8)u � + v u v 2 4
2 2√

..
s nThe gyroautomorphism operation gyr of the Mobius gyrovector space V is given by the equatio

gyr[u; v] z = − (u + v) + {u + (v + z)} (2.9)

f s

� � � �

or all u, v, z∈V , as wee see from Eq. (2.1). It can be shown that the gyroautomorphism gyr[u; v] in (2.9),

generated by any u, v∈V , is an orthogonal transformation of V .s ∞

´A
..

sMobius gyrovector space V is a metric space equipped with the Poincare distance function

)d (x, y) =
� �
x − y

� �
(2.10

�

� � ´
s s

o

where we use the obvious notation x − y to denote x + ( − y). The Poincare distance function maps V ×V

nto the open interval (or, the s -ball) IR = ( − s , s ) of the real line IR , satisfying the gyrotriangle inequalitys

�
d (x, z) ≤ d (x, y) + d (y, z) (2.11)

for all x, y, z∈V , where equality holds if and only if y lies on the geodesic segment which joins x and z. Thes
..

b
�

inary operation + in Eqs. (2.10) and (2.11) is the Mobius addition. However, the one in Eq. (2.11) can also

f

d

be regarded as the Einstein velocity addition since, when applied to parallel vectors (particularly, vectors o

imension 1) the Mobius addition is identical with the Einstein velocity addition. The binary operation + in
.. �

s y

a

the gyrotriangle inequality (2.11) can thus be regarded as the Einstein addition in IR . The Einstein velocit

ddition in IR follows from Def. 2.3, as explained in Eq. (2.12) below. In the special case when V = IR is thes s s
2

∞
2s -disk of the Euclidean plane V = IR , one recovers from (2.11) the well known geodesics of plane hyperbolic

geometry. These are the circular arcs which intersect the boundary of the disk orthogonally, as shown in(32) (24)

Fig. 2.

The set of norms of all elements of the ball V of V is the ball IR = ( − s , s ) of the real line IR . Inhabi-
´

s ∞ s

s r

r

tants of the Poincare ball model of hyperbolic geometry naturally consider IR as the set of the whole of thei

eal numbers that describe speeds. Accordingly, their hyperbolic metric spaces involve the gyrotriangle ine-

quality (2.11) rather than the standard triangle inequality in metric spaces, like the one in Eq. (2.14) below.

Realizing the abstract real inner product space V by the real line IR , Def. 2.3 reduces to the definition of

s

∞

s
�

a
� �

binary operation + in IR , turning it into a commutative group (IR , + ) with + given by the Einstein velo-

city addition of parallel velocities

a + b =
1+ ab/s

a + b� ������������� (2.12)
�

2

ss
� �

,

t

a, b∈IR . Moreover, Def. 2.3 also provides a scalar multiplication . in the commutative group (IR , + )

urning it into a vector space (IR , + , . ) over IR with . given by the equations
� � �

� −1r . a = s tanh(r tanh
s
� a� ) (2.13)

that can be recovered from Eq. (2.5) when V = IR .∞

sW
� �

e may note that while 1 . a = a, in general, r . 1 ≠ r . Hence we view 1∈IR (when s > 1), as well as

every element of IR , as a vector rather than a scalar.s

-- --
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ncidentally, while the pair (IR , + ) is frequently used in the literature as an example of an exotics �
� �(33)

sgroup, the triple (IR , + , . ) is not used to exhibit an example of an exotic vector space. In fact, it is due

-to the absence of Thomas gyration in one dimensional space that (IR , + ) and (IR , + , . ) have their respecs s �� �
s

h

tive commutative group and vector space structure. It is the presence of the Thomas gyration in dimension

igher than 1 that distorts these group and vector space structures. It converts (i) the commutative group

r(IR , + ) into a gyrocommutative gyrogroup (V , + ) and (ii) the vector space (IR , + , . ) into a gyrovectos s s �� � �
� �s space (V , + , . ).

The axioms underlying gyrocommutative gyrogroups are well understood in Ref. 3 in terms of analogies

a

that they share with those of commutative groups. Unfortunately, we cannot presently offer an axiomatic

pproach to gyrovector spaces since a gyrodistributive law in (V , + , . ) that reduces to the distributive laws �
� � � � � � �

�
sr . (a + b) = r . a + r . b in (IR , + , . ), r ∈IR , is, as yet, unknown. The elusive gyrodistributive law

-

b

defies, to date, the exploration of concrete examples of gyrovector spaces. We therefore hope that the hyper

olic law of cosines and its resulting hyperbolic polarization identity and the Hyperbolic Pythagorean Theorem

-

v

that we present in this article constitute an important step towards our envisaged axiomatic approach to gyro

ector spaces, guided by analogies shared with vector spaces.

sThe right hand side of the gyrotriangle inequality (2.11) can be written a

s tanh(tanh
s

d (x, y)� ����������� + tanh
s

d (y, z)����������� )−1 −1

,Hence the gyrotriangle inequality (2.11) can be written as a triangle inequality

tanh
s

d (x, z)����������� ≤ tanh
s

d (x, y)� ����������� + tanh
s

d (y, z)����������� (2.14)

E

−1 −1 −1

q. (2.14) involves the standard addition of real numbers in IR as opposed to Eq. (2.11), which involves the

cEinstein addition of real numbers in IR . Hence, it is customary in the literature to define the hyperbolic metris

as

2 tanh (d (x, y)/s ) = ln
s − d (x, y)
s + d (x, y)����������������� (2.15)

(

−1

34)with s = 1. The factor 2 in the metric (2.15) is chosen in order to make the resulting Gaussian curvature −1

owhen s = 1, as opposed to the Gaussian curvature of the Poincare metric (2.10) which is − 4/s according t(35) ´ 2

(36) -

c

Eq. (5.18b) in Section 5. We, however, prefer to leave s as a free positive parameter, and employ the Poin

are metric d (x, y) with its gyrotriangle inequality (2.11) in order to emphasize analogies shared by the hyper-

b

´

olic and the Euclidean geometry. As a result, we will be rewarded in this article by the discovery that the

,

e

Hyperbolic Pythagorean Theorem can be presented in a form fully analogous to its Euclidean counterpart

xpressing an Einstein sum of squares as a square, Theorem 4.3 and Fig. 6.

8

o

The gyrotriangle inequality (2.11) follows from Eq. (2.8), Cauchy-Schwarz inequality, and Theorem 5.

f Ref. 3. Details are given in Ref. 31. Mobius addition + , Eq. (2.4), is known in the literature on Mobius
.. ..

�
a o

u

groups in disguise. It has been studied by Ahlfors in connection with the map x → T (x) that he advocated t

se as a standard conformal map of the ball B of the Euclidean n -space IR on itself. It turns out that thisn n

)..
a

(35, 37� � .

-

map expresses the Mobius addition + by means of the equation T (x) = − a + x

- --
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T (x) = − ∆(x, y) T (y) (2.16)

n

y x

afor all x, y∈B that T obeys as an interesting but an isolated relation, where ∆(x, y) is an orthogonal transfor-

mation of B . It has gone unnoticed that (i) the Ahlfors rotation ∆(x, y) is analogous to the Thomas precessionn

(or, rotation) of the special theory of relativity; that (ii) Identity (2.16) can be interpreted as a relaxed commuta-

tive law for the Mobius addition, our gyrocommutative law (G6) in Def. 2.2; and that (iii) the same Ahlfors
..

rotation ∆ that gives rise to a relaxed commutative law in Eq. (2.16), gives rise to a relaxed associative law for

-the Mobius addition as well, our gyroassociative law (G3) in Def. 2.2. In contrast, we place the Ahlfors rota
..

tion (or, equivalently, the Thomas precession) and its abstraction, the Thomas gyration, in the foundations of

non-Euclidean geometry.(3)

..
The Mobius transformation of the ball in higher dimensions, n ≥ 3, studied in Refs. 31, 35 and 37, is not

t

well known in the standard literature on hyperbolic geometry. In contrast, its special case n = 2, corresponding

o the Poincare disk is well known. To see this let us, therefore, realize the abstract real inner product space V∞´

2
s

´
s
2 e

r

in Def. 2.3 by the Euclidean plane IR , reducing the ball V into the Poincare disk IR whose points can b

epresented by the points of the complex s -disk D of the complex plane /C ,

s

s � �
� � � � � � � �� �D = z ∈ /C : � z � < s (2.17)

Mobius addition + , Eq. (2.4) reduces to the well known Mobius transformation of the disk,
.. .. (31)�

�
1 2

1 2
2

1 2z + z =
1 + z

�
z /s

z + z	
	�	�	�	�	�	�	�	�	 (2.18)

-when V is realized by IR , and when complex number representation for vectors in IR is employed. Accord∞
2 2

´ ningly, the distance function (2.10) reduces to the well known Poincare distance functio

d (z , z ) = � z − z � =
1 − z

�
z /s

z − z	
	�	�	�	�	�	�	�	�	 (2.19)1

�
2 1 2

1 2
2

1 2

i ´n the Poincare disk. The Einstein velocity addition for parallel velocities, Eq. (2.12), is recovered from Eq.

(2.18) when z and z are real and when s represents the vacuum speed of light.1 2

s =1 s

v

The binary operation (2.18) in the complex unit disk D is known in the literature in disguise. It i

iewed in the literature as a Mobius transformation of D rather than as the Mobius addition. Similarly, also
..

s =1
..

s s =1 s

k

the scalar multiplication (2.5) for the special case when the ball V reduces to the complex unit disk D i

nown in the literature, in disguise. It is viewed in the literature as a means of generating geodesics for the

Teichmuller metric, rather than as the Mobius scalar multiplication in a Mobius gyrovector space.
.. (38) .. ..

--- -
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e3. Hyperbolic geometry of the ball in a real inner product spac

In physics vectors appear as a geometric concept. A basic notion in geometry is that of the point. Hence,

b

if we wish to find a geometry closely tied to a gyrovector space we will have to establish a relationship

etween gyrovectors and points. This relationship is naturally analogous to the one between vectors and points

in vector spaces; see, for instance, Artzy.(39)

s s
..

s ∞L � �et V = (V , + , . ) be the Mobius gyrovector space of the ball V of a real inner product space V

swith its natural metric d (x, y) = � � − x + y � � , known as the Poincare metric. We call the elements of V point� ´
s

sa �nd associate a nonzero geometric gyrovector, − a + b, with any ordered pair (a, b) of distinct points a, b∈V .

The geometric gyrovector associated with the pair (a, b) has length d (a, b) = � � − a + b � � , and it is viewed as a�
,

v

geodesic segment directed from a to b. The analogies shared with the Euclidean geometric vector b − a

iewed as a straight arrow of length � � b − a � � directed from a to b are obvious.

sThe motions of the ball V , which determine its hyperbolic geometry, are (i) the left gyrotranslations

L x s s: V → V , given by

L v = x + vx �

sx s s, v∈V , and (ii) the rotations of V , that is, those isometries of V that possess a fixed point.

-The length of geometric vectors in V is invariant under the motions of V . The invariance under rotas s

t

g

tions is obvious, and the invariance under left gyrotranslations follows from Theorem 5.8 in Ref. 3 noting tha

yrations are rotations. Specifically, let (x + a, x + b) a be a left gyrotranslated pair of the pair (a, b) by x in

Vs

� �
. It then follows from Theorem 5.8 of Ref. 3 that

)− L a + L b = − (x + a) + (x + bx x �� � �
(3.1)

= gyr[x; a] ( − a + b)�

d

w

so that, noting that gyrations are isometries, both the geometric gyrovectors associated with the pair (a, b) an

ith its left gyrotranslated pair (L a, L b) = (x + a, x + b) have equal lengthsx x � �

� �x x� � − L a + L b � � = � � − a + b � � (3.2)

Hence, following Klein’s Erlangen Program that Klein announced at the University of Erlangen in 1872, the(24)

f

m

length of a geometric gyrovector has geometric significance in the geometry that is determined by the group o

otions of V .

E

s

qs. (3.1) and (3.2) show that, unlike Euclidean geometry, in hyperbolic geometry a geometric vector

i

from a to b is, in general, not equivalent to its left gyrotranslated gyrovector; it is only its length which remains

nvariant under a left gyrotranslation.

The origin is, however, a special point in hyperbolic geometry in the sense that every geometric vector

from a to b is equivalent to a geometric vector from the origin, 00, to − a + b. This follows from Eq. (3.1) with�
-

t

x = − a, noting that gyr[ − a; a] = id is the identity transformation. Specifically, thus, the two geometric gyrovec

ors determined by the two ordered pairs (a, b) and (00, − a + b) are equivalent.

A

�

vector in physics is determined by its length and relative orientation. By analogy, we wish that also a

-

p

geometric gyrovector be determined by its length and relative orientation. Being guided by analogies, to accom

lish this task we define the cosine of the angle α between the two geometric gyrovectors associated with the

--- -
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tpairs (a, b) and (a, c), of which the first entries are coincident, Fig. 4, by the inner produc

cos α = � �
− a + b

� �− a + b������������������� . � �
− a + c

� �− a + c� ����������������� (3.3)
�
�

�
�

+− r

π

Eq. (3.3) determines the angle between two rays emanated from a common point. The angle is either α o

α, depending on the direction of the rays, 0 ≤ α ≤
2
� π� , in full analogy with angles between directed rays in−+

Euclidean geometry.

� ���������������������

�
FIGURE 4

���������������������
��
�

��
�

-The angle α in (3.3) is in fact the angle between two geodesic rays, L and L , emanated from a coma, b a, c

f

t

mon point, a, and containing respectively two given points, b and c, Fig. 4. To show that α is independent o

he choice of the points b and c on the two directed rays L and L that are emanated from a, we note thata, b a, c

sthe two rays are given in our analytic hyperbolic geometry by the parametric equation

L = a + ( − a + b) . ta, b
� � �

and

L = a + ( − a + c) . ta, c
� � �

w + (3)here t is a real parameter running over IR = (0, ∞). Let therefore b* and c* be any two points other than a

on L and on L respectively as shown in Fig. 4. Then, there exist t and t in IR such thata, b a, c 1 2
+

b
� � �

1* = a + ( − a + b) . t
(3.4)

c* = a + ( − a + c) . t
� � �

2

ca, b a, e

α
To show that α is independent of the choice of b* and c* on the geodesic rays L and L that defin

we will show that the cosine of the angle α between the two geometric gyrovectors associated with the pairs

(a, b* ) and (a, c* ) is independent of the choice of t , t ∈IR in (3.4).1 2
+

d

(

According to eq. (3.3), the angle between the two geometric vectors associated with the pairs (a, b* ) an

a, c* ) is given by

� �
− a + b*

� �− a + b*� ������������������� . � �
− a + c*

� �− a + c*������������������� = � �
( − a + b) . t

� �
( − a + b) . t� ��������������������������� . � �

( − a + c) . t
� �

( − a + c) . t� ���������������������������
� �

�

� �

���
�

�
�

�
1

1

2

2

�
�

�
�= � �

− a + b
� �− a + b����������������� . � �

− a + c
� �− a + c����������������� (3.5)

= cos α

,

-

The first equality in (3.5) follows from an application of the left cancellation law, e.g.

- --
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a + b* = − a + a + ( − a + b) . t = ( − a + b) . t
�� � �� �� � �� � �� � � � � � �

11

n

(

The left cancellation law is presented in Ref. 3 as well as in Eq. (5.1) of Section 5.1. The second equality i

3.5) follows from Eq. (2.6).

The angle α is invariant under the motions of V as we see from Eqs. (3.1) − (3.3), noting that the inner

p

s

roduct is preserved by rotations. Moreover, hyperbolic angles keep their numerical value invariant in the tran-

-sition between the gyrovector spaces of Einstein, Mobius and Weierstrass. Hence, finally, geometric gyrovec
..

t sors have geometric significance in V since their lengths and relative orientations are preserved under the

rmotions of V . Unlike Euclidean geometric vectors, however, geometric gyrovectors are not invariant undes

(left or right) gyrotranslations, as we see from Eq. (3.1) according to which a left gyrotranslation of a geometric

gyrovector results in a Thomas gyration (that is, a rotation) of the gyrovector.

Two geometric gyrovectors are orthogonal if the cosine of the angle between them is zero. By defining

sorthogonality in V we have completed setting the stage for the Hyperbolic Pythagorean Theorem in a Mobius
..

´ .

-

gyrovector space, that is, in the Poincare ball model of hyperbolic geometry

- --
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y4. The Hyperbolic Pythagorean Theorem in the Poincare ball model of Hyperbolic Geometr´

s
..� �

THEOREM 4.1 Let (V , + , . ) be a Mobius gyrovector space. Then

)��������������������������������������������������������� (4.1
b2 a .

������ ba .

s
� ������� + 2

�� �
b
�

s
� ������� 1 +

�� �
a
�

s

���

1 +

1
s

� ������� +
�� �

b
�

s
� ������� +

�� �
a
�

s
� ��������������� =

�� �
a + b

�

s

2 2 2

2

2

2

2

2

�
� �

( ) ( )

s .for all a, b∈V

In particular, if a and b are orthogonal then

�

s

�
a + b

� �
� ��������������� =

s

� �
a
� �

� ������� +
s

� �
b
� �

� ������� (4.2)
�

�2 2 2

s
�

.

(

Proof The proof is by straightforward algebra, noting that the + between elements of V , given by Eq

2.4), is neither commutative nor associative, while the + between elements of IR , given by Eq. (2.4) as well,
�

s

e

t

is both commutative and associative as shown in Eq. (2.12). Specifically, one can readily show that each of th

wo sides of (4.1) equals
� �
a + b

� �
/(1 + 2a .b/s +

� �
a
� ��� �

b
� �

/s ), QED.

Noting that

2 2 2 2 4

2 . a = a + a =
1 +

� �
a
� �

/s
2 a�������������������� �

2 2

Eq. (4.1) can be written as

s

� �
a + b

� �
��������������� =

s

� �
a
� �

� ������� +
s

� �
b
� �

� ������� +
s
� 1�

1 +
2s
� 1����� (2 . a) .(2 . b)

� 1
2
� (2 . a) .(2 . b)

� ����������������������������������������� (4.3)

� �

�

�
� �

�

2 2 2

2

)which, in turn, can be manipulated into the hyperbolic polarization identity,(40

s

� �
a + b

� �
� ��������������� −

s

� �
a − b

� �
� ��������������� =

s
(2 . a) .(2 . b)��������������������������� (4.4)

�
�

� � �2 2

..
s

� �
in Mobius gyrovector spaces (V , + , . ) in full analogy with the polarization identity in real inner product

spaces (V , + , . ),∞

2 2 b

W

� �
a + b

� �
−

� �
a − b

� �
= 4 a .

e will now relate the identities in Theorem 4.1 to hyperbolic triangles thereby obtaining the hyperbolic

rlaw of cosines and the Hyperbolic Pythagorean Theorem. Let ∆abc be the triangle in a Mobius gyrovecto
..

s s s s s
2pace V whose vertices are a, b, c∈V . The special case of V = IR is presented graphically in Fig. 5.

	 	�	�	�	�	�	�	�	�	�	�	

FIGURE 5
	






	 	�	�	�	�	�	�	�	�	�	







dThe sides of the triangle ∆abc are formed by the three geometric gyrovectors A = − c + b, B = − c + a an
� �

C
�= − a + b. By Eq. (3.1), we have

-- --
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− c + b) − ( − c + a) = gyr[ − c; b](b − a)
� � � �

swhich, by the gyrocommutative law, can be written a

A − B = gyr[ − c; b] gyr[b; − a] C
�

eHence, noting that gyr[ − c; b] and gyr[b; − a] are isometries, we hav

� �
C

� �
=

� �
A − B

� � 22 �

N
� �

oting that A − B = A + ( − B ), we have, by Eq. (4.1)

��� � �
A − B

� �1
s

��� � �
C

� �
=1

s
2 2�

(4.5)
�����������������������������������������������������������B2 A .

B� ��� A .2� ������� −
s

�� �
B
�

s
� ������� 1 +

�� �
A
�

s

���

1 +

1
s

��� � �
B
� �

−
1
s

��� � �
A
� �

+
1
s

= � �2 2

2

2

2

2

2

t

( ) ( )

hus obtaining the hyperbolic law of cosines for a hyperbolic triangle ∆abc with vertices a, b, c and sides

A , B , C in the Poincare ball model.´

By Eq. (3.3), the inner product A .B in (4.5) satisfies the equation A .B =
� �
A
� ��� �

B
� �

cos γ, where A , B and γ

T

are shown in Fig. 5. The hyperbolic law of cosines can therefore be presented as

HEOREM 4.2 (The Hyperbolic Law of Cosines) Let A , B and C be the three sides of a triangle in a

Mobius gyrovector space (V , + , . ), and let γ be the hyperbolic angle between A and B . Then
..

s
� �

� �

( ) ( ) 2

� 1
s

2 2 2

2

2

2

2
� � �

C
� �

=
s
� 1� � �

A
� �

+
s
� 1� � �

B
� �

−
s
� 1�

1 +
s

� �
A
� �

� ������� 1 +
s

� �
B
� �

� ������� −
s

2� ��� � �
A
� ��� �

B
� �

cos γ

2
� �
A
� ��� �

B
� �

cos γ� �������������������������������������������������������������������������

A

a

Finally, the Hyperbolic Pythagorean Theorem is recovered from the law of cosines when the two sides

nd B of the hyperbolic triangle are orthogonal, Fig. 6.

THEOREM 4.3 (The Hyperbolic Pythagorean Theorem) Let ∆abc be a hyperbolic triangle whose ver-

tices are the three points a, b and c in a Mobius gyrovector space (V , + , . ), and whose sides are (if directed
..

s
�

counterclockwise) accordingly

�

A = − b + c

�

�

a

C

B = − c +

= − a + b

If the two sides A and B are orthogonal then

�

s
� 1� � �

A
� �

+
s
� 1� � �

B
� �

=
s
� 1� � �

C
� �

(4.6)2 2 2�
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� ���������������������

� FIGURE 6���������������������
��
�

��
�

eFig. 6 shows a practical way to draw hyperbolic right angled triangles in the Poincare ball model. Sinc´

t

a

geodesics through the origin of the ball are Euclidean straight lines, it is easy to identify the special righ

ngled triangles ∆a* b* c* with a right angle at the origin. More general hyperbolic right angled triangles ∆abc

can then be generated by left gyrotranslations and rotations.

Because of the large potential research rewards at stake for the exposition of more analogies to which

h

e

Thomas gyration gives rise, natural selection made by various explorers is likely to favor a terminology whic

mphasizes analogies shared by Euclidean and non-Euclidean geometries and, correspondingly, analogies shared

x

g

by classical mechanics and relativistic mechanics. Our gyroterminology, in which we extensively use the prefi

yro, is indeed sensitive to the need to accommodate new terms to describe further discoveries in gyrovector

w

space theory that are likely to emerge from time to time. Thus, for instance, the term gyrodistributive law is

aiting for the discovery of some unknown law that relates the two operations + and . in gyrovector spaces

( s � �
� �

V , + , . ) in such a way that it reduces to the common distributive law in vector spaces when Thomas gyra-

tion vanishes.

The Hyperbolic Pythagorean Theorem is well known in the literature on hyperbolic geometry, where(12, 24)

r

s

it appears in a form that exhibits no obvious analogies shared with its Euclidean counterpart. Our gyrovecto

pace version of the Hyperbolic Pythagorean Theorem, however, exposes analogies shared by the concept of

Euclidean Pythagorean orthogonality, and its hyperbolic counterpart that we may naturally call a hyperbolic(41)

Pythagorean orthogonality. It is therefore hoped that the present exposition of the Hyperbolic Pythagorean

c

g

Theorem, as viewed in gyrovector space theory, will encourage further exploration of our analytic hyperboli

eometry approach, resulting in the discovery of more analogies shared by hyperbolic and Euclidean

geometries.

The Hyperbolic Pythagorean Theorem provides a way to select elegant distance functions in the various

s

f

models of hyperbolic geometry. Thus, for instance, the elegant form of the Pythagorean identity (4.6) result

rom the selection of the Poincare distance function d (x, y) of Eq. (2.10) rather than, for instance, the hyper-
−

´

1 (34, 35)

-

bolic distance function 2 tanh (d (x, y)/s ) (with s = 1) that some authors prefer.

- --
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?5. Is there a dual hyperbolic Pythagorean theorem

We have emphasized in Ref. 3 that gyrovector spaces are bimetric, possessing the two distance functions

-(5.8) and (5.9) that are presented below. A gyrogroup (G , + ) possesses a dual binary operation + expressi
� �

b
�

le in terms of the gyrogroup operation + and its Thomas gyration. The introduction of the dual binary opera-

ttion into a gyrogroup G is natural since the binary operation + in G gives rise to a left cancellation law bu
�

�
n

l

not to a right cancellation law. It is with the help of the dual binary operation + in G that a right cancellatio

aw emerges. The left cancellation law and its two associated right cancellation laws are

)− a + (a + b) = b (5.1
� �

� �
(a + b) − b) = a (5.2)

)(a + b) − b) = a (5.3
� �

� �
sThe duality between the two binary operations + and + in G is expressed by the three relation

a + b = a + gyr[a; − b]b (5.4)
� �

� �
a + b = a + gyr[a; b]b (5.5)

)Aut(G , + ) = Aut(G , + ) (5.6
� �

�
-

m

that they satisfy, as shown in Theorem 4.2 of Ref. 3, where Eq. (5.4) constitutes the definition of + . Further

ore, in a gyrocommutative gyrogroup the dual binary operation + is commutative (but not associative), by
�

��
M ,

E

Theorem 5.10 of Ref. 3. It can be shown by methods of Ref. 31 that the dual gyrogroup operation + = +
q. (5.4), in a Mobius gyrogroup (V , + ), where + is the Mobius addition + in Eq. (2.4), can be written

..
s M M

..� � �

as

a + b =
1 − � � a � ��� � b � � /s

(1 − � � b � � /s ) a + (1 − � � a � � /s ) b��������������������������������������������������� (5.7)
�

M 2 2 4

2 2 2 2

..

M

�
While the dual Mobius addition + in Eq. (5.7) is far from being associative, it is commutative and looks

simpler than Mobius addition + = + in Eq. (2.4). It is interesting to realize that despite of being so
..

M

� �
� � �

M M s e

a

different, the two binary operations + = + and + , Eqs. (2.4) and (5.7), in the ball V are dual to on

nother in the sense of the duality symmetries (5.1) − (5.6).

,In a gyrovector space (V , + , . ) the gyrogroup operation + gives rise to the natural metric (2.10)s
� � �

d� �
(a, b) = � � a − b � � (5.8)

Similarly, its dual binary operation gives rise to the dual metric

d (a, b) = � � a − b � � (5.9)� �

�
T

�
he introduction of the dual gyrogroup operation + in a gyrogroup (G , + ) is initially justified by the

o

need to have a right cancellation law, (5.2), in addition to the left cancellation law (5.1) that the gyrogroup

peration + offers. More justifications follow. The introduction of the resulting dual metric (5.9) is justified as

w

�

ell, as we will see in the sequel.

-- --
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he curves a + b . t , a, b∈V , t ∈IR , in the various gyrovector space models of hyperbolic geometry
� �

s
..

(e.g., the Einstein, the Mobius, and the Weierstrass gyrovector spaces that underlie respectively the Klein-

Beltrami, the Poincare, and the Weierstrass models of hyperbolic geometry) describe analytically the standard´

geodesics of hyperbolic geometry; see Fig. 2 in Section 1 of the present article and Figs. 2, 3, 6 and 7 of

Ref. 3. This observation raises a natural question: Why are the curves

a + b . t (5.10)
� �

swhich form the standard geodesics of hyperbolic geometry, seemingly more significant than the curve

b . t + a (5.11)

w

� �

hich are not geodesics? The two families of curves in (5.10) and (5.11) are different since their gyrocommu-

ftative gyrogroup operation + is noncommutative. In the special case when + is the Mobius addition o
� � .

2

.

1D ´
s s =efinition 2.3 in the Poincare disk V = IR , the two curves are shown in Figs. 2 and 3. The curves (5.10) in

n

t

the disk, Fig. 2, are circular arcs that intersect the boundary of the disk orthogonally, while the curves (5.11) i

he disk, Fig. 3, are circular arcs that intersect the boundary of the disk diametrically.

-

v

A most elegant answer, according to which both (5.10) and (5.11) are geometrically significant, is pro

ided by the dual metric. While the former curves, (5.10), are geodesics relative to the natural hyperbolic

.

A

metric (5.8) of a gyrovector space, the latter curves, (5.11), are geodesics relative to the dual metric (5.9)

ccordingly, the curves (5.11) are called dual geodesics, and triangles made out of these are called dual trian-

gles. The dual geodesics are known in hyperbolic geometry as hypercircles or equidistant curves. The term(22)

"equidistant curve" is explained in terms of gyrogroup formalism in Ref. 42.

In the Poincare disk the geodesics (5.10) are circular arcs that intersect the boundary of the disk orthogo-

n

´

ally, Fig. 2, and the dual geodesics (5.11) are circular arcs that intersect the boundary of the disk diametrically

-

p

(at antipodal points, that is, at diametrically opposite points), Fig. 3. As such, every dual geodesic has a sup

orting diameter. The hyperbolic orientation of the dual geodesic is, suggestively, defined to be the Euclidean

-

d

orientation of its supporting diameter. It can be shown that, as a result, the dual angle between two dual geo

esics is the one given by Eq. (5.12) below, which shares obvious analogies with the analytic description of

Euclidean angles. Several geodesics in the Poincare disk are shown in Figs. 2,4-6. Several dual geodesics are´

.shown in Fig. 3, and in Figs. 1a, 2a, 3, 5a, 5b, 10 and 12 of Ref. 32

The usefulness of geodesics in differential geometry and in mathematical physics is well known. Due to

e

t

the similarity between the two families of curves in (5.10) and (5.11), and since they are both geodesics relativ

o their respective metrics, one should expect that duality in geodesics and in angles that they generate will be

found useful as well. This expectation is indeed justified, as we will see in Eqs. (5.13) below.

It has been demonstrated in Ref. 3 that the two metrics, (5.8) and (5.9) of a gyrovector space interplay

(

harmoniously. In addition, it was shown there that while

i) triangle medians in hyperbolic triangles are concurrent (satisfying a corresponding Euclidean geometry

(

property),

ii) dual triangle medians in hyperbolic dual triangles are not concurrent (violating a corresponding Euclidean

-

geometry property).

- --
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e

(

In contrast, however, it was shown in Ref. 3 that whil

i) the parallel postulate is not valid in geodesics in hyperbolic geometry (violating a corresponding

(

Euclidean geometry property),

ii) the parallel postulate is valid in dual geodesics (satisfying a corresponding Euclidean geometry property).

e

s

It is thus clear that the hyperbolic geometry as we presently know in the literature is only half of th

tory; the other half is concealed in the structure to which the dual metric gives rise. We say "story" rather

r

i

than "theory" since at this early stage of the development our demonstration is anecdotal in nature. Thus, fo

nstance, (I) the parallel postulate that has seemingly disappeared in the transition from Euclidean to hyperbolic

f

a

geometry, reappears with the dual metric of hyperbolic geometry. Accordingly, the sum of the three angles o

ny hyperbolic triangle is less than π, but the sum of the three dual angles of any dual triangle equals π, as we

-

p

will see in Eq. (5.13b) below. (II) Conversely, the triangle median concurrency is a property that did not disap

ear in the transition from Euclidean to Hyperbolic geometry. "Hence", it is being violated relative to the dual

m

metric. The two dual hyperbolic geometries to which the hyperbolic dual metrics give rise are thus comple-

entary, mutually making up what is lacking.

Having two metrics in hyperbolic geometry, it is natural to explore whether a hyperbolic Pythagorean

s

t

theorem is valid relative to the dual metric as well. The complementarity of the two dual hyperbolic geometrie

hat we have just observed suggests that the Hyperbolic Pythagorean Theorem is not valid in the dual metric

-

i

"since" it is valid relative to the standard hyperbolic metric, as shown in Eq. (4.6). But, in compensation of los

ng the hyperbolic Pythagorean theorem in the dual metric, another important property of Euclidean triangles

l

m

which is not valid in the standard hyperbolic metric (5.8) will hopefully be found valid relative to the dua

etric. This is indeed the case. The compensation for the loss of the Hyperbolic Pythagorean Theorem in the

e

t

dual metric is fully paid for by the dual metric establishing the π − Theorem according to which the sum of th

hree dual angles (to be defined below) of any dual triangle is π. Thus, the complementarity of the dual hyper-

(

bolic geometries emerges again. While

i) right triangles obey the hyperbolic Pythagorean identity in the Poincare model of hyperbolic geometry

(

(satisfying a corresponding Euclidean geometry property),

´

ii) dual right triangles do not obey it (violating a corresponding Euclidean geometry property).

(

In contrast, however, while

i) the sum of the three angles of a triangle in hyperbolic geometry is less than π (violating a corresponding

(

Euclidean geometry property),

ii) the sum of the three dual angles of a dual triangle in hyperbolic geometry equals π (satisfying a

T

corresponding Euclidean geometry property).

o establish our claim about the hyperbolic π we have to define in a natural way dual angles, that is,

angles relative to the dual metric (5.9), and show that the sum of the dual angles of any dual triangle equals π.

Let us, accordingly, consider two arbitrary dual geodesics, that is, geodesics relative to the dual metric

-

(5.9), that contain respectively the pair of points (a, b) and (c, d),

- --
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= (b − a) . t + aa, b � � �
c � � �, dL = (d − c) . t + c

st ∈IR , in a Mobius gyrovector space (V , + , . ). The cosine of the angle α between the two dual geodesic
..

s � �
is defined by the equation

cos α = � �
− a + b

� �− a + b� ����������������� . � �
− c + d

� �− c + d� ����������������� (5.12)�
�

�
�

in full analogy with the definition of Euclidean hyperbolic angles, and in partial analogy with the hyperbolic

angle definition in Eq. (3.3).

Supporting no parallelism, the two geometric vectors that define a hyperbolic angle α must be emanated

t

p

from a common point, as we see from Eq. (3.3) and as illustrated in Fig. 4. In contrast, dual rays do suppor

arallelism, and accordingly, the two dual geometric vectors that define a dual angle α in (5.12) need not be

f

R

emanated from a common point, as is the case in Euclidean geometry. This is clearly seen in Fig. 2a o

ef. 32.

One can verify by means of arguments illustrated by Fig. 2a of Ref. 32 that the dual angle between dual

t

o

geodesics is well defined (that is, it is independent of the choice of the two ordered points (a, b) and (c, d) tha

ne selects on each of the two dual geodesics that L and L generate the hyperbolic dual angle α), and that

t

a, b c, d

he sum of the three dual angles of any dual triangle is π. In symbols, if a, b and c are any three points in a

,gyrovector space (V , + , . ) which do not lie on a dual geodesic, and if the dual angles of the dual triangles � �
nwhose vertices are these points, are α, β and γ, the

α = cos � �
− a + b

� �− a + b� ����������������� . � �
− a + c

� �− a + c� ����������������� )− (1

�
�

�
�
�

�

�( � )−1β = cos � �
− b + a

� �− b + a� ����������������� . � �
− b + c

� �− b + c� ����������������� (5.13a)

� �����������������b− c + �� ����������������� . � �
− c + b

�a− c + �γ = cos � �
− c + a

�( )−1

�
�

�
and

�

α + β + γ = π (5.13b)

The geometric meaning of identity (5.13b) in the Poincare disk model of hyperbolic geometry is clearly´

,

t

seen in Fig. 2a of Ref. 32. Both angles and dual angles in hyperbolic geometry are model independent, that is

hey keep their numerical value invariant in the transition between the gyrovector spaces of Einstein, Mobius
..

t

u

and Weierstrass. Dual angles are preserved by rotations. Unlike angles, however, dual angles are not invarian

nder left gyrotranslations. Formally, we thus have

--- -
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The π − THEOREM 5.1 Let a, b, c∈V be any three distinct points in a gyrovector space (V , + , .),s s �
,

α
and let α, β and γ be the three dual angles of the dual triangle formed by these three point, Eqs. (5.13a). Then

+ β + γ = π.

The defect of a hyperbolic triangle with angles α, β and γ is π − (α + β + γ), and it equals the hyperbolic

earea of the triangle. The π − Theorem suggests a natural extension of the notion of defect from the thre(24)

.

D

angles of a triangle to individual angles

EFINITION 5.1 (The defect of a hyperbolic angle) Let (i) a, b, c∈V be any three distinct points in as

cs a, b a,� �gyrovector space (V , + , . ); let (ii) α be the angle between the two rays L and L that are emanated

n

b

from a and contain respectively b and c; and let (iii) dual(α) be its dual angle. Then, the defect of α is give

y

defect(α) = dual(α) − α

that is, by

defect(α) = cos � �
− a + b

� �− a + b� ����������������� . � �
− a + c

� �− a + c� ����������������� − cos � �
− a + b

� �− a + b����������������� . � �
− a + c

� �− a + c����������������� )− ( ) (1 −1 �
�

�
�

�
�

�
�

e

T

Following Def. 5.1 and the π − Theorem we can now stat

HEOREM 5.2 The defect of a hyperbolic triangle equals the sum of the defects of its angles.

n

l

The π − Theorem demonstrates that a well known property of Euclidean triangles that has seemingly bee

ost in the transition to hyperbolic geometry, reappears in the novel structure of hyperbolic geometry to which

the dual metric gives rise.

The significance of the definition in Eq. (3.3) of angles in a gyrovector space (V , + , . ) relative to itss ��
-

g

natural metric is exhibited by the resulting Hyperbolic Pythagorean Theorem for hyperbolic right angled trian

les in Theorem 4.3. Similarly, the significance of the definition in Eq. (5.12) of dual angles in a gyrovector

-space (V , + , . ) relative to its dual metric is exposed by the resulting π − Theorem. Unlike angles and geos � �
� �s t

g

desics, however, dual angles and dual geodesics in a gyrovector space (V , + , . ) are not preserved by lef

yrotranslations. Thus, in particular, the defect of a hyperbolic angle is not invariant under left gyrotransla-

t

u

tions. Interestingly, however, the sum of the defects of the three angles of a hyperbolic triangle is invarian

nder left gyrotranslations.

Another indication that geodesics and their dual geodesics are equally significant for mutually dual rea-

(

sons is provided by the gyrotransitive law (5.14) of successive gyrations along geodesics and its dual law

5.15), that they respectively obey. Let {a , a , a , . . . , a } be a set of any n points lying on a geodesic in any

1

1 2 3 n

2 3 norder, and similarly, let {b , b , b , . . . , b } be a set of any n points lying on a dual geodesic in any order.

-

Then

- --
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yr[a ; − a ] gyr[a ; − a ] . . . gyr[a ; − a ] = gyr[a ; − a ] (5.14)

and

1 2 2 3 n − 1 n 1 n

gyr[b ; b ] gyr[b ; b ] . . . gyr[b ; b ] = gyr[b ; b ] (5.15)

I

1 2 2 3 n − 1 n 1 n

dentity (5.15) is verified in Eq. (7.3b ) of Ref. 32 and the proof of identity (5.14) is similar. Interestingly, the

(

duality between gyr[x; y] and gyr[x; − y] exhibited by Eqs. (5.14) and (5.15) is also clear from Eqs. (5.4) and

5.5), as well as from Eqs. (4.5a ) and (4.5b ) of Ref. 3.

We have selected the Poincare ball model of hyperbolic geometry for the presentation of the Hyperbolic

P

´

ythagorean Theorem since, within Euclidean geometry, this model of hyperbolic geometry exhibits Euclidean

nangles. The Poincare measure of an angle is given by the Euclidean measure of the angle formed by Euclidea´

(24)tangent rays. From that point of view, the best model of hyperbolic geometry for the presentation of

l

V

geometric objects that involve dual angles, rather than angles, is the Weierstrass whole space mode

= (V , + , . ) of hyperbolic geometry whose underlying real inner product space is V = (V , + , .). In∞ ∞ W W ∞ ∞
(3)� �

this model dual geodesics are Euclidean straight lines, and the measure of dual angles between dual geodesics

l

g

is equal to the Euclidean measure of the angle between the corresponding straight lines. Geodesics and dua

eodesics in the Weierstrass gyrovector spaces are shown in Figs. 6 − 10 of Ref. 3 where the gyrogroup opera-

,tion + and its dual operation + , as well as its scalar multiplication . are presented. Thus, for instance
� � �

W

t
W W

he first equation in (5.13a), expressed in a Weierstrass gyrovector space, describes a hyperbolic dual angle α
whose measure equals its Euclidean counterpart. In symbols,

α = cos � �
− a + b

� �
− a + b� ������������������� . � �

− a + c
� �

− a + c� ������������������� = cos � �
− a + b

� �− a + b� ��������������� . � �
− a + c

� �− a + c��������������� (5.16)− ( ) ( )1

W

W

W

W −1

�

�

�

�

f ∞or all a, b, c∈V , since, in particular,

� �
− a + b

� �
− a + b� ������������������� = � �

− a + b
� �− a + b� ��������������� (5.17a)

�

�
W

or, equivalently,

W

a + b =
B B + 1 − a .b/s

B + B����������������������������� (a + b) (5.17b)
�

W
a b

2

a b

B a
2 2 2= 1 +

� �
a
� �

/s , in a Weierstrass gyrovector space. Eq. (5.16) explains why the sum of the three dual angles

)

a

of a dual triangle in the Weierstrass model is π, Eq. (5.13b). Unexpectedly, however, while Eqs. (5.16) − (5.17

re valid only in the Weierstrass model of hyperbolic geometry, Eq. (5.13b) is model independent thus possess-

ing hyperbolic geometric significance.

In gyrovector space formalism the duality between the two binary operations + and + , Eqs. (2.4) and

(
..

� �

5.7), in a Mobius gyrovector space is obvious from Eqs. (5.1) − (5.6). In contrast, this duality is not apparent

(

in Riemannian geometry. Thus, in particular,

I) the Riemannian metric d x corresponding to the hyperbolic metric d , Eq. (5.8), in the disk IR of the� �2
s
2

E 2
1 2

(43)uclidean plane IR of the x x − plane is,

d x =
[1 −

s

1� ��� (x + x )]

dx + dx� ��������������������������������� (5.18a)� 2

2 1
2

2
2 2

1
2

2
2

--- -
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whose Gaussian curvature, is a negative constant,(44)

2
K� = −

s

4
� ��� (5.18b)

(

and

II) the Riemannian metric d x corresponding to the dual hyperbolic metric d , Eq. (5.9), in the disk IR of the� �
2

s
2

E 2uclidean plane IR is given by the quadratic differential form

d x =
[1 −

s

1
� ��� (x + x ) ]

Edx + 2Fdx dx + Gdx
��������������������������������������������� (5.19a)�

2

4 1
2

2
2 2 2

1
2

1 2 2
2

where

E = [x + (s − x ) ] [x + (s + x ) ] / s 4
1
2

2
2

1
2

2
2

1
2

2
2

1
2

2
2 4G = [(s − x ) + x ] [(s + x ) + x ] / s

F = 4 x x / s 2

and

1 2

EG − F = [1 −
s

1
� ��� (x + x ) ]22

4 1
2

2
2 2

)having a variable positive Gaussian curvature,(44

K =
s

8
� ���

[1 +
s

1
� ��� (x + x )]

�
1

��������������������������������� (5.19b)�
2

2 1
2

2
2 4

� �
22 e

E

In the limit of large s , s → ∞, the Riemannian metric d x and its dual metric d x both reduce to th

uclidean metric d x = dx + dx and the two corresponding curvatures K and K vanish. The hyperbolic2
1
2

2
2

� �

�
2metric d x is conformal, being proportional to the plane Euclidean metric at each point. Hence, the actual

t

angles for this metric coincide with Euclidean angles. We see no indication in Riemannian geometry that the

wo Riemannian metrics d x and d x are dual in any sense. In contrast, gyrovector space theory clearly� �
2 2

.exposes their duality symmetries in Eqs. (5.1) − (5.6)

Riemann was aware of the possible application of his geometry to physics. In his inaugural address in

n1854 on the occasion of joining the University Faculty of Gottingen he said that the value of his geometry ca
..

e

l

possibly be to liberate us from preconceived ideas, should ever the time come that in the exploration of th

aws of physics the concepts of Euclidean geometry may have to be abandoned. These prophetic words were(45)

)literally fulfilled fifty years after his death by the Einstein theory of general relativity.(10

Of particular interest in the literature on differential geometry is the case when Gauss curvature is con-

t

stant, as this is the only known case which permits free mobility of figures on the surface without influencing

heir inner connections. It is therefore important to realize that despite the fact that the Gaussian curvature K �

e

o

is non-constant, dual geodesic segments can freely be rotated (obvious) and right-gyrotranslated on the surfac

f this curvature by a family of right gyrotranslations that will be specified in Eq. (5.21a) below.

--- -
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Let b − a = − a + b be the dual geometric vector represented by a directed dual geodesic segment from a
� �

� �
s tto b in a gyrovector space (V , + , . ). Furthermore, le

m =
2
1��� . (a − b) + b (5.20)a, b

� � �

b s a, b b, a
(32)e the midpoint of a and b in V , satisfying m = m . Then, two distinct right gyrotranslations of the two

-edges a and b of the dual geometric vector − a + b, specified in Eq. (5.21a), can freely move it without rota
�

t sion to any point of V . These motions without rotations are given by the identity

)− (a + gyr[a, m ]x) + (b + gyr[b, m ]x) = − a + b (5.21a
� � � �

w s

a, b b, a

hich is valid for any x∈V . Eq. (5.21a) presents full analogy with Euclidean geometry where any translation

of a geometric vector leaves it intact,

− (a + x) + (b + x) = − a + b (5.21b)

Thus, motions on a surface with the non-constant curvature K are possible. They are given by rotations�

n

a

and specific right gyrotranslations. The specified right gyrotranslations of a pair of points a and b involve a

rbitrary x∈V which must be rotated (i) by gyr[a, m ] when applied to a, and (ii) by gyr[b, m ] when

applied to b.

s a, b b, a

Finally we may remark that, following Cartan, a generalization of the hyperbolic Pythagorean theorem as

s

well as other results of the present article, to some symmetric spaces is possible. Elie Cartan generalized the

ituation in (2.3) to Riemannian globally symmetric spaces of noncompact type, proving that these spaces are

(

exactly all quotients G /K , where G is a noncompact semisimple and K is a maximal compact subgroup. As in

2.3), G has a Cartan decomposition G = e K = PK . Cartan’s theory is presented in Ref. 46. By methods of

R

p

ef. 25 concerning transversals it can be shown that the factor P in the Cartan decomposition G = PK turns out

to be a gyrocommutative gyrogroup. The gyrogroup operation + in the gyrogroup P is determined by the
�

�
y

E

action of P on itself, and the gyroautomorphisms gyr[a ; b ], expressible in terms of the binary operation + b

q. (2.1), are Thomas gyrations. Some related results about the Cartan decomposition and its resulting gyro-

-

commutative gyrogroup in any bounded symmetric domain are presented in Ref. 47.
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IGURE CAPTIONS

tFig. 1 The Hyperbolic Pythagorean Theorem in the Poincare unit ball. ∆abc is any hyperbolic righ´

a ´ngled triangle in the Poincare unit ball model of hyperbolic geometry in any dimension, with ver-

f

t

tices a, b, c and sides A , B , C . The two sides A and B are orthogonal. The hyperbolic lengths o

he sides relative to the Poincare metric of the unit ball are, respectively, � � A � � , � � B � � , � � C � � , satisfying´

´ e

a

the hyperbolic Pythagorean identity (1.1). The special case when the Poincare unit ball of th

bstract real inner product space is realized by the unit disk IR of the Euclidean plane IR is2 2
1

F

shown graphically.

s =

ig. 2 The common hyperbolic geodesics in the Poincare ball model of hyperbolic geometry are given by

g

´

0 0v � �(t ) = v + a . t in full analogy with the Euclidean geodesics, given by v + at , t ∈IR . A geodesic

in the Poincare disk model of hyperbolic geometry is shown. The vector a is Euclidean-parallel to´

0
(42) ..

´� e

d

the tangent line of the geodesic at the point v . Here + is the Mobius addition in the Poincar

isk, given by Eq. (2.2) with V = IR being the Poincare unit disk in the Euclidean plane2 ´
1

V∞
2

s s =

= IR .

Fig. 3 The dual hyperbolic geodesics in the Poincare ball model of hyperbolic geometry are given by

d

´

0
´v � �(t ) = a . t + v , t ∈IR . A dual geodesic in the Poincare disk model of hyperbolic geometry is

-

t

shown. It is a circular arc that intersects the boundary of the disk at two antipodal points. The vec

or a is Euclidean-parallel to the supporting diameter, an observation leading to the π − Theorem(32)

2
1i � ..

´
s =n Section 5. As in Fig. 2, + is the Mobius addition in the Poincare disk IR .

nFig. 4 The hyperbolic angle α between two hyperbolic rays emanated from a point a. As in Euclidea

geometry, the angle α between directed rays is independent of the choice of the points b and c,

u

other than a, on the directed rays, Eq. (3.5). Unlike Euclidean geometry, however, the point a is

nique in the sense that it cannot be replaced by two distinct points on each of the two rays that

F

define α.

ig. 5 The hyperbolic triangle ∆abc in the Poincare disk model: Its vertices are a, b and c, and its sides,

�
´

� � y

E

if directed counterclockwise, are A = − b + c, B = − c + a and C = − a + b. Its angle α is given b

q. (3.3). The angular defect of the triangle in plane hyperbolic geometry equals the rotation angle

-of the Thomas gyration (or, rotation) gyr[a − b; − a + c], as explained in Ref. 3 for plane hyper� �

F

bolic geometry.

ig. 6 The Hyperbolic Pythagorean Theorem. Left gyrotranslations and rotations of a hyperbolic right

h

angled triangle with right angle at the origin generate other hyperbolic right angled triangles. The

yperbolic triangle ∆abc in the Poincare unit disk model, IR , of hyperbolic geometry has ver-2
1

´
s =

� � � ,

A

tices a, b and c, and corresponding sides, A = − b + c, B = − c + a and C = − a + b, two of which

and B , are orthogonal. It satisfies the hyperbolic Pythagorean identity � � A � � + � � B � � = � � C � � ,2 2 2�
-

g

expressing the square of the hyperbolic length of the hypotenuse of a hyperbolic right angled trian

le as the Einstein sum of the squares of the hyperbolic lengths of the other two sides. The Hyper-

E

bolic Pythagorean Theorem in its present form, thus, completes the long road from Pythagoras to

instein, a path that has been emphasized by several authors. )(9, 10


