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Artin groups and generalized configuration spaces
Let W be a Coxeter group and Gy the associated Artin group:

Cw=(S|sts--- = tst--- Vs#t).

m;, ¢ factors ms, ¢ factors

Gy is the fundamental group of a (generalized) configuration space Y.

If W is finite or affine, Yyy is given by:

Yw=|C"\ |J Hc|/W.
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Example: the braid group on 3 strands

Let W be the symmetric group &3 = (a,b | a*> = b*> =1, aba = bab).

Its configuration space is Yy = {(x1, x2,x3) € C* | x; # x;}/6s.
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The (real) arrangement Loopsin Y\ are “braids”




The Salvetti complex

The configuration space Yy, has the homotopy type of a CW complex Xy,
with cells indexed by the standard parabolic subgroups of W.

The Salvetti complex for W = &,

The Artin group presentation can be read off the 2-skeleton of the
Salvetti complex:
Cw = (a,b | aba = bab).



K(m,1) conjecture (Brieskorn, Arnol'd, Pham, Thom '60s)

The configuration space Yyy is a classifying space for Gy :

m(Yw) = Gw and the higher homotopy groups are trivial (equivalently, the universal
cover of Y is contractible).



K(m,1) conjecture (Brieskorn, Arnol'd, Pham, Thom '60s)
The configuration space Yyy is a classifying space for Gy :

m(Yw) = Gw and the higher homotopy groups are trivial (equivalently, the universal
cover of Y is contractible).

Until recently, this conjecture was proved in the following cases:
» Spherical Artin groups (Brieskorn 1971, Deligne 1972)

» The affine Artin groups of type A,, C, (Okonek1979), and B,
(Callegaro-Moroni-Salvetti 2010)

> Large-type Artin groups (Hendriks 1985)
» Artin groups of FC type (Charney-Davis 1995)

» 2-dimensional Artin groups (Charney-Davis 1995)
(includes the affine Artin group G,)



Theorem (P-Salvetti 2021)
The K(7, 1) conjecture holds for all affine Artin groups.



Interval groups and Garside groups
G group, R generatingsetwithR =R, g € G.

Let [1, 9]¢ be the interval between 1and g in the (right) Cayley graph of G
(itis a poset, whose cover relations are labeled by some subset Ry C R).

Definition
The interval group G is the group generated by Ry, with the relations
visiblein [1,g]¢. If[1, 9]¢ is a balanced lattice, then G, is a Garside group.

Example

If G = W (a finite Coxeter group), R = S,and g = ¢ (the longest
element), then G, is the spherical Artin group Gw.

0
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T T § = aba = bab
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Interval groups and Garside groups
G group, R generatingsetwithR =R, g € G.

Let [1, 9]¢ be the interval between 1and g in the (right) Cayley graph of G
(itis a poset, whose cover relations are labeled by some subset Ry C R).

Definition
The interval group G is the group generated by Ry, with the relations
visiblein [1,g]¢. If[1, g]° is a balanced lattice, then G, is a Garside group.

Example

If G = W (a finite Coxeter group), R = S,and g = ¢ (the longest
element), then G, is the spherical Artin group Gw.

W = (a,b | a* = b*> =1, aba = bab)
bT Ta 0 = aba = bab

Ws = (a,b | aba = bab)



Classifying space of Garside groups

Theorem (Brady-Watt 2002, Charney-Meier-Whittlesey 2004)

If G, is a Garside group, then the complex Kc = A([1,4]“)/labelingisa
classifying space for G;.

We call K¢ the interval complex associated with [1, g]°.

T

The balanced lattice [1, §]¥ The interval complex Ky



Spherical Artin groups as Garside groups

Our favorite example: W = &3 = (a, b | a*> = b* =1, aba = bab).

Standard Garside structure Dual Garside structure

(Garside, Brieskorn-Saito, ...) (Birman-Ko-Lee, Bessis, ...)

R =S ={a,b} (simplesystem) R = {all reflections} = {a, b, c}

g = 0 = aba (longest element) g = w = ab (Coxeter element)

Wg = (a,b | aba = bab) = Gy Wy, = (a,b,c | ab = bc = ca) = Gy

T NS

(weak Bruhat order) (noncrossing partition lattice)



Example: the dual classifying space Ky, for W = G;

4N
A

The balanced lattice [1, w]V

a

Simplices of Kw: [], [a], [b], [c], [w],

a 4

The interval complex Ky,

[a[b], [blc], [c|a].



The interval [1, w]" in affine Coxeter groups

Example (A)

w = abc isa glide
reflection w.rt. the
dashed line (axis)

A, root system:

N

The minimal factorizations of w can use any reflection that fixes a point
on the axis (vertical). Among the remaining reflections (horizontal), only
the ones closest to the axis (b and b').



The interval [1, w]" in affine Coxeter groups

Example (A,)

w = abc isa glide
reflection w.rt. the
dashed line (axis)

A, root system:

N

The length 2 elements of [1, w] are:
» Rotations around colored vertices, e.g. bco = cod_1 = a_1b;

» The two translations a;a_; and c,¢g.




The interval [1, w]" in affine Coxeter groups

Theorem (P-Salvetti 2021)

Any elementu € [1, w]"V is a Coxeter element of the Coxeter subgroup
generated by the elements < u.



Failure of the lattice property

Theorem (McCammond 2015)
Let W be an irreducible affine Coxeter group. The interval [1, w]" is a
lattice if and only if the horizontal root system is irreducible.

Type | Horizontal root system
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A new hope

Theorem (McCammond-Sulway 2017)

Let W be an irreducible affine Coxeter group.
» Anydual Artin group W,, is isomorphic to the Artin group Gy.
» W, can be embedded into a Garside group C,,.

Idea: extend W to C by adding suitable translations so that [1, w]¢ is
a lattice.



Proof of the K(7, 1) conjecture for affine Artin groups

1. The complex Ky is a classifying space, even when [1, w]V is nota
lattice.
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WrCW finite

(done for an arbitrary Coxeter group W)
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3. We construct a deformation retraction Ky, N\, X{, using discrete Morse
theory.
> The set of reflections R, can be totally ordered to make [1, w]V
EL-shellable.



Proof of the K(7, 1) conjecture for affine Artin groups
1. The complex Ky is a classifying space, even when [1, w]V is nota
lattice.

2. We construct a “dual” model X, C Ky for the configuration space Yyy:

X}y = U Kwy, = Yw.
WrCW finite

(done for an arbitrary Coxeter group W)

3. We construct a deformation retraction Ky, N\, X{, using discrete Morse
theory.

> The set of reflections R, can be totally ordered to make [1, w]V
EL-shellable.

Theorem (P-Salvetti 2021)
Let W be an affine Coxeter group.

» The configuration space Yy is a classifying space for Gy,.

» Anydual Artin group W,, is isomorphic to the Artin group Gy.



The dual approach to the K(, 1) conjecture

Let W be a Coxeter group with a fixed Coxeter element w. Can we prove
the following?
» Ky isaclassifying space
> Optionally because [1, w]" is a lattice (when?)
» Ky deformation retracts onto X{,,
> Optionally using an EL-labeling of [1, W]V (always?)

These imply the K(7, 1) conjecture for Gy, and the natural isomorphism
W,y = Gy.



Next directions

Theorem (Delucchi-P-Salvetti 2021+)
Let W be a Coxeter group of rank 3.

» [1,w]isan EL-shellable lattice.
> Yy isK(r,1).
> W, = Gy.

» The word problem for Gy, is solvable.




Step 1: New groups (McCammond-Sulway 2017)

» Rpor = {horizontal reflections}
» Ryer = {vertical reflections}

» Tr = {factored translations}

Coxeter group Crystallographic group
—
W = <Rhor7 ver> C= <Rhor7 Rveh TF>

Horizontal group

=Ne Cw
Dlagonal grou Factorable group
H = <Rhor>

RhOI’v F = <Rh0r7TF W>

Fw



Step 1: Looking for classifying spaces

We introduce the interval complex K; forG = H, D, F, W, C (even
though only F,, and C,, are Garside groups).

Ky — s Ke v

| ]

Ky © Kp « Ke v
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(Mayer-Vietoris exact sequence)
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Step 1: Looking for classifying spaces

We introduce the interval complex K; forG = H, D, F, W, C (even
though only F,, and C,, are Garside groups).

Ky x R Ky s K ¥
Col’e,-
~ &S
%)
~ N J
Ky < Kp © Ke V'
Ky = Ky, % -+ X Ky, if three are classifying spaces,
whered =&, - -Ud, then the fourth also is
m "

(Mayer-Vietoris exact sequence)



Example: D,

a = reflectionw.rt. {X; + x + x3 + x4 = 1}

¢ b b = reflection w.rt. {x; = 0}
a ¢ = reflectionw.rt. {x, = 0}
d ¢ d = reflection w.rt. {x3 = 0}

e = reflectionw.rt. {x, = 0}

Coxeter element: w = abcde with axis (1,1,1,1).

Jon says that the horizontal root systemis ® = @, LI $p LI Py .

w = abcde = be - a* - de = de - a® - ab

a" = reflection w.rt. {M+x—x3—x4=—-1}=1r

a® = reflection w.rt. {4+ x,—x3— x4 =1} =2/

The horizontal directions are: (1,1, —1, —1), (1, —1,1, 1), (1, =1, —=1,1).



Example: D,

We have [1, w]W N {r, V) = {1,r,/'}, so Ky is the product of three copies
of S'v S

[1]

Ky = ; i X : i X : i
[¥]
The 6 horizontal reflections enclose a prism @ x R.

The Coxeter element w acts on this prism by central symmetry on the
cube and translation along the R direction.

Therefore Kp = Ky x [0,1]/ ~, where ~ identifies Ky x {0} and
Ky x {1} by swapping the two S"’s in each of the three components.



Step 1: Looking for classifying spaces

Ky x R Ky s K ¥V
Col’e,-
~ 2.
’?7%
~ N J
Ky < Kp < Ke V'
Ky = Ky, % -+ X Ky, if three are classifying spaces,
whered =&, L---Ud, then the fourth also is
m "

(Mayer-Vietoris exact sequence)

Each K, is (a variation of) the “dual” model X% !

So the K(,1) conjecture for the case A,, implies that K, is a classifying
space, so Kp and Ky also are classifying spaces.



Step 1: Looking for classifying spaces

Ky x R Ky —— K ¥
COV@,.A
o~ 2.
%)
~ N J
Ky © Kp ¢ Ke v
Ky = Ky, X% -+ X Ky, if three are classifying spaces,
where® =&, LI--- P, then the fourth also is
m my,

(Mayer-Vietoris exact sequence)

Without using the K(7r, 1) conjecture for Ap:
» Ifk =1,then[1,w]V isalattice. Therefore Ky, Kp, and Ky = Ki,, are
classifying spaces.
» Foreverym > 1, the comBIex K., only depends on m and can appear
alone (e.g. if Wis of type Cy11).
» Therefore, for any irreducible affine Coxeter group W,
Ky = K, X - -+ X Ky, isaclassifying space, so Kp is, and Kyy also is.



Step 2: A “dual” model for the configuration space Yy,

The Salvetti complex Xy, has cells indexed by

Ay = {T C S| the standard parabolic subgroup Wr is finite}.

Itis natural: Xy, = U Xw;-
TeAw

Both Xy, and Ky, are classifying spaces
for the Artin group Gy, 50 Xw; =~ Kw;.

The Salvetti complex X,
forw = 63



Step 2: A “dual” model for the configuration space Yy,

The Salvetti complex Xy, has cells indexed by

Ay = {T C S| the standard parabolic subgroup Wr is finite}.

Itis natural: Xy, = U Xw;-
TeAw

Both Xy, and Ky, are classifying spaces
for the Artin group Gy, 50 Xw; =~ Kw;.

Definition (dual model)

Xy = J K
TeAy

Theorem The Salvetti complex Xy,
X~ Xw =~ Y. forW = &;



Example: A,

/

X{y, is the union of three different copies of Ka, sitting inside Ky,:
> [] [m], [b]. [c2], [mb], [m]b], [blc2], [cz|an]
> [1. [m]. [co]. [b']. [mico], [m]co]. [cob'], [b[a]
> [], [b]. [co], [a-1]. [beo], [blco], [cola—], [a—s]b]



Step 3: Deformation retraction Ky, \, X{y

[w] [bleaco]  [caco|b’]  [b'|ma—i] [ma—i|b]
[1 [6] [c2¢0] [b'] [ara—]

[(h‘bCo] [a'|b|C0] [Cz|a'|Co] [G1Co|ﬂ 1]
[n] [beo] [mb] [co] [c2] [mco] [a—i]
[a1]b]co] [c2]ar|co]  [m]cola—]

[ar1b] [b]co] [c2|an] [alcd]  [eola—]

[blealco]  [c2lcol’] [bar]a—s] [ar]a—ib]

[blez] [c2]co] [colb'] Wlm]  [mla—]  [a-1]b]



Step 3: Deformation retraction Ky, \, X{y

We order the set of reflections Ry so that:
1. eachelementu € [1, w] has a unique minimal factorization
U=nr - -rnwithry <r, < - <r,;
2. theincreasing factorization is the lexicographically smallest and
co-lexicographically largest.
(this makes [1, w]" EL-shellable)

Why? (How do we use this ordering?)
The remaining cells are collapsed following increasing factorizations
greedily:

» [w] — [a]|bco] becausear; < b < co;

» [a1b|co] — [ar]b|co] becausea; < b;

|



Step 3: Axial ordering of Ry

We order Ry following the axis of w:

M <C <a3<-<b=<b <. <c_;=<a_q<c.




Thanks!

paolini@caltech.edu



