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Notations for complex reflection groups

Let W < GL(V ) be a complex reflection group, n = dim V

W = 〈R〉 R = {s ∈W ; dim Ker(s − 1) = n − 1}

The collection of its reflecting hyperplanes is the hyperplane
arrangement

A = {Ker(s − 1), s ∈ R}

For H ∈ A, WH = {w ∈W ; w|H = IdH} is cyclic, isomorphic to its
image under det : WH → C×.

The generator of WH mapped to exp(2πi/|WH |) is a reflection sH called
the distinguished reflection associated to H. The collection of all
distinguished reflections is denoted R∗.

R∗ is in 1-1 correspondence with A,

s 7→ Ker(s − 1), H 7→ sH
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Classification of irreducible CRG’s

The main series is made of the groups G(de,e,n) of
n × n monomial matrices
with nonzero entries inside µr , r = de
whose product belongs to µd .

Of course W = G(de,e,n) < G(r ,1,n).
W contains diagonal reflections, of the form
diag(1, . . . ,1, ζ, 1, . . . ) if and only if d > 1.
its non-diagonal reflections belong to G(r , r ,n) < W and have the
form

Idu ⊕
(

0 ζ−k
e

ζk
e 0

)
⊕ Idn−2−u

In addition to these, there are 34 exceptional groups G4, . . . ,G37, half
of them in rank 2.
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Complex braid groups

W = 〈R〉 = 〈R∗〉 complex reflection group
X = Cn \

⋃
A

X � X/W is a Galois covering
B = π1(X/W ) its braid group fits into a short exact sequence

1→ P → B →W → 1

where P = π1(X ) = Ker(B � W ).

A nontrivial theorem, obtained using the classification, is the
following one.

Theorem
B is torsion-free.

In particular the short exact sequence 1→ P → B →W → 1 is
not split, and P is also torsion-free.

Ivan Marin, Université d’Amiens (UPJV) Complex Braid Groups 6 / 40



Complex braid groups

W = 〈R〉 = 〈R∗〉 complex reflection group
X = Cn \

⋃
A

X � X/W is a Galois covering

B = π1(X/W ) its braid group fits into a short exact sequence

1→ P → B →W → 1

where P = π1(X ) = Ker(B � W ).

A nontrivial theorem, obtained using the classification, is the
following one.

Theorem
B is torsion-free.

In particular the short exact sequence 1→ P → B →W → 1 is
not split, and P is also torsion-free.
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Ivan Marin, Université d’Amiens (UPJV) Complex Braid Groups 6 / 40



Complex braid groups

W = 〈R〉 = 〈R∗〉 complex reflection group
X = Cn \

⋃
A

X � X/W is a Galois covering
B = π1(X/W ) its braid group fits into a short exact sequence

1→ P → B →W → 1

where P = π1(X ) = Ker(B � W ).

A nontrivial theorem, obtained using the classification, is the
following one.

Theorem
B is torsion-free.

In particular the short exact sequence 1→ P → B →W → 1 is
not split, and P is also torsion-free.
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Braided reflections and length function

Every reflecting hyperplane H ∈ A can be defined as the kernel of
some linear form αH . Then the map∏

H

α
|WH |
H : X → C

×

is W -invariant,hence induces a continuous map X/W → C×.

Definition
The length morphism ` : B → Z is the induced morphism
B = π1(X/W )→ π1(C×) = Z.

The following is easy to prove

Proposition
For every braided reflection σ, we have `(σ) = 1.
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Braided reflections and presentations of B

For each braided reflection σ, let us denote m(σ) the order of the
corresponding reflection.

Proposition

The kernel of B � W is (normally) generated by the σm(σ), for σ
running among the collection of all braided reflections.

As a consequence, any presentation of B with generators braided
reflections will provide a presentation of W , as soon as the set of
generators contains representatives for every conjugacy class of
reflections.

Lemma
Two braided reflections are conjugates inside B if and only if their
images are conjugates inside W.
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Ivan Marin, Université d’Amiens (UPJV) Complex Braid Groups 9 / 40



Braided reflections and presentations of B

For each braided reflection σ, let us denote m(σ) the order of the
corresponding reflection.

Proposition

The kernel of B � W is (normally) generated by the σm(σ), for σ
running among the collection of all braided reflections.

As a consequence, any presentation of B with generators braided
reflections will provide a presentation of W , as soon as the set of
generators contains representatives for every conjugacy class of
reflections.

Lemma
Two braided reflections are conjugates inside B if and only if their
images are conjugates inside W.
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Central elements in complex braid groups

For ∗ ∈ X the chosen basepoint, the map t 7→ exp(2πit).∗ is a loop
inside X . Its image inside P = π1(X ) = Ker(B � W ) is denoted zP .

Lemma
zP ∈ Z (P).

Let us assume that W is irreducible. Then by Schur’s Lemma

Z (W ) = µmId for m = |Z (W )|

and the map t 7→ exp(2πit/|Z (W )|).∗ is a path inside X whose image
in X/W is a loop.
Its image inside B = π1(X/W ) is denoted zB.

Lemma

zB ∈ Z (B) and z |Z (W )|
B = zP .
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Ivan Marin, Université d’Amiens (UPJV) Complex Braid Groups 10 / 40



Central elements in complex braid groups

For ∗ ∈ X the chosen basepoint, the map t 7→ exp(2πit).∗ is a loop
inside X . Its image inside P = π1(X ) = Ker(B � W ) is denoted zP .

Lemma
zP ∈ Z (P).

Let us assume that W is irreducible. Then by Schur’s Lemma

Z (W ) = µmId for m = |Z (W )|

and the map t 7→ exp(2πit/|Z (W )|).∗ is a path inside X whose image
in X/W is a loop.
Its image inside B = π1(X/W ) is denoted zB.

Lemma

zB ∈ Z (B) and z |Z (W )|
B = zP .
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Braid groups of surfaces

Let Σ be a connected, orientable surface.

Definition
The braid group on n strands Bn(Σ) of the surface Σ is the fundamental
group of the configuration space Cn(Σ) of sets of n points inside Σ.

More precisely, a topology on Cn(Σ) can be defined as the restriction of
the Hausdorff metric between compact subsets of Σ, and Cn(Σ) is
easily checked to be always path connected. Then Bn(Σ) = π1(Cn(Σ)).
Alternatively Cn(Σ) can be defined as a quotient space of

{z = (z1, . . . , zn) ∈ Σn | i 6= j ⇒ zi 6= zj}

by the action of Sn by permutation of the coordinates.
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The usual braid group : Bn = B(Σ),Σ = C

t = 0

t = 1/3

t = 2/3

t = 1

• • • •

• •
• •

• • • •

• • • •
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Braid groups
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Braid groups
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Braid groups

σ1

σ2

σ2

σ2

σ−1
3

σ1
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The punctured braid group : B∗n = Bn(Σ),Σ = C×

t = 0

t = 1/3

t = 2/3

t = 1

• • •

• • •

• • •

• • •

τ

σ2

σ3

σ−1
2

τ−1

σ2
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B∗n and Bn

From the projection map π : Bn+1 � Sn+1, and taking for Σ = C \ {1},
we get that

B∗n can be identified with the collection of braids leaving the first strand
unpermuted.

that is

B∗n = π−1
(
S

(1)
n+1

)
, S

(1)
n+1 = {w ∈ Sn+1 | w(1) = 1}

It follows that B∗n is a (non normal) finite index subgroup of Bn of index
n + 1.

B∗n ↪→ Bn+1
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B∗n ↪→ Bn+1

τ
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B∗n and Bn

From the projection map π : Bn+1 � Sn+1, and taking for Σ = C \ {1},
we have

B∗n = π−1
(
S

(1)
n+1

)
, S

(1)
n+1 = {w ∈ Sn+1 | w(1) = 1}

It follows that B∗n is a (non normal) finite index subgroup of Bn of index
n.

B∗n ↪→ Bn+1

——————

On the other hand, the inclusion map C× → C induces a morphism

B∗n = Bn(C×)→ Bn(C) = Bn

It can be illustrated as follows.
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The punctured braid group : B∗n = Bn(Σ),Σ = C×
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The kernel of B∗n → Bn

τn

Proposition
Fn = 〈τ1 = τ, τ2, . . . , τn〉 is a free group on the n generators τ1, . . . , τn.

Proposition
Fn = Ker(B∗n � Bn) and

B∗n ' Bn n Fn
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Presentations for Bn and B∗n (after Chu/Chow)

A presentation of Bn and B∗n is obtained inductively from the properties
above, as follows.

Define a combinatorial braid group from the well-known presentation

B̃n =

〈
σ1, . . . , σn−1

∣∣∣∣ σiσi+1σi = σi+1σiσi+1
σiσj = σjσi , |i − j | ≥ 2

〉
and π : B̃n � Sn through σi 7→ (i , i + 1).
Then a combinatorial version of the punctured braid group can be
defined as B̃∗n−1 = π−1(S

(1)
n ) < B̃n.

The Reidemeister-Schreier method yields a presentation

B̃∗n−1 =

〈
τ, σ2, . . . , σn−1

∣∣∣∣∣∣∣∣
σiσi+1σi = σi+1σiσi+1
σiσj = σjσi , |i − j | ≥ 2
σiτ = τσi , i > 2
σ2τσ2τ = τσ2τσ2

〉
(1)
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Presentations for Bn and B∗n

We have obvious morphisms B̃n → Bn and B̃∗n → B∗n.

We want to prove
that that they are isomorphisms, by induction on n.
We have a morphism B̃∗n � B̃n, mapping σi 7→ σi , τ 7→ 1. Define the τi
as above. Then :

Proposition

Fn = Ker(B̃∗n � B̃n) is a free group on τ1, . . . , τn.

From this proposition and the following diagram

1 // Fn //

��

B̃∗n //

��

B̃n //

��

1

1 // F∗n // B∗n // Bn // 1

one gets that B̃n ' Bn implies B̃∗n ' B∗n.
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Ivan Marin, Université d’Amiens (UPJV) Complex Braid Groups 24 / 40



Presentations for Bn and B∗n

We have obvious morphisms B̃n → Bn and B̃∗n → B∗n. We want to prove
that that they are isomorphisms, by induction on n.
We have a morphism B̃∗n � B̃n, mapping σi 7→ σi , τ 7→ 1. Define the τi
as above. Then :

Proposition

Fn = Ker(B̃∗n � B̃n) is a free group on τ1, . . . , τn.

From this proposition and the following diagram

1 // Fn //

��

B̃∗n //

��

B̃n //

��

1

1 // F∗n // B∗n // Bn // 1

one gets that B̃n ' Bn implies B̃∗n ' B∗n.
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Presentations for Bn and B∗n

On the other hand, since B̃∗n and B∗n are finite index subgroups of B̃n+1
and Bn+1, respectively,

from the following commutative diagrams

B̃n+1 // Bn+1 B̃n+1 //

��

Bn+1

��
B̃∗n //

OO

B∗n

OO

Sn+1 Sn+1

one gets readily that B̃∗n ' B∗n implies B̃n+1 ' Bn+1.

It is then sufficient to check that B2 = 〈σ1〉 ' Z ' B̃2 to prove by
induction that the presentations are correct.
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1 Definitions

2 Braids

3 Braid groups of G(de,e,n)

4 A few words about exceptional groups
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Braid groups of CRG

W = 〈R〉
complex reflection group
B = π1(X/W )
its braid group

Braided reflections

B = 〈σ | σ ∈ B braided reflection 〉
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Braid groups of G(r ,1,n)

Every G(de,e,n) is a subgroup of G(r ,1,n) for r = de. So we start
exploring the braid group of W = G(r ,1,n).

r = 1
X = {z ∈ C | zi 6= zj}, and X/W = X/Sn = Cn(C) whence

B ' Bn and zB = (σ1σ2 . . . σn−1)n

r > 1

X = {z ∈ Cn | zi 6= 0, zi/zj 6∈ µr} = {z ∈ Cn | zi 6= 0, zr
i 6= zr

j }

and G(r ,1,n) = µn
r oSn.Therefore z 7→ {zr

1, . . . , z
r
n} identifies X/W

with Cn(C×)whence

B ' B∗n and zB = (τσ2 . . . σn−1)n

So we already have presentations for them.
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Braid groups of G(de,e,n), d > 1

Let W = G(de,e,n), d > 1.

In this case, W contains diagonal
reflections.From this one gets that the hyperplane complement is the
same as for G(r ,1,n), r = de, namely

X = {z ∈ Cn | zi 6= 0, zi/zj 6∈ µr}

From this one gets a covering map X/W → X/G(r ,1,n).

Definition
Let B∗n(e) be the kernel of the map B∗n � Z/eZ,

τ 7→ 1, σi 7→ 0

Proposition
If d > 1, then B ' B∗n(e) is a normal subgroup of B∗n with quotient
Z/eZ.
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Braid groups of G(de,e,n), d > 1

Proposition
If d > 1, then B ' B∗n(e) is a normal subgroup of B∗n with quotient
Z/eZ.

This statement says that ’every’ problem in this case can be reduced to
a problem for B∗n.

This includes
the word problem
the conjugacy problem
the determination of centralizers.

as we shall see in Part 2.

Moreover, the Reidemeister-Schreier method provides a presentation
for this group.
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Braid groups of G(de,e,n), d > 1

We start from the known presentation for B̃∗n (with some shift of
indices). 〈

τ, σ1, . . . , σn−1

∣∣∣∣∣∣∣∣
σiσi+1σi = σi+1σiσi+1
σiσj = σjσi , |i − j | ≥ 2
σiτ = τσi , i > 1
σ1τσ1τ = τσ1τσ1

〉
(2)

From the Schreier transversal T = {1, τ, τ2, . . . , τe−1}, setting
τ = τe,we get the presentation

〈
σ1,0, . . . , σ1,e−1
τ , σ2, . . . , σn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σiσi+1σi = σi+1σiσi+1
σiσj = σjσi , |i − j | ≥ 2
σiτ = τσi , i ≥ 2
σ1,kσ2σ1,k = σ2σ1,kσ2
σ1,kσj = σjσ1,k , j ≥ 3
σ1,kσ1,k+1 = σ1,k+1σ1,k+2,0 ≤ k ≤ e − 3
σ1,e−2σ1,e−1 = σ1,e−1.τσ1,0τ

−1

τ−1σ1,e−1τσ1,0 = σ1,0σ1,1

〉
(3)
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Braid groups of G(de,e,n), d = 1

In the case W = G(e,e,n), we call Bn(e) its braid group.We assume
e > 1, the case e = 1 being known, Bn(1) = 1.
The group W does not contain any diagonal reflection.Therefore

X = {(z1, . . . , zn) ∈ Cn | zi 6∈ zjµe}

contains the hyperplane complement previously used, namely

X# = {(z1, . . . , zn) ∈ Cn |zi 6= 0, zi 6∈ µezj}

and we have a natural inclusion map X# → X . From it one gets

B∗n(e) = π1(X#/W )→ π1(X/W ) = Bn(e)

and topological results on hypersurface complements imply that
B∗n(e) � Bn(e) with kernel normally generated by τ .
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Braid groups of G(de,e,n), d = 1

Proposition
Ker(B∗n(e) � Bn(e)) is normally generated by τ .

This yields the following presentation for Bn(e).

〈
σ1,k , k ∈ Z/eZ
σ2, . . . , σn−1

∣∣∣∣∣∣∣∣∣∣
σiσi+1σi = σi+1σiσi+1
σiσj = σjσi , |i − j | ≥ 2
σ1,kσ2σ1,k = σ2σ1,kσ2
σ1,kσj = σjσ1,k , j ≥ 3
σ1,kσ1,k+1 = σ1,k+1σ1,k+2, k ∈ Z/eZ

〉
(4)
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Standard diagrams for complex braid groups

For the groups W = G(e,e,n), e ≥ 1, B = Bn(e) :

σ1,4

σ1,2

σ3 σ4 σ5

σ1,5

σ1,1

σ1,3σ1,0 σ2

For the groups W = G(r ,1,n), r > 1, B = B∗n :

σ2 σ3 σ4 σ5τ σ1

For the groups W = G(de,e,n), d > 1, B = B∗n(e) is a nice subgroup
of B∗n.
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Circular presentations for B∗n(e)

We set ρ = τσ1σ2 . . . σn−1.

Then ρn = zP is central and

B∗n =

〈
ρ, σi , i ∈ Z/nZ

∣∣∣∣∣∣
σiσi+1σi = σi+1σiσi+1
σiσj = σjσi , i − j 6= ±1
ρσiρ

−1 = σi+1

〉
(5)

Setting ρ = ρe ∈ B∗n(e), one gets

B∗n(e) =

〈
ρ, σi , i ∈ Z/nZ

∣∣∣∣∣∣
σiσi+1σi = σi+1σiσi+1
σiσj = σjσi , i − j 6= ±1
ρσiρ
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(6)

Proposition
If e′ ≡ ±e mod n, then B∗n(e′) ' B∗n(e). Also, B∗2(e) ' Z× F2 for every
e ≥ 2.

One can prove B∗n(e′) ' B∗n(e)⇒ e ∧ n = e′ ∧ n,but a necessary and
sufficient condition so that B∗n(e′) ' B∗n(e) is not known.

Ivan Marin, Université d’Amiens (UPJV) Complex Braid Groups 35 / 40



Circular presentations for B∗n(e)

We set ρ = τσ1σ2 . . . σn−1.Then ρn = zP is central and

B∗n =

〈
ρ, σi , i ∈ Z/nZ

∣∣∣∣∣∣
σiσi+1σi = σi+1σiσi+1
σiσj = σjσi , i − j 6= ±1
ρσiρ

−1 = σi+1

〉
(5)

Setting ρ = ρe ∈ B∗n(e), one gets

B∗n(e) =

〈
ρ, σi , i ∈ Z/nZ

∣∣∣∣∣∣
σiσi+1σi = σi+1σiσi+1
σiσj = σjσi , i − j 6= ±1
ρσiρ

−1 = σi+e

〉
(6)

Proposition
If e′ ≡ ±e mod n, then B∗n(e′) ' B∗n(e). Also, B∗2(e) ' Z× F2 for every
e ≥ 2.

One can prove B∗n(e′) ' B∗n(e)⇒ e ∧ n = e′ ∧ n,but a necessary and
sufficient condition so that B∗n(e′) ' B∗n(e) is not known.
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The discriminantal viewpoint

General theorems tell us that

C[x1, . . . , xn]W ' C[f1, . . . , fn]

for some homogeneous f1, . . . , fn

and the map

z = (z1, . . . , zn) 7→ (f1(z), f2(z), . . . , fn(z))

provides an homeomorphism Cn/W → Cn, and from this identifies
X/W with the complement C(Q) inside Cn of some hypersurface
Q = 0.

Example
For W = Sn, take for fi the elementary symmetric functions.Then Q is
the discriminant of the polynomial

(X − z1)(X − z2) . . . (X − zn) = X n − f1X n−1 + · · ·+ (−1)nfn

expressed as a polynomial in the fi ’s
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Ivan Marin, Université d’Amiens (UPJV) Complex Braid Groups 37 / 40



The discriminantal viewpoint

General theorems tell us that

C[x1, . . . , xn]W ' C[f1, . . . , fn]

for some homogeneous f1, . . . , fn and the map

z = (z1, . . . , zn) 7→ (f1(z), f2(z), . . . , fn(z))

provides an homeomorphism Cn/W → Cn, and from this identifies
X/W with the complement C(Q) inside Cn of some hypersurface
Q = 0.

Example
For W = Sn, take for fi the elementary symmetric functions.Then Q is
the discriminant of the polynomial

(X − z1)(X − z2) . . . (X − zn) = X n − f1X n−1 + · · ·+ (−1)nfn

expressed as a polynomial in the fi ’s
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Case 1 : groups of rank 2

W is G4, . . . ,G22.

In that case Q = Q(x , y), and explicit computations provide a
description of all possible groups.

However, most of the time these groups are more easily dealt using
the fact that

P = π1(C2 \
⋃
A) ' π1

(
C
×)× π1 (C \ {|A| − 1 points}) ' Z× F|A|−1
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Case 2.a : Shephard groups of rank ≥ 3

For some of the exceptional groups W of rank ≥ 3, we have

X/W ≡ X ′/W ′ for some W ′ = G(r ,1,n), r ≥ 1

This is a very strange and still essentially unexplained phenomenon.

W B
G25 B4
G26 B∗3
G32 B5

and this yields

G25 = B4/σ
3
i

G26 = B∗3/〈τ2, σ3
i 〉

G32 = B5/σ
3
i
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Case 2.b : other groups of rank ≥ 3

Beyond the scope of this minicourse.

1 Use the ’real’ (Coxeter) theory, if possible
2 If not, try to find a suitable complex plane U so that
π1(U ∩ C(Q))→ π1(C(Q)) is an isomorphism, and compute
π1(U ∩ C(Q)).

3 or use the fact that they are ’well-generated’, so that one can build
an analogue of the dual braid monoid of the ’real’ theory. And then
try to get a shorter presentation from Tietze transformations.

4 or . . ..
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