
LATEX TikZposter

SIMPLE GROUPS, FIXED POINT SETS AND INVOLUTIONS

Elisa Covato

University of Bristol

SIMPLE GROUPS, FIXED POINT SETS AND INVOLUTIONS

Elisa Covato

University of Bristol

Introduction

Let G ≤Sym(Ω) be a permutation group on a finite set Ω.

The fixed point set of x ∈G is

CΩ(x) = {ω ∈Ω : ω · x =ω}

Problem 1. How large is CΩ(x)?

Obtain bounds on

fix(x) = |CΩ(x)|fix(x) = |CΩ(x)|fix(x) = |CΩ(x)|

Problem 2. When is CΩ(x) empty?

Investigate the elements x ∈G with CΩ(x) =;: these are
the derangements in G.

We focus on the case where G is almost simple and
primitive, with x ∈G an involution.

Background

• Fixed points have been studied since the 19th century,
especially for simple groups.

• G exceptional (type G2(q), E8(q), etc.)

[LLS, 2002]: Upper bounds on fix(x).

• G classical (PSLn(q), PSpn(q), etc.)

[B, 2007]: Upper bounds on fix(x), Ω primitive and
non-subspace.

• It has been studied more recently by Liebeck and
Shalev:

Theorem (LSh, 2015). Let G ≤ Sym(Ω) be an al-
most simple primitive group of degree n and socle
T . Then with some known exceptions, there is an
involution x ∈ T such that

fix(x) > n
1
6

• Aim: Improve the above constant 1
6, limiting the num-

ber of possible exceptions.

Main Results

Let G be an almost simple primitive group of degree n,
with point stabiliser H .

Let T = Soc(G) be an alternating, sporadic or classical
group.

Theorem (Covato, 2016). One of the following holds:

(a) H ∩T has odd order.

(b) There is an involution x ∈ T such that

fix(x) > n
4
9

(c) (G , H) belongs to a list of known exceptions.

• The cases (G , H) in (a) are known. Here all involutions
in T are derangements.

• Let I (T ) = {x ∈ T |x 6= 1, x2 = 1} be the set of involutions
in T . In (c), fix(x) < n

4
9 for all x ∈ I (T ). Thus, we com-

pute α such that

max
x∈I (T )

fix(x) = nα

In most cases, α is very close to 4
9.

Example: Let G = A9 and H = PSL2(8):3, thus n = 120.
Here max

x∈I (T )
fix(x) = 8. Therefore

α= log8/log120 ≈ 0,4343. . .

Example: Let G = J1 and H = 23.7.3. Here T has only
one class of involutions xT . Using GAP, we compute
fix(x) = 5. Since n = 1045, we have

α= log5/log1045 ≈ 0,2315. . .

The following result can be deduced fairly quickly from
the Theorem above.

Corollary. One of the following holds:

(i) All involutions in T are derangements.

(ii) There is an involution x ∈ T with fix(x) > n
1
3.

(iii) (G , H) is a known exception.

• The above example (G , H) = (J1, 23.7.3), is one of the
exceptions in (iii).

Main Ingredients

• Use of The Classification of Finite Simple Groups

• Information on the conjugacy classes of involutions in
finite simple groups

• The two following key lemmas:

Lemma 1. Let H0 = T ∩H . Then n = |T |/|H0|, and

fix(x) = |xT ∩H0|
|xT | n, x ∈ T

Lemma 2. Let x ∈ T be an involution such that
|xT | < n

5
9. Then fix(x) > n

4
9.

The main challenge is to compute |xT∩H0| by studying
the fusion of H0-classes of involutions in T .

• T sporadic: GAP computation.

• T alternating: If H0 is intransitive or imprimitive,
we count the points fixed by x = (12)(34) ∈ T on Ω.

Let H0 be primitive. In the affine and product-type
case, we study the fusion of H0-classes. In the di-
agonal type and almost simple case, x = (12)(34) ∈ T
satisfies Lemma 2 for large n. For smaller n, we con-
struct the action of G on Ω using MAGMA.

• T classical: Let V be the natural module for T . The
following theorem of Aschbacher‘s describes the pos-
sibilities for H :

Theorem (A, 1984). Either H preserves a natural
geometric structure on V , or H is almost simple
and acts irreducibly on V .

If H is a geometric subgroup then the structure of
H0 = T ∩H is known, and one can bound |xT ∩H0| by
studying the fusion of H0-classes.

If H is almost simple and irreducible, we use Lemma
2 for large values of n. For the remaining cases,
we study the irreducible representations of H to get
bounds on |xT ∩H0|.

Further Developments

• Study the analogous problem for groups with socle of
exceptional type.

This is a current joint work with Tim Burness and
Adam Thomas.

• Prove an analogous result for elements of odd prime
order.

• Continue the study of derangements of order 2 for
almost simple primitive groups.

• Investigate 2-elusive actions (see [BG, 2016]).
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