Introduction

Let $G \leq Sym(\Omega)$ be a permutation group on a finite set Ω .

The **fixed point set** of $x \in G$ is $C_{\Omega}(x) = \{ \omega \in \Omega : \omega \cdot x = \omega \}$

Problem 1. How large is $C_{\Omega}(x)$? Obtain bounds on

$fix(x) = |C_{\Omega}(x)|$

Problem 2. When is $C_{\Omega}(x)$ empty?

Investigate the elements $x \in G$ with $C_{\Omega}(x) = \emptyset$: these are the **derangements** in G.

We focus on the case where G is **almost simple** and **primitive**, with $x \in G$ an **involution**.

Background

- Fixed points have been studied since the 19th century, especially for simple groups.
- G exceptional (type $G_2(q), E_8(q), \text{ etc.}$)

[LLS, 2002]: Upper bounds on fix(*x*).

- **G** classical ($PSL_n(q)$, $PSp_n(q)$, etc.)
- **[B, 2007]:** Upper bounds on fix(x), Ω primitive and non-subspace.
- It has been studied more recently by Liebeck and Shalev:

Theorem (LSh, 2015). Let $G \leq Sym(\Omega)$ be an almost simple primitive group of degree n and socle T. Then with some known exceptions, there is an involution $x \in T$ such that

 $\operatorname{fix}(x) > n^{\frac{1}{6}}$

• Aim: Improve the above constant $\frac{1}{6}$, limiting the number of possible exceptions.

SIMPLE GROUPS, FIXED POINT SETS AND INVOLUTIONS

Elisa Covato

University of Bristol

Main Results

Let G be an almost simple primitive group of degree n, with point stabiliser H.

Let T = Soc(G) be an **alternating**, **sporadic** or **classical** group.

Theorem (Covato, 2016). One of the following holds: (a) $H \cap T$ has odd order. (b) There is an involution $x \in T$ such that $\operatorname{fix}(x) > n^{\frac{2}{9}}$

(c)(G,H) belongs to a list of known exceptions.

- The cases (G, H) in (a) are known. Here all involutions in T are **derangements**.
- Let $I(T) = \{x \in T \mid x \neq 1, x^2 = 1\}$ be the set of involutions in T. In (c), fix(x) < $n^{\frac{4}{9}}$ for all $x \in I(T)$. Thus, we compute α such that

 $\max \operatorname{fix}(x) = n^{\alpha}$

In most cases, α is very close to $\frac{4}{9}$.

Example: Let $G = \mathscr{A}_9$ and $H = PSL_2(8):3$, thus n = 120. Here max fix(x) = 8. Therefore

 $\alpha = \log 8 / \log 120 \approx 0,4343...$

Example: Let $G = J_1$ and $H = 2^3.7.3$. Here T has only one class of involutions x^T . Using GAP, we compute fix(x) = 5. Since n = 1045, we have

 $\alpha = \log 5 / \log 1045 \approx 0,2315...$

The following result can be deduced fairly quickly from the Theorem above.

Corollary. One of the following holds: (i) All involutions in T are derangements. (ii) There is an involution $x \in T$ with $fix(x) > n^{\frac{1}{3}}$. (iii) (G, H) is a known exception.

• The above example $(G, H) = (J_1, 2^3.7.3)$, is one of the exceptions in (iii).

The main challenge is to compute $|x^T \cap H_0|$ by studying the fusion of H_0 -classes of involutions in T.

Let H_0 be **primitive**. In the *affine* and *product*-type case, we study the fusion of H_0 -classes. In the *di*agonal type and almost simple case, $x = (12)(34) \in T$ satisfies Lemma 2 for large n. For smaller n, we construct the action of G on Ω using MAGMA.

• T classical: Let V be the natural module for T. The following theorem of Aschbacher's describes the possibilities for *H*:

If H is a geometric subgroup then the structure of $H_0 = T \cap H$ is known, and one can bound $|x^T \cap H_0|$ by studying the fusion of H_0 -classes.

Main Ingredients

• Use of The Classification of Finite Simple Groups

 Information on the conjugacy classes of involutions in finite simple groups

• The two following key lemmas:

Lemma 1. Let $H_0 = T \cap H$. Then $n = |T|/|H_0|$, and $fix(x) = \frac{|x^T \cap H_0|}{|x^T|} n, \quad x \in T$

Lemma 2. Let $x \in T$ be an involution such that $|x^{T}| < n^{\frac{3}{9}}$. Then fix(x) > $n^{\frac{4}{9}}$.

• **T** sporadic: GAP computation.

• **T** alternating: If H_0 is intransitive or imprimitive, we *count* the points fixed by $x = (12)(34) \in T$ on Ω .

Theorem (A, 1984). *Either* H preserves a natural geometric structure on V, or H is almost simple and acts irreducibly on V.

If H is almost simple and irreducible, we use Lemma 2 for large values of n. For the remaining cases, we study the irreducible representations of H to get bounds on $|x^T \cap H_0|$.

- Prove an analogous result for elements of odd prime order.
- Continue the study of **derangements** of order 2 for almost simple primitive groups.
- Investigate **2-elusive** actions (see [BG, 2016]).

469–514.

2016.

Further Developments

- Study the analogous problem for groups with socle of exceptional type.
- This is a current joint work with Tim Burness and Adam Thomas.

References

- [A, 1984] M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984),
- [B, 2007] T.C. Burness, Fixed point ratios in actions of finite classical groups, I, J. Algebra 309 (2007), 69–79.
- [BG, 2016] T.C. Burness and M. Giudici, *Classical* groups, derangements and primes, Aust. Math. Soc. Lecture Series, vol. 25, Cambridge University Press,
- [LLS, 2002] R. Lawther, M.W. Liebeck and G.M. Seitz, Fixed point ratios in actions of finite exceptional groups of Lie type, Pacific J. Math. 205 (2002), 393–464.
- [LSh, 2015] M.W. Liebeck and A. Shalev, On fixed points of elements in primitive permutation groups, J. Algebra 421 (2015), 438–459.

Contacts

- School of Mathematics, University of Bristol, UK
- email: elisa.covato@bristol.ac.uk