SELF-ORTHOGONAL DESIGNS AND CODES FROM HELD'S GROUP

DEAN CRNKOVIĆ, **VEDRANA MIKULIĆ CRNKOVIĆ**, AND BERNARDO G. RODRIGUES

This work has been fully supported by Croatian Science Foundation under the project 1637.

THE INTRODUCTION

An incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$, with point set \mathcal{P} , block set \mathcal{B} and incidence \mathcal{I} is a t- (v, k, λ) **design**, if $|\mathcal{P}| = v$, every block $B \in \mathcal{B}$ is incident with precisely k points, and every t distinct points are together incident with precisely λ blocks.

A t- (v, k, λ) design is called **weakly self-orthogonal** if all the block intersection numbers have the same parity. A design is **self-orthogonal** if it is weakly self-orthogonal and if the block intersection numbers and the block size are even numbers.

Let \mathcal{D} be a 1-design and G be an automorphism group of the design acting on the set of points with the orbits $\mathcal{V}_1, ..., \mathcal{V}_n$ and on the set of blocks with the orbits $\mathcal{B}_1, ..., \mathcal{B}_m$. Denote by $a_{i,j}$ the number of points of the orbit \mathcal{V}_j incident with a block of the orbit \mathcal{B}_i . The **orbit matrix** of the design \mathcal{D} is the matrix

THE CONSTRUCTIONS

D. Crnković, V. Mikulić Crnković: Unitals, projective planes and other combinatorial structures constructed from the unitary groups U(3,q), q = 3, 4, 5, 7, Ars Combin. 110 (2013), pp. 3-13

• Let *G* be a finite permutation group acting primitively on the sets Ω_1 and Ω_2 of size *m* and *n*, respectively. Let $\alpha \in \Omega_1$ and $\Delta_2 = \bigcup_{i=1}^s \delta_i G_{\alpha}$, where $\delta_1, ..., \delta_s \in \Omega_2$ are representatives of distinct G_{α} -orbits. If $\Delta_2 \neq \Omega_2$ and $\mathcal{B} = \{\Delta_2 g : g \in G\}$, then (Ω_2, \mathcal{B}) is a $1 - (n, |\Delta_2|, \sum_{i=1}^s |\alpha G_{\delta_i}|)$ design with *m* blocks, and *G* acts as an automorphism group, primitively on points and blocks of the design.

D. Crnković, V. Mikulić Crnković, B. G. Rodrigues: On self-orthogonal designs and codes related to Held's simple group, submitted

• Let \mathcal{D} be a self-orthogonal 1-(v, k, r) design and G be an automorphism group of the design acting on \mathcal{D} with n point orbits of length w and block orbits of lengths $b_1, ..., b_m$ such that $\frac{b_i}{w}$ is odd number for $i \in \{1, ..., m\}$. Then the binary linear code generated by the orbit matrix of the design \mathcal{D} (under the action of the group G)

The code C(D) of the design D over the finite field **F** is the space spanned by the incidence vectors of the blocks over **F**.

If \mathcal{D} is a self-orthogonal design, then $C_{\mathbb{F}_2}(\mathcal{D})$ is selforthogonal code. If \mathcal{D} is such that k is odd and the block intersection numbers are even, then the matrix $[I_b, M]$, where M is the incidence matrix of \mathcal{D} , generate a binary self-orthogonal code. If \mathcal{D} is such that k is odd and the block intersection numbers are odd, then the matrix [M, 1] generate a binary self-orthogonal code. If \mathcal{D} is such that k is even and the block intersection numbers are odd, then the matrix $[I_b, M, 1]$ generate a binary self-orthogonal code.

CODES FROM ORBIT MATRICES

There exists a cyclic subgroup G of order 3 of the

is a self-orthogonal code of length $\frac{v}{w}$.

• Let \mathcal{D} be a weakly self-orthogonal $1 \cdot (v, k, r)$ design such that k is odd and the block intersection numbers are even. Let G be an automorphism group of the design which acts on \mathcal{D} with n point orbits of length w and block orbits of lengths $b_1, ..., b_m$ such that $\frac{b_i}{w}$ is odd number for $i \in \{1, ..., m\}$. Let the matrix A be the orbit matrix of the design under that action. Then the matrix $[I_m, A]$ generates a binary self-orthogonal linear code of length $m + \frac{v}{w}$.

1-DESIGNS CONSTRUCTED FROM THE SIMPLE GROUP He

- Let G be the sporadic simple group He, and Ω the primitive G-set of size 2058 defined by the action on the cosets of S₄(4):2. Let ω ∈ Ω, and Δ = ∪_{j=1}^l Ω_{ij}, 1 ≤ l ≤ 4, be a union of (S₄(4):2)-orbits. Let B = {Δ^g : g ∈ G}, and D_k = (Ω, B) with k = |Δ|. Further, define the sets M and N such that M = {136, 137, 561, 562} and N = {272, 273, 425, 426, 697, 698}. Then the following hold:
 (a) D_k is a primitive symmetric 1-(2058, |Δ|, |Δ|) design.
 (b) If k ∈ M then AutD_k ≅ He, and if k ∈ N then AutD_k ≅ He:2.
 (c) If k is even then D_k and D_k are self-orthogonal designs.
- Let Δ be a union of some $2^{2} L_3(4):S_3$ -orbits of the set $\{1, \ldots, 8330\}$ such that $1 < |\Delta| \le 4165$. Then $\mathcal{B} = \{\Delta^g : g \in G\}$ is a set of blocks of a symmetric design $\mathcal{D}'_{|\Delta|}$ with parameters 1-(8330, $|\Delta|, |\Delta|)$ having He acting primitively as the automorphism group. Up to isomorphism, there are 46 symmetric 1-designs on 8330 points admitting He as a primitive automorphism group. Of these 30 have He : 2 acting as the full automorphism group and 16 have He acting as the full automorphism group.

• Let Δ be a union of some S_1 -orbits on the set $\{1, \ldots, 2058\}$ such that $1 < |\Delta| \le 1028$ and $S_1 \cong 2^2 \cdot L_3(4)$: S_3 . Then $\mathcal{B} = \{\Delta^g : g \in G\}$ is a set of blocks of a 1-design $\mathcal{D}'_{|\Delta|}$ on 2058 points with b = 8330 admitting He as a primitive automorphism group. Up to isomorphism, there are nine 1-designs on 2058 points with 8330 blocks having He acting primitively as automorphism group. Three of these have He:2 acting as the full automorphism group.

group He acting on the set $\{1, 2, ..., 2058\}$ with orbits of length 3, a cyclic subgroup *G* of order 7 of the group He acting on the set $\{1, 2, ..., 2058\}$ with orbits of length 7, a cyclic subgroup *G* of order 7 of the group He acting on the set $\{1, 2, ..., 8330\}$ with orbits of length 7 and a cyclic subgroup *G* of order 17 of the group He acting on the set $\{1, 2, ..., 8330\}$ with orbits of length 17 17.

Self-orthogonal codes constructed from orbit matrices of self-orthogonal 1-designs invariant under the action of He

[294, 111]	[294, 110]	[980, 47]	[980, 46]
[294, 10]	[294, 6]	[980, 41]	[980, 40]
[294, 93]	[294, 98]	[980, 44]	[980, 43]
[294, 101]	[294, 105]	[980, 3]	[980, 4]
[294, 18]	[294, 13]	[980, 6]	[980, 7]
[686, 261]	[686, 260]	[2380, 111]	[2380, 110]
[686, 18]	[686, 17]	[2380, 99]	[2380, 98]
[686, 227]	[686, 226]	[2380, 105]	[2380, 104]
[686, 243]	[686, 244]	[2380, 6]	[2380,7]
[686, 34]	[686, 35]	[2380, 12]	[2380, 13]
[294, 104]	[294, 105]	[490, 43]	[490, 44]
$ \begin{array}{c c} \hline [294, 104] \\ [294, 7] \\ \hline \end{array} $	$ \begin{array}{c c} [294, 105] \\ [294, 6] \end{array} $	$ \begin{bmatrix} 490, 43 \\ [490, 4] \end{bmatrix} $	$ \begin{bmatrix} 490, 44 \\ [490, 3] \end{bmatrix} $
$ \begin{array}{c c} \hline [294, 104] \\ [294, 7] \\ [294, 98] \end{array} $	$ \begin{array}{c c} [294, 105] \\ [294, 6] \\ [294, 99] \end{array} $	$ \begin{bmatrix} 490, 43 \\ [490, 4] \\ [490, 40] \end{bmatrix} $	$ \begin{array}{c} [490, 44]\\[490, 3]\\[490, 41]\end{array} $
$\begin{array}{c c} \hline [294,104] \\ [294,7] \\ [294,98] \\ [294,13] \end{array}$	$\begin{bmatrix} 294, 105 \\ [294, 6] \\ [294, 99] \\ [294, 12] \end{bmatrix}$	$[490, 43] \\ [490, 4] \\ [490, 40] \\ [490, 7]$	$\begin{bmatrix} 490, 44 \\ [490, 3] \\ [490, 41] \\ [490, 6] \end{bmatrix}$
$\begin{array}{c} [294,104] \\ [294,7] \\ [294,98] \\ [294,13] \\ [294,111] \end{array}$	$ \begin{bmatrix} 294, 105 \\ [294, 6] \\ [294, 99] \\ [294, 12] \\ [294, 110] \end{bmatrix} $	$\begin{bmatrix} 490, 43 \\ [490, 4] \\ [490, 40] \\ [490, 7] \\ [490, 47] \end{bmatrix}$	$\begin{bmatrix} 490, 44 \\ [490, 3] \\ [490, 41] \\ [490, 6] \\ [490, 46] \end{bmatrix}$
$\begin{array}{c} \hline [294,104] \\ [294,7] \\ [294,98] \\ [294,13] \\ [294,111] \\ \hline [686,243] \end{array}$	$ \begin{bmatrix} 294, 105 \\ [294, 6] \\ [294, 99] \\ [294, 12] \\ [294, 110] \\ [686, 244] \end{bmatrix} $		$\begin{bmatrix} 490, 44 \\ [490, 3] \\ [490, 41] \\ [490, 6] \\ [490, 46] \\ [1190, 102] \end{bmatrix}$
$\begin{array}{c} [294,104] \\ [294,7] \\ [294,98] \\ [294,13] \\ [294,111] \\ \hline [686,243] \\ [686,18] \end{array}$	$ \begin{bmatrix} 294, 105 \\ [294, 6] \\ [294, 99] \\ [294, 12] \\ [294, 110] \\ [686, 244] \\ [686, 17] \\ \end{bmatrix} $		$\begin{bmatrix} 490, 44 \\ [490, 3] \\ [490, 41] \\ [490, 6] \\ [490, 46] \\ \\ [1190, 102] \\ [1190, 9] \end{bmatrix}$
$\begin{bmatrix} 294, 104 \\ [294, 7] \\ [294, 98] \\ [294, 13] \\ [294, 111] \\ [686, 243] \\ [686, 18] \\ [686, 226] \end{bmatrix}$	$\begin{bmatrix} 294, 105 \\ [294, 6] \\ [294, 99] \\ [294, 12] \\ [294, 110] \\ [686, 244] \\ [686, 17] \\ [686, 227] \end{bmatrix}$	$\begin{bmatrix} 490, 43 \\ [490, 4] \\ [490, 40] \\ [490, 7] \\ [490, 7] \\ [490, 47] \\ \\ [1190, 101] \\ [1190, 10] \\ [1190, 92] \end{bmatrix}$	$\begin{bmatrix} 490, 44 \\ [490, 3] \\ [490, 41] \\ [490, 6] \\ [490, 46] \\ \\ \begin{bmatrix} 1190, 102 \\ \\ 1190, 9 \end{bmatrix} \\ \\ \begin{bmatrix} 1190, 93 \end{bmatrix}$
$\begin{bmatrix} 294, 104 \\ [294, 7] \\ [294, 98] \\ [294, 13] \\ [294, 11] \\ \hline [686, 243] \\ [686, 18] \\ [686, 226] \\ [686, 35] \\ \end{bmatrix}$	$ \begin{bmatrix} 294, 105 \\ [294, 6] \\ [294, 99] \\ [294, 12] \\ [294, 12] \\ [294, 110] \\ [686, 244] \\ [686, 244] \\ [686, 227] \\ [686, 34] \\ \end{bmatrix} $	$\begin{bmatrix} 490, 43 \\ [490, 4] \\ [490, 40] \\ [490, 7] \\ [490, 7] \\ [490, 47] \\ \\ [1190, 101] \\ [1190, 10] \\ [1190, 92] \\ [1190, 19] \end{bmatrix}$	$\begin{bmatrix} 490, 44 \\ [490, 3] \\ [490, 41] \\ [490, 6] \\ [490, 46] \\ \\ [1190, 102] \\ [1190, 9] \\ [1190, 93] \\ [1190, 18] \end{bmatrix}$

Weakly self-orthogonal 1-designs invariant under the action of the group He

S	AutS	S	AutS	_	S	AutS	S	AutS
1-(2058, 426, 426)	He:2	1-(8330, 1450, 1450)	He:2	_	1-(2058, 840, 3400)	He	1 - (8330, 1681, 1681)	He:2
$1 extsf{-}(2058, 562, 562)$	He	$1 extsf{-}(8330, 3130, 3130)$	He:2		1 - (2058, 882, 3570)	He	1 - (8330, 1449, 1449)	He:2
$1 ext{-}(2058, 698, 698)$	He:2	$1 extsf{-}(8330, 1666, 1666)$	He		1-(2058, 336, 1360)	He:2	1 - (8330, 3129, 3129)	He:2
$1 extsf{-}(2058, 562, 562)$	He	1 - (8330, 2904, 2904)	He		1 - (2058, 378, 1530)	He:2		
1 - (2058, 272, 272)	He:2	1 - (8330, 1680, 1680)	He:2		1 - (2058, 42, 170)	He:2		

Self-orthogonal codes constructed from the simple group He

- Let C_k and C

 k denote the binary codes defined by the row span of the incidence matrices of D_k (respectively D

 k). Then the following hold:
 (i) If k is odd then C_k = C

 k = V₂₀₅₈(F₂).
 (ii) If k ∈ {136, 272, 1360, 1496, 1632} then C

 k = C

 k ⊕ 1 is a decomposable self-orthogonal code.
- Let C'_k and \bar{C}'_k denote the binary codes of length 8330 defined by the row span of the incidence matrices of \mathcal{D}'_k (respectively $\bar{\mathcal{D}}'_k$). If $k \in \{1450, 1666, 1680, 2904, 3130\}$, then C'_k and \bar{C}'_k are self-orthogonal codes invariant under the action of He.
- Let C''_k and \bar{C}''_k denote the binary codes of length 2058 defined by the row span of the incidence matrices of

We constructed weakly self-orthogonal 1-designs invariant under the action of He such that *k* is odd and the block intersection numbers are even. From the orbit matrices of the extension of those 1-designs we constructed: 6 self-orthogonal binary codes with parameters [980, 490], 6 self-orthogonal binary codes with parameters [2380, 1190], 4 selforthogonal binary codes with parameters [1484, 294], 4 self-orthogonal binary codes with parameters [612, 122]. $\mathcal{D}_{i}^{"}$ with blocks of size k (respectively $\overline{\mathcal{D}}_{i}^{"}$). Then the following hold: (i) If k is odd, then $C_{k}^{"} = \overline{C}_{k}^{"} = V_{2058}(\mathbf{F}_{2})$. (ii) If k is even, then $C_{k}^{"}$ and $\overline{C}_{k}^{"}$ are non-trivial self-orthogonal codes. (iii) If k is even, then $C_{k}^{"t}$ and $\overline{C}_{k}^{"t}$ (codes of the dual designs and their complementary designs) are self-orthogonal codes of length 8330.

Binary self-orthogonal codes invariant under the action of the group He

C	\bar{C}	C'	\bar{C}'	$C^{\prime\prime}$	$\bar{C}^{\prime\prime}$	$C^{\prime\prime}{}^t$	${ar C}^{\prime\prime}{}^t$
[2058, 783]	[2058, 782]	[8330,783]	[8330, 782]	[2058, 731]	[2058, 732]	[8330, 731]	[8330, 732]
$\left[2058,52\right]$	[2058, 51]	[8330, 681]	[8330, 680]	[2058, 52]	$\left[2058,51\right]$	[8330, 52]	[8330, 51]
[2058, 681]	[2058, 680]	[8330, 732]	[8330, 731]	[2058, 680]	[2058, 681]	[8330, 680]	[8330, 681]
[2058, 731]	[2058, 732]	[8330, 51]	[8330, 52]	[2058, 103]	[2058, 102]	[8330, 103]	[8330, 102]
[2058, 102]	[2058, 103]	[8330, 102]	[8330, 103]	[2058, 783]	[2058, 782]		[8330, 782]

Moreover, from the extended matrices we constructed 3 binary self-orthogonal codes of the length 16660 and 2 binary self-orthogonal of the length 10388.