$\frac{3}{2}$ -Generation of Finite Groups

Scott Harper

University of Bristol

Introduction

As a consequence of the Classification, every finite simple group can be generated by two elements.

Indeed, there is a vast literature establishing that finite simple groups have many generating pairs and it is natural to ask how these pairs are distributed across the group.

A group is $\frac{3}{2}$ -generated if every non-trivial element is contained in a generating pair.

Highlighting the strong 2-generation properties of finite simple groups, Guralnick and Kantor prove the following result [5].

Theorem

Every finite simple group is $\frac{3}{2}$ -generated.

Our main question is the following.

? Which finite groups are $\frac{3}{2}$ -generated?

Background

There is a straightforward necessary condition for $\frac{3}{2}$ -generation.

Proposition

If G is $\frac{3}{2}$ -generated then every proper quotient of G is cyclic.

In [2], Breuer, Guralnick and Kantor make the following remarkable conjecture.

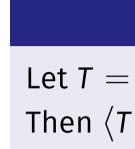
Conjecture

A finite group is $\frac{3}{2}$ -generated if and only if every proper quotient is cyclic.

Recent work of Guralnick reduces this conjecture to **almost simple** groups. That is, it suffices to show that if T is a finite non-abelian simple group and $g \in Aut(T)$ then $\langle T, g \rangle$ is $\frac{3}{2}$ -generated.

The conjecture has been verified when *T* is alternating [1] sporadic [2] linear [4]

We have extended these results by establishing the conjecture for symplectic and odd-dimensional orthogonal groups [6].



Our ultimate goal is the following.

We adopt the **probabilistic approach** introduced by Guralnick and Kantor in [5] which is encapsulated by the Key Lemma below.

The group G is $\frac{3}{2}$ -generated if there exists $s \in G$ such that

Additional ingredients:

Aschbacher's subgroup structure theorem for classical groups Bounds on **fixed point ratios** for almost simple groups Shintani descent from the theory of algebraic groups

Results

Theorem (H, 2016)

Let $T = \mathsf{PSp}_{2m}(q)$ or $T = \Omega_{2m+1}(q)$ for $m \ge 2$ and let $g \in \mathsf{Aut}(T)$. Then $\langle T, g \rangle$ is $\frac{3}{2}$ -generated.

Aim

Prove the conjecture for all almost simple groups of Lie type.

Main Tools

- Let G be a finite group, Ω be a G-set and $g \in G$. Write
 - $\mathcal{M}(g)$: the set of maximal overgroups of g
 - fpr (g, Ω) : the fixed point ratio of g on Ω

Key Lemma

$$\sum_{\in \mathcal{M}(s)} \operatorname{fpr}(x, G/H) < 1$$

for all $x \in G$ of prime order.

References

[1] Brenner, Wiegold, *Two generated groups I*, Michigan Math. J., (1975) [2] Breuer, Guralnick, Kantor, Probabilistic generation of finite simple groups II, J. Algebra, (2008) [3] Breuer, Guralnick, Lucchini, Maroti, Nagy, Hamiltonian cycles in the generating graphs of finite simple groups, Bull. London. Math. Soc, (2010)

[4] Burness, Guest, On the uniform spread of almost simple linear groups, Nagoya Math J., (2013) [5] Guralnick, Kantor, Probabilistic generation of finite simple groups, J. Algebra, (2000) [6] Harper, On the uniform spread of almost simple symplectic and orthogonal groups, (In prep.)

$\sigma \rho$

 ho^{2}

 $\Gamma(D_8)$

 $\sigma
ho$

A group G is $\frac{3}{2}$ -generated if and only if $\Gamma(G)$ has no isolated vertices. In particular, $\Gamma(G)$ has no isolated vertices if G is finite and simple.

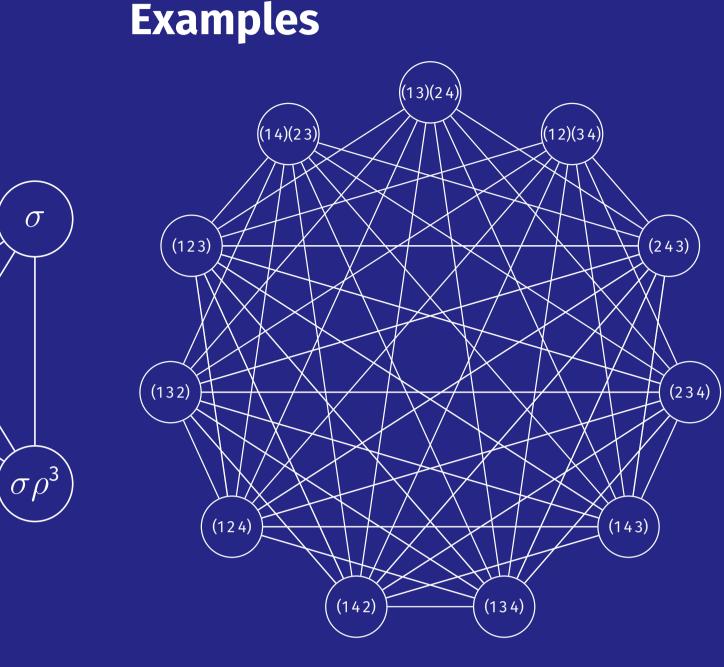
We are interested in the following stronger conjecture.

Le	t G be a finite
	Every prope
	$\Gamma(G)$ has no
	$\Gamma(G)$ is conn
	$\Gamma(G)$ has a H

In [6], our main result extends in this direction.

Generating Graphs

The **generating graph** of a group G is the graph $\Gamma(G)$ such that \square the vertices of $\Gamma(G)$ are the non-trivial elements of G • two vertices g and h are adjacent if $\langle g, h \rangle = G$



 $\Gamma(A_4)$

Properties

Let G be a finite simple group.

 $\Gamma(G)$ has diameter at most two [2]

 $\Gamma(G)$ has a Hamiltonian cycle if |G| is sufficiently large [3]

Conjecture

te group. The following are equivalent.

- er quotient of G is cyclic
- isolated vertices
- nected with diameter at most two
- Hamiltonian cycle

Theorem (H, 2016)

Let $T = \mathsf{PSp}_{2m}(q)$ or $T = \Omega_{2m+1}(q)$ for $m \ge 2$ and let $g \in \mathsf{Aut}(T)$. Then $\Gamma(\langle T, g \rangle)$ is connected with diameter two.