2. VOAs

1. The Monster group

In 1992, R.Borcherds famously proved Conway and Norton's monstrous moonshine conjectures.

The central object in his proof is the moonshine module, denoted $V^{\#}$. It belongs to a class of graded algebras known as vertex operator algebras, or VOAs.

In particular, we have $Aut(V^{\#}) \cong M$.

If we take a vertex operator algebra $V=\bigoplus_{n=0}^{\infty}V_n$ such that $V_0=\mathbb{R}$ and $V_1=0$ then V_2 is a real, commutative, non-associative algebra called a generalised Griess algebra.

M. Miyamoto showed that there exist involutions $\tau_a \in$ Aut(V) called Miyamoto involutions which are in bijection with generating involutions a in V_2 called Ising vectors.

In particular, if $V = V^{\#}$ then $V_{2} \cong V_{M}$, the Miyamoto involutions are the 2A involutions and the Ising vectors are the 2A axes.

The Monster group is denoted M. It was first constructed as $Aut(V_{\rm M})$, where $V_{\rm M}$ is a 196 884 dimensional real, commutative, non-associative algebra known as the Griess algebra.

It contains 2 conjugacy classes of involutions; 2A and 2B and $M = \langle 2A \rangle$. If $t,s \in 2A$ then ts lies in one of 9 conjugacy classes: 1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A or 6A.

There exists a bijection ψ between the 2A involutions and certain idempotents in $V_{\mathbb{M}}$ called 2A axes and $V_{\mathbb{M}} = \langle \langle \psi(2A) \rangle \rangle$.

If $t,s \in 2A$ then the algebra $\langle\langle \psi(t), \psi(s) \rangle\rangle$ is called a dihedral algebra and has one of nine isomorphism types, depending

on the class of *ts*.

algebras and subgroups of the Monster

> Madeleine Whybrow Imperial College London Supervisor: Prof. A.A.Ivanov

Theorem 1: Let V be a Majorana algebra generated by three Majorana axes a_1 , a_2 and a_3 such that a_1 and a_2 generate a 2A dihedral algebra. Then the group G = $\langle \tau(a_1), \tau(a_2), \tau(a_3) \rangle$ must be a triangle-point subgroup of Majorana M. Conversely, every triangle-point subgroup of M gives rise to such an algebra.

4. Triangle-point groups

these algebras.

The classification of Majorana algebras generated by two axes was completed by A.A.Ivanov et al in 2010. The question of algebras generated by three axes is a much larger problem.

We have shown that a

certain class of Majorana

algebras correspond exactly to

an important class of subgroups

in the Monster group. This forms

the first step in a classification of

However, a natural first step is to classify algebras generated by a 2A algebra along with one further axis (as in Theorem 1). The group generated by the Majorana involutions of such an algebra must necessarily form a triangle-point group:

3. Majorana theory

Majorana theory is an axiomatisation of certain properties of generalised Griess algebras, providing a powerful framework in which to study the Griess algebra and related objects.

Definition: A Majorana algebra V is a real, commutative, non-associative algebra such that

- $V = \langle A \rangle$ where A is a set of idempotents called Majorana axes;
- For each $a \in A$, we can construct an involution $\tau(a) \in Aut(V)$ called a Majorana involution;
- The algebra obeys seven further axioms, which we omit here.

Definition: A group G is a triangle-point group if

- $G = \langle a,b,c \rangle$ for $a,b,c \in G$ of order dividing 2 such that ab = ba;
- $\forall t,s \in a^G \cup b^G \cup c^G \cup (ab)^G$, $o(ts) \leq 6$.

The triangle-point subgroups of the Monster were studied by S.P.Norton in 1978 who investigated the possibility of using them to give a new construction of the Griess algebra.

In 2012, S. Decelle showed that every triangle-point group occurs as the quotient of one of 11 finite groups. I recently showed that the triangle-point groups which do not embed into the Monster may not occur as groups generated by the Majorana involutions of one of the algebras in question, thus proving Theorem 1.