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Polytopes

Convex set:
contains the connecting segment between any two points

Convex hull: conv(S) is smallest convex set containing set S
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Polytopes

Polytopes: Convex hull of finite number of points

Faces: The intersection with hyperplanes with the polytope on
one side

Vertices: 0-dimensional faces
Edges: 1-dimensional faces
Facets: maximal-dimensional (proper) faces
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Symmetries of polytopes

Polytope  Symmetry groups
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THIS TALK: Permutation polytopes

G ≤ Sn subgroup.

Definition

P(G ) := conv(M(g) : g ∈ G ) ⊂ Matn(R) ∼= Rn2

where M(g) is the corresponding n × n-permutation matrix.

Examples:

P(S2) =

{(
1 0
0 1

)
,

(
0 1
1 0

)}
is an interval (1-dimensional polytope) in R4

P(〈(1 2 3 · · · d+1)〉) is d-simplex

P(〈(1 2) , (3 4) , · · · , (2d−1 2d)〉) is d-cube
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THIS TALK: Permutation polytopes

Two basic results:

1 G acts transitively by multiplication on vertices of P:

|Vertices(P(G ))| = |G |.

2 The vertices of P(G ) have only 0 or 1 coordinates:

|G | ≤ 2dim(P(G)), with equality if cube.

Guiding questions

Q1) What can we say about P(G )?
– fascinating geometric objects!

Q2) What can we deduce about G from P(G )?
– challenging representation-theoretic problems!
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Overview of talk

1 The Birkhoff polytope

2 Other special classes

3 Faces

4 Dimension

5 Equivalences
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The Birkhoff polytope Bn

Definition

Bn := P(Sn) is called Birkhoff polytope.

1 Vertices: all n × n-permutation matrices

2 Dimension: (n − 1)2

3 Volume:
(Canfield, McKay ’09): asymptotic formula

(De Loera, Liu, Yoshida ’09): exact combinatorial formula

(Beck, Pixton ’03): exact values known for n ≤ 10:
Vol(B10) = 727291284016786420977508457990121862548823260052557333386607889

828160860106766855125676318796872729344622463533089422677980721388055739956270293750883504892820848640000000
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The Birkhoff polytope Bn

4 Ehrhart polynomial:
The function k 7→ |(kBn) ∩Matn(Z)| is a polynomial
e.g. for B3 : k 7→ 1 + 9

4k + 15
8 k2 + 3

4k
3 + 1

8k
4

Counts (semi)magic squares with magic number k :

CONJECTURE 1 (De Loera et al.)

All coefficients are nonnegative.
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The Birkhoff polytope Bn

5 Faces:
There are n2 facets (maximal proper faces).
Face structure related to certain bipartite graphs
(Brualdi, Gibson 76–77).

Any combinatorial type of a d-dimensional face of Bn appears
in B2d (Billera, Sarangarajan ’94; Paffenholz ’15).

CONJECTURE 2 (Brualdi, Gibson ’77)

Any two combinatorially equivalent faces of Bn are
affinely equivalent.

6 Symmetry group: Any combinatorial symmetry comes from
left multiplication, right multiplication or transposition
(Baumeister, Ladisch ’16):

Autcomb(Bn) ∼= Sn o C2
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Other special classes

P(Dn) for Dn ≤ Sn dihedral group is completely understood
(Baumeister, Haase, Nill, Paffenholz ’14).

Combinatorial type and volume of P(G ) known if G ≤ Sn is
Frobenius group (i.e. exists H ≤ G s.t. ∀ x ∈ G \ H, H ∩ (xHx−1) = {e})

(Burggraf, De Loera, Omar ’13).
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Other special classes

Recall: P(Sn) = Bn has n2 many facets and dimension (n − 1)2.

Alternating group: P(An) (for n ≥ 4) has dimension
(n − 1)2, n!/2 vertices, and exponentially many facets
(Cunningham, Wang ’04; Hood, Perkinson ’04).

Cyclic subgroup: Let a, b, c coprime; zab, zac , zbc disjoint
cycles of lengths ab, ac , bc. Then

P(〈zabzaczbc〉)

has dimension ab + ac + bc − a− b − c , abc vertices, but at
least ((2a− 2)(2b − 2)(2c − 2) + ab + ac + bc)/2 many facets.
(Sontag, Jaakkola ’08; Baumeister, Haase, Nill, Paffenholz ’12)
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Other special classes

Computational challenge

For (a, b, c) = (5, 6, 7), the permutation polytope P(〈zabzaczbc〉
has

dimension 89,

210 vertices,

but conjecturally > 109 facets.
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Faces of permutation polytopes

Let G ≤ Sn. The stabilizer subgroup of a partition of {1, . . . , n}
is a face of P(G ).
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Faces of permutation polytopes

Let G ≤ Sn. The stabilizer subgroup of a partition of {1, . . . , n}
is a face of P(G ).

Conjecture (Baumeister, Haase, Nill, Paffenholz ’09)

Any subgroup of G whose permutation polytope is a face of P(G )
is a stabilizer of a partition of {1, . . . , n}.

Benjamin Nill Permutation polytopes



Faces of permutation polytopes

Let G ≤ Sn. The stabilizer subgroup of a partition of {1, . . . , n}
is a face of P(G ).

Theorem (Haase ’15)

Any subgroup of G whose permutation polytope is a face of P(G )
is a stabilizer of a partition of {1, . . . , n}.
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Faces of permutation polytopes

What about edges?

Proposition (Guralnick, Perkinson ’05)

Let g = z1 · · · zr ∈ Sn be the decomposition into disjoint cycles.
Then  ∏

I⊆{1,...,r}

zi ∈ G


are the vertices of the smallest face Fg of P(G ) that contains e
and g .

 e, g form an edge if and only if g is ‘indecomposable’.
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Faces of permutation polytopes

Example 1: G = 〈(1 2), (3 4), (5 6)〉, g = (1 2)(3 4)(5 6) ∈ G .
Then Fg = P(G ):
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Faces of permutation polytopes

Example 2: H = 〈(1 2)(3 4), (5 6)〉, g = (1 2)(3 4)(5 6) ∈ H.
Fg = P(H):
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Faces of permutation polytopes

Consequences (BHNP ’09):

The smallest face containing two vertices is
centrally-symmetric.
(Interchange e.g. z1z2 by z3 · · · zr )

If P(G ) is centrally-symmetric, then
G is elementary abelian 2-group.
(For g as above, any element and its inverse is ‘subelement’ of g)

P(G ) is a combinatorial product of two polytopes if and only
if G is product of subgroups with disjoint support.

P(G ) is combinatorially a crosspolytope (d-dimensional
‘octahedron’) if and only if d is a power of 2.
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Faces of permutation polytopes

Recall: Any permutation polytope P(G ) of dimension d is affinely
equivalent to a subpolytope of [0, 1]d .

Classification of perm. polytopes of dimension ≤ 4 (BHNP ’09)
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Faces of permutation polytopes

What about classifying faces of permutation polytopes?

Theorem (BHNP ’09)

For any d , there exists a face of a permutation polytope that is
combinatorially equivalent to a crosspolytope.
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Faces of permutation polytopes

Let Fd be the set of combinatorial types F of subpolytopes of
[0, 1]d such that the following condition holds:

any smallest face of F containing two vertices is centrally-symmetric.

Theorem (BHNP ’09)

For d ≤ 4, any F ∈ Fd \ {Q1,Q2} is combinatorially a face of a
permutation polytope.

CONJECTURE 3 (BHNP ’09)

Q1,Q2 ∈ F4 are not combinatorially equivalent to a face of a
permutation polytope.
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Faces of permutation polytopes

The combinatorial diameter of a polytope is the smallest k
such that any two vertices can be joined using k edges.

Theorem (Guralnick, Perkinson ’05)

The combinatorial diameter of P(G ) is at most min(2t, bn/2c),
where t is the number of non-trivial orbits of G on {1, . . . , n}.

Their proof uses the classification of finite almost-simple groups.

Bound is sharp: take t copies of D4 as subgroup of S4t ,
then combinatorial diameter is 2t = n/2.
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Dimension of representation polytopes

There is a natural generalization of a permutation polytope.

Representation polytope

Given a real representation ρ : G → GL(V ), where V is
deg(ρ)-dimensional real vector space.
Its representation polytope is defined as

P(G , ρ) := conv(ρ(G )) ⊆ GLR(V ) ∼= R(deg(ρ))2
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Dimension of representation polytopes

Let Irr(G ) be the set of pairwise non-isomorphic irreducible
C-representations. Any representation splits as a G -representation
over C into irreducible components:

ρ ∼=
∑

σ∈Irr(G)

cσσ for cσ ∈ Z≥0

Let Irr(ρ) = {σ ∈ Irr(G ) : cσ > 0}.

Theorem (Guralnick, Perkinson ’05)

dim(P(G , ρ)) =
∑

1G 6=σ∈Irr(ρ)

(deg(σ))2,

where 1G is the trivial representation.

Proof uses standard representation theory.
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Dimension of representation polytopes

Corollary (Guralnick, Perkinson ’05)

Let ρ be permutation representation of G , and t the number of
orbits of G . Then

dim(P(G , ρ)) ≤ (n − t)2,

and equality iff at most one non-trivial irreducible component.

Proof:
Recall: c1G equals the number of orbits t of G . Hence,∑

1G 6=σ∈Irr(ρ)

deg(σ) ≤
∑

1G 6=σ∈Irr(ρ)

cσdeg(σ) = n − t.

The sum ∑
1G 6=σ∈Irr(ρ)

(deg(σ))2 = dim(P(G , ρ)),

is maximized for one non-trivial irreducible component.
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Let ρ be permutation representation of G , and t the number of
orbits of G . Then

dim(P(G , ρ)) ≤ (n − t)2,

and equality iff at most one non-trivial irreducible component.

Proof:
Recall: c1G equals the number of orbits t of G . Hence,∑

1G 6=σ∈Irr(ρ)

deg(σ) ≤
∑

1G 6=σ∈Irr(ρ)

cσdeg(σ) = n − t.

The sum ∑
1G 6=σ∈Irr(ρ)

(deg(σ))2 = dim(P(G , ρ)),

is maximized for one non-trivial irreducible component.
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Dimension of representation polytopes

Corollary (Guralnick, Perkinson ’05)

Let ρ be permutation representation of G , and t the number of
orbits of G . Then

dim(P(G , ρ)) ≤ (n − t)2,

and equality iff at most one non-trivial irreducible component.

Corollary (Guralnick, Perkinson ’05)

Let G ≤ Sn transitive. Then

dim(P(G )) ≤ (n − 1)2,

and equality if and only if G is 2-transitive.
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Equivalence of permutation polytopes

Corollary to dimension formula: Regular representation defines
simplex.
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Equivalence of permutation polytopes

Observation: All these permutation groups define tetrahedron:
〈(1234)〉 ≤ S4

〈(1234)(5)〉 ≤ S5

〈(1234)(5678)〉 ≤ S8

〈(1234)(57)(68)〉 ≤ S8

Definition/Proposition
(BHNP ’09; Baumeister, Grüninger ’15; Friese, Ladisch ’16)

ρ1, ρ2 real representations of G . Then T.F.A.E.

ρ1, ρ2 are stably equivalent

Irr(ρ1) \ {1G} = Irr(ρ2) \ {1G}
Exists α : P(G , ρ1)→ P(G , ρ2) affine equivalence s.t.

α(ρ1(g)x) = ρ2(g)α(x) for all x ∈ P(G , ρ1)
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Equivalence of permutation polytopes

QUESTION 4 (BHNP ’09)

Is there an implementable algorithm that solves the following
problem?

Given finite group G and S ⊆ Irr(G ) \ {1G}. Check if permutation
representation with Irr(ρ) \ {1G} = S exists, and if yes, find one.

This would allow to classify all permutation polytopes in small
dimension d (as |G | ≤ 2d).

CONJECTURE 5 (BHNP ’09)

Given permutation representation ρ : G → Sn, there exists stably
equivalent permutation representation ρ′ : G → Sn′ with
n′ ≤ 2 dim(P(G , ρ)).

These are purely representation-theoretic challenges!
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Equivalence of permutation polytopes

Stable equivalence not general enough!

Example: G := (Z2)2 = {e, x , y , xy} has not stably equivalent
permutation representations ρ1, ρ2 with the same permutation
polytope P(G , ρ1) = P(G , ρ2):

ρ1(e) ρ1(x)

ρ1(y) ρ1(xy)

ρ2(e) ρ2(xy)

ρ2(y) ρ2(x)

Benjamin Nill Permutation polytopes



Equivalence of permutation polytopes

Definition/Proposition (BHNP ’09; Baumeister, Grüninger ’15)

(G1, ρ1), (G2, ρ2) permutation representations. Then T.F.A.E.

ρ1, ρ2 are effectively equivalent

Exists φ : G1 → G2 group isomorphism s.t. ρ1 and ρ2 ◦ φ are
stably equivalent (on G1)

Exists φ : G1 → G2 group isomorphism and
α : P(G , ρ1)→ P(G , ρ2) affine equivalence s.t.

α(ρ1(g)x) = ρ2(φ(g))α(x) for all x ∈ P(G , ρ1), g ∈ G1

Exists α : P(G1, ρ1)→ P(G2, ρ2) affine equivalence s.t. its
restriction ρ1(G1)→ ρ2(G2) is group homomorphism.
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Equivalence of permutation polytopes

Definition/Proposition (BHNP ’09; Baumeister, Grüninger ’15)
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Equivalence of permutation polytopes

Example (Baumeister, Grüninger ’15)

G := (Z2)2 ×Z4 ×Z3 has permutation representations ρ1, ρ2 with

affinely equivalent permutation polytopes, but

not effectively equivalent.

Reason: The set of faces with 24 vertices that are also subgroups
have different number of combinatorial types.

QUESTION 6 (Baumeister, Grüninger ’15)

Does such an example exist if G acts transitively?
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G := (Z2)2 ×Z4 ×Z3 has permutation representations ρ1, ρ2 with
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Reason: The set of faces with 24 vertices that are also subgroups
have different number of combinatorial types.
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Equivalence of permutation polytopes

Extreme cases expected to be unique:

(BHNP ’09): Unique effective equivalence class of G ≤ Sn
if P(G ) is cube.
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Equivalence of permutation polytopes

Let π : Sn → Sn standard permutation representation,
ρ permutation representation of G .

Conjecture (BHNP ’09)

If P(G , ρ) is affinely equivalent to Bn = P(Sn, π),
then (G , ρ) and (Sn, π) are effectively equivalent.
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Equivalence of permutation polytopes

Let π : Sn → Sn standard permutation representation,
ρ permutation representation of G .

Theorem (Baumeister, Ladisch ’16)

If P(G , ρ) is affinely equivalent to Bn = P(Sn, π),
then (G , ρ) and (Sn, π) are effectively equivalent.

Proof uses symmetry group of Bn and the study of the
Chermak-Delgado lattice of G .
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Equivalence of permutation polytopes

(BHNP ’09): conjectured that up to few exceptions ALWAYS

Autaff(P(G )) > |G |.

Theorem (Friese, Ladisch ’16)

Any elementary abelian 2-group of order |G | ≥ 25 has permutation
polytope P(G , ρ) with Autaff(P(G )) = |G |.

Proof follows from new results on orbit polytopes of
G ⊂ GLn(R): the convex hull of the orbit Gv for v ∈ Rn.

CONJECTURE 7 (Friese, Ladisch ’16)

Combinatorial and affine symmetry groups of representation
polytopes are equal.
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