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Polytopes

Convex set:
contains the connecting segment between any two points
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Convex set:
contains the connecting segment between any two points

Convex hull:  conv(S) is smallest convex set containing set S
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Polytopes

Polytopes: Convex hull of finite number of points
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Polytopes

Faces: The intersection with hyperplanes with the polytope on
one side

Vertices: 0-dimensional faces
Edges: 1-dimensional faces
Facets: maximal-dimensional (proper) faces
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Polytopes

Faces: The intersection with hyperplanes with the polytope on
one side

Vertices: 0-dimensional faces
Edges: 1-dimensional faces
Facets: maximal-dimensional (proper) faces

-_-——-_'_'—-——

fo—l

<. 4

Benjamin Nill Permutation polytopes




Symmetries of polytopes

Polytope ~~» Symmetry groups

combinatorially
equivalent

affinely
equivalent

isometric
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THIS TALK: Permutation polytopes
G < S, subgroup.

P(G) := conv(M(g) : g € G) C Mat,(R) = R"

where M(g) is the corresponding n X n-permutation matrix.
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THIS TALK: Permutation polytopes
G < S, subgroup.

P(G) := conv(M(g) : g € G) C Mat,(R) = R"

where M(g) is the corresponding n X n-permutation matrix.
Examples:

° P(Sz):{G (1)> <(1) (1)>}

is an interval (1-dimensional polytope) in R*
o P(((123 --- d+1))) is d-simplex
o P(((12), (34), --- , (2d-1 2d))) is d-cube
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THIS TALK: Permutation polytopes

Two basic results:

@ G acts transitively by multiplication on vertices of P:
|Vertices(P(G))| = |G|.
@ The vertices of P(G) have only 0 or 1 coordinates:

|G| < 24m(P(6)) with equality if cube.

Benjamin Nill Permutation polytopes



THIS TALK: Permutation polytopes

Two basic results:

@ G acts transitively by multiplication on vertices of P:
|Vertices(P(G))| = |G|.
@ The vertices of P(G) have only 0 or 1 coordinates:

|G| < 24m(P(6)) with equality if cube.

Guiding questions

Q1) What can we say about P(G)?
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THIS TALK: Permutation polytopes

Two basic results:

@ G acts transitively by multiplication on vertices of P:
|Vertices(P(G))| = |G|.
@ The vertices of P(G) have only 0 or 1 coordinates:
|G| < 24m(P(6)) with equality if cube.
Guiding questions

Q1) What can we say about P(G)?
— fascinating geometric objects!

Q2) What can we deduce about G from P(G)?
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THIS TALK: Permutation polytopes

Two basic results:

@ G acts transitively by multiplication on vertices of P:
|Vertices(P(G))| = |G|.
@ The vertices of P(G) have only 0 or 1 coordinates:
|G| < 24m(P(6)) with equality if cube.
Guiding questions

Q1) What can we say about P(G)?
— fascinating geometric objects!

Q2) What can we deduce about G from P(G)?
— challenging representation-theoretic problems!
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Overview of talk

© The Birkhoff polytope
@ Other special classes
© Faces

@ Dimension

© Equivalences
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The Birkhoff polytope B,

B, := P(S,) is called Birkhoff polytope.

@ Vertices: all n x n-permutation matrices

@ Dimension: (n—1)?
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The Birkhoff polytope B,

B, := P(S,) is called Birkhoff polytope.

@ Vertices: all n x n-permutation matrices
@ Dimension: (n—1)?
© Volume:

o (Canfield, McKay '09): asymptotic formula

vol(B,) = exp(f(n -1ln+n?—(n— %)ln(21r) + %- + o(l))
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The Birkhoff polytope B,

B, := P(S,) is called Birkhoff polytope.

@ Vertices: all n x n-permutation matrices
@ Dimension: (n—1)?
© Volume:
o (Canfield, McKay '09): asymptotic formula
vol(B,) = exp(f(n -1’ lnn+n? - (n— %)ln(27r) - % + o(l))
o (De Loera, Liu, Yoshida '09): exact combinatorial formula

((..U)(u—lr'

I
ol(B,) = ——— —_—
vol(By) = ey 2 2. ez (e WT<a)

o €S, TeArb(¢.n)
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The Birkhoff polytope B,

B, := P(S,) is called Birkhoff polytope.

@ Vertices: all n x n-permutation matrices
@ Dimension: (n—1)?
© Volume:
o (Canfield, McKay '09): asymptotic formula
vol(B,) = exp(f(n -1ln+n?—(n— %)ln(27r) + % + o(l))

o (De Loera, Liu, Yoshida '09): exact combinatorial formula

((..U)(u—lr'

1
vol(B,) = ——— —_ .
(e n) ((n—1)2)! Z Z nueEqT1<"‘ WT""G)

o €S, TeArb(¢.n)

o (Beck, Pixton '03): exact values known for n < 10:

Vol(Bo) = 727291284016786420977508457990121862548823260052557333386607889
10 §2816086010676685512567631879687271203446224635330894226779807213880557 39956270293 15086 3504802820848640000000
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The Birkhoff polytope B,

@ Ehrhart polynomial:
The function k — |(kB,) N Mat,(Z)| is a polynomial
eg for Bs: ks 1+ gk + 2k>+3k3 + gk
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The Birkhoff polytope B,

@ Ehrhart polynomial:
The function k — |(kB,) N Mat,(Z)| is a polynomial
eg for Bs: ks 1+ gk + 2k>+3k3 + gk
Counts (semi)magic squares with magic number k:

U j 4
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The Birkhoff polytope B,

@ Ehrhart polynomial:
The function k — |(kB,) N Mat,(Z)| is a polynomial
eg for Bs: ks 1+ gk + 2k>+3k3 + gk
Counts (semi)magic squares with magic number k:

CONJECTURE 1 (De Loera et al.)
All coefficients are nonnegative.
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The Birkhoff polytope B,

© Faces:

o There are n? facets (maximal proper faces).
e Face structure related to certain bipartite graphs
(Brualdi, Gibson 76-77).
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The Birkhoff polytope B,

© Faces:

o There are n? facets (maximal proper faces).

e Face structure related to certain bipartite graphs
(Brualdi, Gibson 76-77).

e Any combinatorial type of a d-dimensional face of B, appears
in By (Billera, Sarangarajan '94; Paffenholz '15).
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The Birkhoff polytope B,

© Faces:

o There are n? facets (maximal proper faces).
e Face structure related to certain bipartite graphs
(Brualdi, Gibson 76-77).

e Any combinatorial type of a d-dimensional face of B, appears
in By (Billera, Sarangarajan '94; Paffenholz '15).

CONJECTURE 2 (Brualdi, Gibson '77)

Any two combinatorially equivalent faces of B, are
affinely equivalent.
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The Birkhoff polytope B,

© Faces:

o There are n? facets (maximal proper faces).
e Face structure related to certain bipartite graphs
(Brualdi, Gibson 76-77).

e Any combinatorial type of a d-dimensional face of B, appears
in By (Billera, Sarangarajan '94; Paffenholz '15).

CONJECTURE 2 (Brualdi, Gibson '77)

Any two combinatorially equivalent faces of B, are
affinely equivalent.

© Symmetry group: Any combinatorial symmetry comes from
left multiplication, right multiplication or transposition
(Baumeister, Ladisch '16):

AUtcomb(Bn) = Sn ! C2
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Other special classes

e P(D,) for D, < S, dihedral group is completely understood
(Baumeister, Haase, Nill, Paffenholz '14).
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Other special classes

e P(D,) for D, < S, dihedral group is completely understood
(Baumeister, Haase, Nill, Paffenholz '14).

e Combinatorial type and volume of P(G) known if G < S, is
Frobenius group (ic. edsts H < Gst. Vx € G\ H Hn (xHx~1) = {e})
(Burggraf, De Loera, Omar '13).
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Other special classes

Recall: P(S,) = B, has n? many facets and dimension (n — 1)2.
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Other special classes

Recall: P(S,) = B, has n? many facets and dimension (n — 1)2.

e Alternating group: P(A,) (for n > 4) has dimension
(n—1)2, n!/2 vertices, and exponentially many facets
(Cunningham, Wang '04; Hood, Perkinson '04).
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Other special classes

Recall: P(S,) = B, has n? many facets and dimension (n — 1)2.

e Alternating group: P(A,) (for n > 4) has dimension
(n—1)2, n!/2 vertices, and exponentially many facets
(Cunningham, Wang '04; Hood, Perkinson '04).

@ Cyclic subgroup: Let a, b, c coprime; z,p, Zac, Zpc disjoint
cycles of lengths ab, ac, bc. Then

'D( <ZabZachc> )

has dimension ab + ac + bc —a— b — ¢,
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Recall: P(S,) = B, has n? many facets and dimension (n — 1)2.

e Alternating group: P(A,) (for n > 4) has dimension
(n—1)2, n!/2 vertices, and exponentially many facets
(Cunningham, Wang '04; Hood, Perkinson '04).

@ Cyclic subgroup: Let a, b, c coprime; z,p, Zac, Zpc disjoint
cycles of lengths ab, ac, bc. Then

'D( <ZabZachc> )

has dimension ab + ac + bc — a — b — ¢, abc vertices,
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Other special classes

Recall: P(S,) = B, has n? many facets and dimension (n — 1)2.

e Alternating group: P(A,) (for n > 4) has dimension
(n—1)2, n!/2 vertices, and exponentially many facets
(Cunningham, Wang '04; Hood, Perkinson '04).

@ Cyclic subgroup: Let a, b, c coprime; z,p, Zac, Zpc disjoint
cycles of lengths ab, ac, bc. Then

'D( <ZabZachc> )

has dimension ab + ac + bc — a — b — ¢, abc vertices, but at
least ((27 — 2)(22 —2)(2¢ —2) + ab + ac + bc)/2 many facets.
(Sontag, Jaakkola '08; Baumeister, Haase, Nill, Paffenholz '12)
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Other special classes

Computational challenge

For (a, b,c) = (5,6,7), the permutation polytope P((zapZscZpc)
has

@ dimension 89,
@ 210 vertices,

@ but conjecturally > 10° facets.
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Faces of permutation polytopes

(34)(56)

(56)

(12)(34)(56)

(12)(56)

(34)

(12)

(12)(34)

Let G < S,,. The stabilizer subgroup of a partition of {1,...,n}
is a face of P(G).
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Faces of permutation polytopes

(34)(56)

(56)

(12)(34)(56),

(12)(56)

(34)

(12)

(12)(34)

Let G < S,,. The stabilizer subgroup of a partition of {1,...,n}
is a face of P(G).

Conjecture (Baumeister, Haase, Nill, Paffenholz '09)

Any subgroup of G whose permutation polytope is a face of P(G)
is a stabilizer of a partition of {1,..., n}.
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Faces of permutation polytopes

(34)(56)

(56)

(12)(34)(56),

(12)(56)

(34)

(12)

(12)(34)

Let G < S,,. The stabilizer subgroup of a partition of {1,...,n}
is a face of P(G).

Theorem (Haase '15)

Any subgroup of G whose permutation polytope is a face of P(G)
is a stabilizer of a partition of {1,..., n}.

Benjamin Nill Permutation polytopes



Faces of permutation polytopes

What about edges?

Proposition (Guralnick, Perkinson '05)

Let g =z -z € S, be the decomposition into disjoint cycles.

Then
H zie G
I1C{1,...,r}

are the vertices of the smallest face F, of P(G) that contains e
and g.

~ e, g form an edge if and only if g is ‘indecomposable’.
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Faces of permutation polytopes

Example 1: G =((12),(34),(56)), g =(12)(34)(56) € G.
Then Fz = P(G):

y m— (34)(56)
(56)

(12)(34)(56)

(12)(56)

(34)

(12)

(12)(34)
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Faces of permutation polytopes

Example 2: H = ((12)(34),(56)), g = (12)(34)(56) € H.
Fy = P(H):

(34)(56)

(12)(56)
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Faces of permutation polytopes

Example 2: H = ((12)(34),(56)), g = (12)(34)(56) € H.

Fg = P(H):
(34)(56)
5 6)
(12)(56)
e
(34)
(12)

12)(34)
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Faces of permutation polytopes

Consequences (BHNP '09):

@ The smallest face containing two vertices is
centrally-symmetric.
(Interchange e.g. z1zp by z3--- z,)
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Faces of permutation polytopes

Consequences (BHNP '09):

@ The smallest face containing two vertices is
centrally-symmetric.
(Interchange e.g. z1zp by z3--- z,)
e If P(G) is centrally-symmetric, then
G is elementary abelian 2-group.
(For g as above, any element and its inverse is ‘subelement’ of g)
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Faces of permutation polytopes

Consequences (BHNP '09):

@ The smallest face containing two vertices is
centrally-symmetric.
(Interchange e.g. z1zp by z3--- z,)
e If P(G) is centrally-symmetric, then
G is elementary abelian 2-group.
(For g as above, any element and its inverse is ‘subelement’ of g)

@ P(G) is a combinatorial product of two polytopes if and only
if G is product of subgroups with disjoint support.
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Faces of permutation polytopes

Consequences (BHNP '09):

@ The smallest face containing two vertices is
centrally-symmetric.
(Interchange e.g. z1zp by z3--- z,)
e If P(G) is centrally-symmetric, then
G is elementary abelian 2-group.
(For g as above, any element and its inverse is ‘subelement’ of g)

@ P(G) is a combinatorial product of two polytopes if and only
if G is product of subgroups with disjoint support.

e P(G) is combinatorially a crosspolytope (d-dimensional
‘octahedron’) if and only if d is a power of 2.
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Faces of permutation polytopes

Recall: Any permutation polytope P(G) of dimension d is affinely
equivalent to a subpolytope of [0,1]9.
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Faces of permutation polytopes

Recall: Any permutation polytope P(G) of dimension d is affinely
equivalent to a subpolytope of [0,1]9.

Classification of perm. polytopes of dimension < 4 (BHNP '09)

Combin. type of P(G) Isom. type of G Effective equiv. type of G
triangle Z/3Z ((123))

square (Z/ZZ)2 ((12), (34))

tetrahedron Z/AZ ((1234))

tetrahedron (Z/ZZ)2 ((12)(34), (13)(24))
triangular prism Z/6Z ((12), (345))

cube (/273 ((12), (34), (56))
4-simplex Z/5Z ((12345))

B3 S3 ((12), (123))

prism over tetrahedron Z/27 x Z[AZ ((1234), (56))

prism over tetrahedron (Z/27)3 ((12)(34), (13)(24), (56))
4-crosspolytope (Z)27)3 ((12)(34), (34)(78), (56)(78))
product of triangles (Z./37)? ((123), (456))

prism over triang. prism Z/6Z x Z[2Z ((12), (345), (67))
4-cube z/272)* ((12), (34), (56), (78))
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Faces of permutation polytopes
What about classifying faces of permutation polytopes?

Theorem (BHNP '09)

For any d, there exists a face of a permutation polytope that is
combinatorially equivalent to a crosspolytope.
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Faces of permutation polytopes

Let Fy4 be the set of combinatorial types F of subpolytopes of
[0,1]¢ such that the following condition holds:

any smallest face of F containing two vertices is centrally-symmetric.
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Faces of permutation polytopes

Let Fy4 be the set of combinatorial types F of subpolytopes of
[0,1]¢ such that the following condition holds:

any smallest face of F containing two vertices is centrally-symmetric.

Theorem (BHNP '09)

For d <4, any F € F4\ {Q1, Q} is combinatorially a face of a
permutation polytope.

CONJECTURE 3 (BHNP '09)

Q1, Q> € F4 are not combinatorially equivalent to a face of a
permutation polytope.
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Faces of permutation polytopes

The combinatorial diameter of a polytope is the smallest k
such that any two vertices can be joined using k edges.
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Faces of permutation polytopes

The combinatorial diameter of a polytope is the smallest k
such that any two vertices can be joined using k edges.

Theorem (Guralnick, Perkinson '05)

The combinatorial diameter of P(G) is at most min(2t, |n/2]),
where t is the number of non-trivial orbits of G on {1,..., n}.

Their proof uses the classification of finite almost-simple groups.
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Faces of permutation polytopes

The combinatorial diameter of a polytope is the smallest k
such that any two vertices can be joined using k edges.

Theorem (Guralnick, Perkinson '05)

The combinatorial diameter of P(G) is at most min(2t, |n/2]),
where t is the number of non-trivial orbits of G on {1,..., n}.

Their proof uses the classification of finite almost-simple groups.

Bound is sharp: take t copies of Dy as subgroup of Sy,
then combinatorial diameter is 2t = n/2.
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Dimension of representation polytopes

There is a natural generalization of a permutation polytope.

Representation polytope

Given a real representation p : G — GL(V), where V is
deg(p)-dimensional real vector space.

Its representation polytope is defined as

P(G,p) = COIlV(p(G)) C GLR(\/) o~ R(deg(P))z
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Dimension of representation polytopes

Let Irr(G) be the set of pairwise non-isomorphic irreducible
C-representations. Any representation splits as a G-representation
over C into irreducible components:

pE Z oo for ¢y € Z>p

o€lrr(G)

Let Irr(p) = {0 € Irr(G) : ¢, > 0}.
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Dimension of representation polytopes

Let Irr(G) be the set of pairwise non-isomorphic irreducible
C-representations. Any representation splits as a G-representation
over C into irreducible components:

pE Z oo for ¢y € Z>p

o€lrr(G)
Let Irr(p) = {0 € Irr(G) : ¢, > 0}.

Theorem (Guralnick, Perkinson '05)

dim(P(G,p)) = > (deg(0))?,

1g#o€lrr(p)

where 1¢ is the trivial representation.

Proof uses standard representation theory.
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Dimension of representation polytopes

Corollary (Guralnick, Perkinson '05)

Let p be permutation representation of G, and t the number of
orbits of G. Then

dim(P(G, p)) < (n— t)?,

and equality iff at most one non-trivial irreducible component.
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Dimension of representation polytopes

Corollary (Guralnick, Perkinson '05)

Let p be permutation representation of G, and t the number of
orbits of G. Then

dim(P(G, p)) < (n— t)?,

and equality iff at most one non-trivial irreducible component.

Proof:
Recall: ¢, equals the number of orbits t of G. Hence,

Z deg(o) < Z codeg(o) = n—t.

1g#o€ln(p) 1g#o€ln(p)
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Dimension of representation polytopes

Corollary (Guralnick, Perkinson '05)

Let p be permutation representation of G, and t the number of
orbits of G. Then

dim(P(G, p)) < (n— t)?,

and equality iff at most one non-trivial irreducible component.

Proof:
Recall: ¢, equals the number of orbits t of G. Hence,

Z deg(o) < Z codeg(o) =n—t.
1 #o€lr(p) 16#o€l(p)

The sum
Y (deg(0))* =dim(P(G, p)),
1g#o€lr(p)

is maximized for one non-trivial irreducible component. L]



Dimension of representation polytopes

Corollary (Guralnick, Perkinson '05)

Let p be permutation representation of G, and t the number of
orbits of G. Then

dim(P(G, p)) < (n—t)?,

and equality iff at most one non-trivial irreducible component.

Corollary (Guralnick, Perkinson '05)

Let G < 5, transitive. Then
dim(P(G)) < (n—1)2,

and equality if and only if G is 2-transitive.

Benjamin Nill Permutation polytopes



Equivalence of permutation polytopes

Corollary to dimension formula: Regular representation defines

simplex.
Combin. type of P(G) Isom. type of G
triangle Z7/37
square (Z)27,)?
tetrahedron 7./4Z
tetrahedron (zZ) 2Z)2
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Equivalence of permutation polytopes

Observation: All these permutation groups define tetrahedron:
((1234)) < 54

((1234)(5)) < S5

((1234)(5678)) < Sg

((1234)(57)(68)) < Sg
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Equivalence of permutation polytopes

Observation: All these permutation groups define tetrahedron:
((1234)) < 54

((1234)(5)) < Ss
((1234)(5678)) < Sg
((1234)(57)(68)) < Se

Definition /Proposition

(BHNP '09; Baumeister, Griininger '15; Friese, Ladisch '16)
p1, p2 real representations of G. Then T.F.A.E.
@ p1, p2 are stably equivalent

o Trr(p1) \ {1} = Irr(p2) \ {16}

e Exists a : P(G, p1) = P(G, p2) affine equivalence s.t.

a(p1(g)x) = p2(g)a(x)  forall x € P(G, p1)
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Equivalence of permutation polytopes

QUESTION 4 (BHNP '09)

Is there an implementable algorithm that solves the following
problem?

Given finite group G and S C Irr(G) \ {16}. Check if permutation
representation with Irr(p) \ {16} = S exists, and if yes, find one.

This would allow to classify all permutation polytopes in small
dimension d (as |G| < 29).
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Equivalence of permutation polytopes

QUESTION 4 (BHNP '09)

Is there an implementable algorithm that solves the following
problem?

Given finite group G and S C Irr(G) \ {16}. Check if permutation
representation with Irr(p) \ {16} = S exists, and if yes, find one.

This would allow to classify all permutation polytopes in small
dimension d (as |G| < 29).

CONJECTURE 5 (BHNP '09)

Given permutation representation p : G — S, there exists stably
equivalent permutation representation p' : G — S,/ with
n’ <2dim(P(G, p)).

Benjamin Nill Permutation polytopes



Equivalence of permutation polytopes

QUESTION 4 (BHNP '09)

Is there an implementable algorithm that solves the following
problem?

Given finite group G and S C Irr(G) \ {16}. Check if permutation
representation with Irr(p) \ {16} = S exists, and if yes, find one.

This would allow to classify all permutation polytopes in small
dimension d (as |G| < 29).

CONJECTURE 5 (BHNP '09)

Given permutation representation p : G — S, there exists stably
equivalent permutation representation p' : G — S,/ with
n’ <2dim(P(G, p)).

These are purely representation-theoretic challenges!

Benjamin Nill Permutation polytopes



Equivalence of permutation polytopes

Stable equivalence not general enough!

Example: G := (Z»)? = {e, x,y, xy} has not stably equivalent
permutation representations pi, p» with the same permutation
polytope P(G, p1) = P(G, p2):

rily)  pilxy) pa(y)  pax)

pi(e)  pi(x) p2(e)  pa(xy)
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Equivalence of permutation polytopes

Definition /Proposition (BHNP '09; Baumeister, Griininger '15)

(G1,p1), (G2, p2) permutation representations. Then T.F.A.E.
@ p1, p2 are effectively equivalent

@ Exists ¢ : G — Gy group isomorphism s.t. p; and p o ¢ are
stably equivalent (on Gp)
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Equivalence of permutation polytopes

Definition /Proposition (BHNP '09; Baumeister, Griininger '15)

(G1,p1), (Ga, p2) permutation representations. Then T.F.A.E.
@ p1, p2 are effectively equivalent

@ Exists ¢ : G — Gy group isomorphism s.t. p; and p o ¢ are
stably equivalent (on Gp)

@ Exists ¢ : G; — G group isomorphism and
a : P(G,p1) = P(G, p2) affine equivalence s.t.

a(p1(g)x) = p2(¢(g))alx)  forall x € P(G,p1), g € G

e Exists « : P(Gi,p1) — P(Gy, p2) affine equivalence s.t. its
restriction p1(G1) — p2(Gz) is group homomorphism.
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Equivalence of permutation polytopes

Example (Baumeister, Griininger '15)

G := (Z3)? x 74 x 73 has permutation representations py, p» with
o affinely equivalent permutation polytopes, but
@ not effectively equivalent.

Reason: The set of faces with 24 vertices that are also subgroups
have different number of combinatorial types.
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Equivalence of permutation polytopes

Example (Baumeister, Griininger '15)

G := (Z3)? x 74 x 73 has permutation representations py, p» with
o affinely equivalent permutation polytopes, but
@ not effectively equivalent.

Reason: The set of faces with 24 vertices that are also subgroups
have different number of combinatorial types.

QUESTION 6 (Baumeister, Griininger '15)

Does such an example exist if G acts transitively?
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Equivalence of permutation polytopes

Extreme cases expected to be unique:

(34)(56)

(56)

(12)(34)(56)

(12)(56)

e

(34)
(12)
12)(34)

(BHNP '09): Unique effective equivalence class of G < S,
if P(G) is cube.
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Equivalence of permutation polytopes

Let 7 : S, — S, standard permutation representation,
p permutation representation of G.

Conjecture (BHNP '09)

If P(G,p) is affinely equivalent to B, = P(S,, ),
then (G, p) and (Sp, ) are effectively equivalent.
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Equivalence of permutation polytopes

Let 7 : S, — S, standard permutation representation,
p permutation representation of G.

Theorem (Baumeister, Ladisch '16)

If P(G,p) is affinely equivalent to B, = P(S,, ),
then (G, p) and (Sp, ) are effectively equivalent.

Proof uses symmetry group of B, and the study of the
Chermak-Delgado lattice of G.
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Equivalence of permutation polytopes

(BHNP '09): conjectured that up to few exceptions ALWAYS

AutafF(P(G)) > |G|
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Equivalence of permutation polytopes

(BHNP '09): conjectured that up to few exceptions ALWAYS

AutafF(P(G)) > |G|

Theorem (Friese, Ladisch '16)

Any elementary abelian 2-group of order |G| > 2° has permutation
polytope P(G, p) with Aut(P(G)) = |G]|.

Proof follows from new results on orbit polytopes of
G C GL,(R): the convex hull of the orbit Gv for v € R".
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Equivalence of permutation polytopes

(BHNP '09): conjectured that up to few exceptions ALWAYS

Auto(P(G)) > |G-

Theorem (Friese, Ladisch '16)

Any elementary abelian 2-group of order |G| > 2° has permutation
polytope P(G, p) with Aut(P(G)) = |G]|.

Proof follows from new results on orbit polytopes of
G C GL,(R): the convex hull of the orbit Gv for v € R".

CONJECTURE 7 (Friese, Ladisch '16)

Combinatorial and affine symmetry groups of representation
polytopes are equal.
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