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Random generation

Fact 1: For many interesting groups

P(〈x1, x2〉 = G | xi uniform random in G )

is very close to 1.

Fact 2: Inside these same groups, there exist quite a few x1 ∈ G
such that

P(〈x1, x2〉 = G | x2 uniform random)

is very close to 0.

So would like to understand the structure of generating sets.
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Easier algebraic objects

V = Fd – finite dimensional vector space.

Then

1. Any two irredundant generating sets have the same size.

2. Let v ,w ∈ V . Then

(〈v ,X 〉 = V ⇔ 〈w ,X 〉 = V ) ∀X ⊂ V

if and only if 〈v〉 = 〈w〉.
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p-groups

Throughout rest of talk, let G be a finite group.

Φ(G ) – Frattini subgroup: intersection of all maximal subgps of G .

Φ(G ) = {g ∈ G : g belongs to no irredundant gen set for G}.

Theorem (Burnside’s basis theorem)

P – p-group, with |P : Φ(P)| = pd .
[Then P/Φ(P) ∼= (Fd

p ,+).]

P/Φ(P) = 〈Φ(P)xi : 1 ≤ i ≤ n〉 if and only if P = 〈x1, . . . , xn〉.

Furthermore, P = 〈x1, . . . , xn〉 if and only if there exists a subset Y
of x1, . . . , xn of size d such that P = 〈Y 〉.
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p-groups, ctd

Corollary

1. Any two irredundant generating sets of a finite P-group have
the same size.

2. If x , y ∈ P, then

(〈x ,X 〉 = P ⇔ 〈y ,X 〉 = P) ∀X ⊆ P

if and only if 〈Φ(P)x〉 = 〈Φ(P)y〉.

So in these two cases, we have a good understanding of the
structure of generating sets.
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Minimal generating sets for finite groups

Final reminder: G is always a finite group.

Write d(G ) for smallest number of generators of G .

Lots known about d(G ), e.g.

1. G almost simple ⇒ d(G ) ≤ 3.

2. If each Sylow subgroup of G can be generated by n elts, then
d(G ) ≤ n + 1. Lucchini ’89; Guralnick ’89.

3. G ≤ Sn: see Gareth Tracey’s talk (11.15 today)!

4. G ≤ GLn(F ): Kovacs & Robinson 91; Holt & CMRD 13.

5. . . . much much more
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Maximal irredundant generating sets for finite groups

µ(G ):= maximal size of an irredundant generating set for G .

Diaconis & Saloff-Coste ’98: n − 1 ≤ µ(Sn) ≤ 2n.

Whiston ’00: µ(Sn) = n − 1.
Whiston & Saxl ’02: 3 ≤ µ(PSL2(p)) ≤ 4.

Jambor ’13: µ(PSL2(p)) = 4⇔ p ∈ {7, 11, 19, 31}.

Theorem (Apisa & Klopsch ’14)

If d(G ) = µ(G ), then every quotient G of G satisfies
d(G ) = µ(G ) and G is solvable.

Theorem (Lucchini ’13)

G – soluble. π(G ) – number of prime divisors of |G |.
Then µ(G )− d(G ) ≥ π(G )− 2.
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A new family of relations

In the rest of the talk, we look at how elements can be
interchanged between generating sets.

For x , y ∈ G , say x ≡(r)
m y if ∀z1, . . . , zr−1 ∈ G

(〈x , z1, . . . , zr−1〉 = G ⇔ 〈y , z1, . . . , zr−1〉 = G )

(So x and y can be interchanged in any r -element generating set.)

Lemma

1. Equiv relations ≡(r)
m get finer as r →∞.

2. ≡(r)
m is universal for r < d(G ).

3. ≡(d(G))
m has at least r + 1 equivalence classes.
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The limit of the family, and a new group invariant

For x , y ∈ G , define x ≡m y if x and y lie in the same maximal
subgroups of G .

x ≡m y is the limit of ≡(r)
m .

Define ψ(G ) to be smallest r for which ≡m coincides with ≡(r)
m .

Example (G = S4)

The relation ≡(1)
m is universal.

The double-transpositions lie in no 2-elt gen set, so are

≡(2)
m -equivalent to 1G . Otherwise x ≡(2)

m y ⇔ 〈x〉 = 〈y〉. So
14 classes.

For r ≥ 3 the double-transpositions form one ≡(r)
m -class; the

other classes don’t change. So 15 classes.

So ψ(S4) = 3.
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Some bounds on ψ(G )

Lemma

ψ(G ) ≥ d(G ), and if G has a normal subgroup N s.t. N 6≤ Φ(G )
and d(G/N) = d(G ), then ψ(G ) ≥ d(G ) + 1.

Theorem

If G is soluble, then ψ(G ) ≤ d(G ) + 1.

Theorem

For all finite G, ψ(G ) ≤ d(G ) + 5.
G simple ⇒ ψ(G ) ≤ 5. G almost simple ⇒ ψ(G ) ≤ 7.

Theorem

ψ(G ) ≤ µ(G ). So if G = PSL2(p) then ψ(G ) ≤ 4.

Question Does there exist a G for which ψ(G ) > d(G ) + 1?
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Efficient generation

Say that G is efficiently generated if for all x ∈ G , if
d{x}(G ) = d(G ) then x ∈ Φ(G ).

Lemma

If ψ(G ) = d(G ) then G is efficiently generated.

Lemma

If d(M) < d(G ) for every maximal subgroup M of G, then
ψ(G ) = d(G ).

We have a precise description of the soluble groups that are
efficiently generated.
S4 is the smallest soluble group that is not efficiently generated.

Problem

Characterise the insoluble groups that are efficiently generated.

Colva M. Roney-Dougal Generating sets of finite groups



A finer relation

We define x ≡c y ⇔ 〈x〉 = 〈y〉.
Then

x ≡c y ⇔ (〈x ,X 〉 = 〈y ,X 〉 (∀X ⊆ G )) .

Hence if x ≡c y then x ≡m y .

Theorem

Let G be a group for which ≡c coincides with ≡m.

1. We have a (messy) characterisation of such soluble G.

2. Φ(G ) = 1.

3. G/Soc(G ) is soluble, and if G has a nonabelian minimal
normal subgroup N ∼= S1 × · · · × St then either t = 1 or t = 2
and S1

∼= PΩ+
8 (q) with q ≤ 3.

Problem: Characterise the insoluble G for which ≡c coincides with
≡m.
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Some asymptotics

Theorem ( Luczak & Pyber ’93)

G – Sn or An. Then for almost all x ∈ G, the only transitive
subgroups of Sn containing x are Sn and (possibly) An.

Corollary

G – Sn or An. For almost all x , y ∈ G, the following are equivalent

1. x ≡m y.

2. x ≡(2)
m y.

3. the cycles of x and y induce the same partition of {1, . . . , n}.

Theorem (Shalev ’98)

A random element of GLn(q) lies in no proper irreducible subgroup
not containing SLn(q).

So something similar should be true for linear groups.
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The generating graph Γ(G )

Define Γ := Γ(G ) by
V (Γ) = G , x ∼ y ⇔ 〈x , y〉 = G .

Assume from now on that d(G ) ≤ 2.

Structure of Γ often corresponds to nice group-theoretic properties.

Clique number

Colouring number

Total domination number

Determines G up to isomorphism?

This project actually began with us looking at Aut(Γ(G )) for
various almost simple G .
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Automorphism group of Γ(G )

First observation: Aut(Γ(G )) is MASSIVE!

e.g. |A5 | = 60, Aut(Γ(A5)) = 231 · 37 · 5.

A graph reduction: For vertices x , y , say x ≡Γ y if x and y have
the same neighbours. Identify equivalence classes, get quotient
graph Γ.

Notice if Γ = Γ(G ) then ≡Γ is ≡(2)
m .

Can weight V (Γ) by number of vertices of Γ they represent: Γw .

Γ and Γ have same clique nr, chromatic nr, total domination nr.

Example (G = A5)

ψ(G ) = 2. The relations ≡m, ≡Γ and ≡c are all equal.
6 ≡Γ-classes of elts of order 5, 10 of order 3, and 16 singletons.
Kernel of action on ≡Γ-classes has order (4!)6(2!)10.
Aut(Γw (A5)) = Aut(Γ(A5)) = S5.
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Spread

Spread of G is k if for all x1, . . . , xk ∈ G \ {1} there exists a y ∈ G
s.t. 〈xi , y〉 = G for all i , and k is the maximal such integer.
Spread k ⇒ every k verts of Γ \ 1 have a common neighbour.
Γ and Γ have same spread.

Conjecture (Breuer, Guralnick, Kantor)

|G | ≥ 3. The following are equivalent:

1. spread of G ≥ 1

2. spread of G ≥ 2

3. all proper quotients of G are cyclic

Work in progress of Burness, Guralnick, many others . . .

Theorem

If G is soluble and has nonzero spread, then ψ(G ) ≤ 2.

Conjecture: If G has nonzero spread then ψ(G ) ≤ 2.
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Aut(Γ(G )) for G of nonzero spread

Theorem

Let the Γ-classes of G have sizes k1, . . . , kn. Then
Aut(Γ(G )) = (Sk1 × · · · × Skn) : Aut(Γw (G )).

Let Aut∗(G ) be action of Aut(G ) on Γw (G ).

Then Aut∗(G ) ≤ Aut(Γw (G )) ≤ Aut(Γ(G )).

Theorem

G – group with nonzero spread. Then Aut∗(G ) = Aut(G ) if and
only if G is nonabelian.

Not always the case that Aut(Γw (G )) = Aut(Γ(G )).
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Soluble groups of nonzero spread

Let G be a soluble group of nonzero spread. Then G is one of

1. Cyclic

2. Cp × Cp, with p prime

3. Semidirect product of an elementary abelian group with an
irreducible subgroup of its Singer cycle.

Proposition

1. Let G = Cn, where r = π(n). Then Γ(G ) has 2r vertices, and
Aut(Γw (G )) = 1.

2. Let G = C 2
p . Then Γ(G ) has p + 2 vertices, and

Aut(Γw (G )) ∼= Sp+1.

3. Let G = C k
p : Cn be nonabelian with all proper quotients

cyclic, and let r = π(n).
Then Γ(G ) has (2r − 1)pk + 2 vertices if n is squarefree, and
2rpk + 2 otherwise. Aut(Γw (G )) ∼= Spk .
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Some thought-provoking calculations

The m-universal action of G is the perm action made by taking the
disjoint union of the actions on cosets of maximal subgroups, one
for each conj class.

Lemma

1. x ≡m y iff Fix(x) = Fix(y) in m-universal action.

2. 〈x , y〉 = G iff Fix(x) ∩ Fix(y) = ∅.

Using this we found:

Theorem

G – almost simple group with socle of order < 1000 s.t. all proper
quotients are cyclic. Then Aut(Γw (G )) = Aut(G ).

Question: Does this pattern continue?
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