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Abstract. We study weak and orbital shadowing properties of dynamical
systems related to the following approach: we look for exact trajectories lying
in small neighborhoods of approximate ones (or containing approximate ones
in their small neigborhoods) or for exact trajectories such that the Hausdorff
distances between their closures and closures of approximate trajectories are
small.

These properties are characterized for linear diffeomorphisms. We also
study some C1-open sets of diffeomorphisms defined in terms of these prop-
erties. It is shown that the C1-interior of the set of diffeomorphisms having
the orbital shadowing property coincides with the set of structurally stable
diffeomorphisms.

1.Introduction.

One of the main applications of the shadowing theory is rigorization of
results of numerical study of dynamical systems.

Consider a dynamical system generated by a homeomorphism ϕ of a met-
ric space (M , dist). For a point x ∈ M , we denote by O(x, ϕ) its trajectory
in the system ϕ, i.e., the set

O(x, ϕ) = {ϕk(x) : k ∈ Z}.
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1



We say that a sequence ξ = {xk ∈M : k ∈ Z} is a d-pseudotrajectory of
ϕ if the inequalities

dist(ϕ(xk), xk+1) < d, k ∈ Z, (1)

hold. A d-pseudotrajectory is a natural model of computer output in a
process of numerical investigation of the system ϕ. In this case, the value d
in (1) measures errors of the method, round-off errors, etc.

The usual shadowing property of ϕ [1] is formulated as follows: given
ε > 0 there exists d > 0 such that for any d-pseudotrajectory ξ = {xk} we
can find a point p ∈M with the property

dist(ϕk(p), xk) < ε, k ∈ Z.

Of course, if ϕ has the shadowing property formulated above, then results of
its numerical study (with a proper accuracy) reflect its qualitative structure.

Usually, one studies the geometric pattern of the set of trajectories of a
system under investigation. In this case, the main objects of interest are just
the sets {ϕk(x)} while the indices k of individual points ϕk(x) are irrelevant.

Developing the latter approach, let us give the following definitions. Let
N(a, A) be the a-neighborhood of a set A ⊂ M and let distH(., .) be the
Hausdorff distance on the set of compact subsets of M .

First let us define two weak shadowing properties.
We say that ϕ has the first weak shadowing property (1WSP) if given

ε > 0 there exists d > 0 such that for any d-pseudotrajectory ξ of ϕ we can
find a point p ∈M with the property

ξ ⊂ N(ε, O(p, ϕ)). (2)

This property was introduced in [2] and called there the weak shadowing
property.

We say that ϕ has the second weak shadowing property (2WSP) if given
ε > 0 there exists d > 0 such that for any d-pseudotrajectory ξ of ϕ we can
find a point q ∈M with the property

O(q, ϕ) ⊂ N(ε, ξ). (3)

Finally, we say that ϕ has the orbital shadowing property (OSP) if given
ε > 0 there exists d > 0 such that for any d-pseudotrajectory ξ we can find
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a point r ∈M with the property

distH

(

O(r, ϕ), ξ
)

< ε (4)

(as usual, A is the closure of a set A).
It is easy to see that ϕ has the OSP if and only if it has the 1WSP and

2WSP simultaneously and, in addition, for a d-pseudotrajectory ξ, the points
p and q in (2) and (3) can be chosen to be the same.

In this paper, we study mostly the 2WSP and OSP and their relations to
the classical stability properties, such as structural stability and Ω-stability.

In Sec.2, we give conditions under which a linear diffeomorphism has the
2WSP. In Sec.3, we study some C1-open sets of diffeomorphisms defined in
terms of the 2WSP. In Sec.4, we show that the C1-interior of the set of
diffeomorphisms having the OSP coincides with the set of structurally stable
diffeomorphisms.

2. 2WSP and linear diffeomorphisms.

Fix a nonsingular matrix A and consider the corresponding linear diffeo-
morphism

ϕ(x) = Ax

of the space Cn.
As usual, we say that a matrix A is hyperbolic if its eigenvalues λj satisfy

the inequalities |λj| 6= 1.
In the following Lemmas 1 – 3, we assume that ϕ(x) = Ax has the 2WSP.

Obviously, ϕ has the 2WSP if and only if the diffeomorphism ϕ′(x) = Jx,
where J is a Jordan form of A, has this property. Thus, we assume below
that the matrix A coincides with its Jordan form.

Lemma 1. If λ is an eigenvalue of the matrix A such that |λ| = 1, then
any Jordan block of A corresponding to λ is one-dimensional.

Proof. To get a contradiction, assume that A has a Jordan block J of
dimension k × k with k > 1 corresponding to an eigenvalue λ with |λ| = 1.
We may assume that the first two rows of A are

(λ, 0, . . . , 0)

and
(1, λ, 0, . . . , 0).
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Let d > 0 correspond to ε = 1 in the definition of the 2WSP. Construct a
sequence ξ = {xk ∈ Cn : k ∈ Z} as follows. Denote by x(i) the ith component

of a vector x ∈ Cn. Set x
(1)
0 = 1 and x

(i)
0 = 0 for i = 2, . . . , n. For k ≥ 0, we

define x
(1)
k+1 by the equalities

x
(1)
k+1 = λx

(1)
k

(

1 +
d

2|x
(1)
k |

)

. (5)

For k ≤ 0, we define x
(1)
k−1 by the equalities

x
(1)
k−1 = λ−1x

(1)
k

(

1 +
d

2|x
(1)
k |

)

. (6)

For i = 2, . . . , n, we set

x
(i)
k+1 = (Axk)

(i) , k ≥ 0, and x
(i)
k−1 =

(

A−1xk

)(i)
, k ≤ 0.

Since

|Axk − xk+1| =
∣

∣

∣(Axk − xk+1)
(1)
∣

∣

∣ =

∣

∣

∣

∣

∣

∣

λdx
(1)
k

2|x
(1)
k |

∣

∣

∣

∣

∣

∣

=
d

2
,

the sequence ξ is a d-pseudotrajectory of ϕ.
By the choice of d, there exists a point x ∈ Cn with the following property:

for any m ∈ Z we can find an index k(m) such that

∣

∣

∣Amx− xk(m)

∣

∣

∣ < 1. (7)

Note that

(Amx)(1) = λmx(1), m ∈ Z, and (Amx)(2) = mλm−1x(1) + λmx(2), m > 0,

hence inequalities (7) imply that

∣

∣

∣λmx(1) − x
(1)
k(m)

∣

∣

∣ < 1, m ∈ Z, (8)

and
∣

∣

∣mλmx(1) + λmx(2) − x
(2)
k(m)

∣

∣

∣ < 1, m > 0. (9)
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It is easy to see that

∣

∣

∣x
(1)
k+1

∣

∣

∣ =
∣

∣

∣x
(1)
k

∣

∣

∣+
d

2
, k ≥ 0, and

∣

∣

∣x
(1)
k−1

∣

∣

∣ =
∣

∣

∣x
(1)
k

∣

∣

∣+
d

2
, k ≤ 0, (10)

hence
∣

∣

∣x
(1)
k

∣

∣

∣→ ∞ as |k| → ∞. (11)

Since the value |λmx(1)| does not depend on m, it follows from relations

(8) and (11) that the set {k(m) : m ∈ Z} is bounded. Hence, the set {x
(2)
k(m)}

is also bounded, and we deduce from inequalities (9) that x(1) = 0. Since

∣

∣

∣x
(1)
k

∣

∣

∣ ≥ 1

(see inequalities (10)), we get a contradiction with inequalities (8). Our
lemma is proved.

Lemma 2. If λ is an eigenvalue of the matrix A such that |λ| = 1, then
there exists a natural number m such that λm = 1.

Proof. To get a contradiction, assume that A has an eigenvalue λ =
cos a+ i sin a such that the ratio a/π is irrational. Assume that according to
the standard basis v1, . . . , vn of the space Cn consisting of unit vectors, the
first row of the matrix A is

(λ, 0, . . . , 0).

Then v1 is an eigenvector corresponding to λ.
Let d > 0 correspond to ε = 1 in the definition of the 2WSP. Let

M = 2
[

4

d
+ 1

]

(as usual, [.] is the integer part). Fix a number R0 such that

2R0 > M. (12)

Construct a sequence ξ = {xk ∈ Cn : k ∈ Z} as follows. Set x
(1)
0 = R0 +1

and x
(i)
k = 0 for i = 2, . . . , n and all k ∈ Z. For k ≥ 0, we define x

(1)
k+1 by

equalities (5), for k ≤ 0, we define x
(1)
k−1 by equalities (6). The same reasons

as in Lemma 1 show that the sequence ξ is a d-pseudotrajectory of ϕ and
that relations (10) hold.
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By the choice of d, there exists a point x ∈ Cn with the following property:
for any m ∈ Z we can find an index k(m) such that inequality (7) is valid.

Let L be the subspace of Cn spanned by the vector v1. Take a point
x ∈ Cn and set R = |x(1)|. Our assumption on λ implies that the points
(Akx)(1) (the projections of the points Akx to L) belong to the circle

SR = {y ∈ L : |y| = R}

and form a dense subset of this circle. It follows from our choice of x
(1)
0 and

from inequalities (10) that if |x(1)| ≤ R0, then
∣

∣

∣x
(1)
k − (Amx)(1)

∣

∣

∣ ≥ 1

for any k and m, hence such a point x does not have the above-formulated
property.

Denote by N ′(R) the 1-neighborhood of the circle SR in L. It follows
from inequalities (10) that the number of points xk of our pseudotrajectory

ξ such that x
(1)
k ∈ N ′(R) does not exceed M . For a point y ∈ L, let N ′(y)

be the 1-neighborhood of y in L. It is easy to see that if R > 1 and |y| > 1,
then the length of the arc SR ∩N ′(y) is less than π.

It follows that the total measure mR of the set of points of SR covered
by the union of the sets N ′(x

(1)
k ) is less than Mπ. By the choice of R0 (see

(12)), the inequalities
mR < Mπ < 2πR0

hold, hence if R = |x(1)| ≥ R0, then there exists an open subset of the circle

SR not covered by the union of the sets N ′(x
(1)
k ). As was mentioned above,

the points (Akx)(1) form a dense subset of SR, hence there exists a point

(Akx)(1) not belonging to the union of the sets N ′(x
(1)
k ). This means that

there exists m ∈ Z such that inequality (7) is valid for no indices k(m). The
lemma is proved.

Lemma 3. Assume that the matrix A has the form A=diag (Λ, B), where
Λ is a diagonal l × l matrix,

Λ = diag(λ1, . . . , λl),

such that |λi| = 1, i = 1, . . . , l, and B is a hyperbolic matrix. If µ1, . . . , µn−l

are the eigenvalues of B, then either

|µj| < 1, j = 1, . . . , n− l, (13)
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or
|µj| > 1, j = 1, . . . , n− l. (14)

Proof. To get a contradiction, assume that A has the form

A = diag(Λ, B, C), (15)

where the matrices B and C are hyperbolic, the eigenvalues of B satisfy
analogs of inequalities (13), and the eigenvalues of C satisfy analogs of in-
equalities (14). Standard arguments (see [1], for example) show that it is
possible to choose coordinates so that the inequalities

||B|| < 1 and
∣

∣

∣

∣

∣

∣C−1
∣

∣

∣

∣

∣

∣ < 1 (16)

hold, where ||.|| is the operator norm.
Let d > 0 correspond to ε = 1 in the definition of the 2WSP. Let B be

an l1 × l1 matrix and let C be an l2 × l2 matrix. Represent

Cn = Cl × Cl1 × Cl2

according to the form (15) of the matrix A and let us write x ∈ Cn as follows:
x = (v, v(1), v(2)), where

v ∈ Cl, v(1) ∈ Cl1 , and v(2) ∈ Cl2 .

Fix two vectors
v′ ∈ Cl1 and v′′ ∈ Cl2

with |v′| = |v′′| = 1 and consider a sequence ξ = {xk ∈ Cn : k ∈ Z}
constructed as follows:

xk =
(

vk, B
kv′, Ckv′′

)

,

where v
(i)
k , the ith component of vk, is defined by

v
(i)
k =

kd

2
λk

i .

It is easy to see that ξ is a d-pseudotrajectory of ϕ.
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By the choice of d, there exists a point x ∈ Cn with the following property:
for any m ∈ Z we can find an index k(m) such that inequality (7) is valid.

If x = (y, y′, y′′) and y(i) is the ith component of y, then the inequalities
∣

∣

∣

∣

∣

y(i) −
k(m)d

2
λ

k(m)
i

∣

∣

∣

∣

∣

< 1, i = 1, . . . , l, (17)

∣

∣

∣Bmy′ − Bk(m)v′
∣

∣

∣ < 1, (18)

and
∣

∣

∣Cmy′′ − Ck(m)v′′
∣

∣

∣ < 1 (19)

hold for all m ∈ Z.
It follows from inequalities (17) that the sequence {k(m)} is bounded. If

y′ 6= 0, then inequalities (16) and (18) imply that k(m) → −∞ as m→ −∞.
Similarly, if y′′ 6= 0, then inequalities (16) and (19) imply that k(m) → ∞ as
m → ∞. Thus, it remains to consider the case y′ = 0, y′′ = 0. In this case,
we get a contradictory pair of inequalities

∣

∣

∣Bk(m)v′
∣

∣

∣ < 1 and
∣

∣

∣Ck(m)v′′
∣

∣

∣ < 1

(recall that |v′| = |v′′| = 1). The obtained contradiction proves our lemma.

Theorem 1. A diffeomorphism ϕ(x) = A′x of Cn has the 2WSP if and
only if the matrix A′ has a Jordan form A satisfying one of the following
conditions:

(1) A is a hyperbolic matrix;
(2) there exists a natural number m such that either
(2.1) Am = E, where E is the identity matrix,
or
(2.2) Am=diag (E,B), where the eigenvalues of B satisfy either condition

(13) or condition (14).

Proof. 1. Necessity. Assume that a diffeomorphism ϕ(x) = A′x has the
2WSP.

If the matrix A′ is not hyperbolic, then either A′ = Λ, where every eigen-
value λ of Λ satisfies the condition |λ| = 1, or A′ has a Jordan form A such
that A = diag (Λ, C), where Λ is as above, while the matrix C is hyperbolic.
In both cases, it follows from Lemmas 1 – 3 that there exists a natural number
m such that Am satisfies either condition (2.1) or condition (2.2).
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2. Sufficiency. It was noted above that if A is a Jordan form of A′, then
the diffeomorphisms ϕ(x) = A′x and ϕ′(x) = Ax have or do not have the
2WSP simultaneously. In addition, it is easy to see that if, for some natural
m, the diffeomorphism ψ(x) = Amx has the 2WSP, then the diffeomorphism
ϕ(x) = Ax has the same property. Thus, it is enough to consider a matrix
A satisfying either condition (1) of our theorem or an analog of conditions
(2.1) or (2.2) (with Am replaced by A).

It is well known (see [1, Theorem 3.2.1], for example) that if A is a hyper-
bolic matrix, then the diffeomorphism ϕ(x) = Ax has the usual shadowing
property, hence it has the 2WSP.

It is easy to see that if A = E (i.e., if ϕ=id), then ϕ has the 2WSP.
Thus, it remains to consider a diffeomorphism ϕ(x) = Ax, where the

matrix A satisfies an analog of condition (2.2). Represent

Cn = Cl × Cl1

according to the representation

A = diag(E,B)

and let x = (v, v′), where v ∈ Cl and v′ ∈ Cl1 . For definiteness, assume that
the eigenvalues of the matrix B satisfy an analog of condition (13).

Fix a positive ε. Since the diffeomorphism ψ(v′) = Bv′ has the usual shad-
owing property, there exists d > 0 such that if {v ′k} is a d-pseudotrajectory
of ψ, then there is a point v′ such that

|ψk(v′) − v′k| < ε/2, k ∈ Z. (20)

If ξ = {vk, v
′
k} is a d-pseudotrajectory of ϕ, then obviously {v ′k} is a d-

pseudotrajectory of ψ. Find a point v′ for which relations (20) hold. Since

∣

∣

∣ψk(v′)
∣

∣

∣ =
∣

∣

∣Bkv′
∣

∣

∣→ 0 as k → ∞,

there exists an index κ such that |v′κ| < ε. For the fixed point p = (vκ, 0) of
the diffeomorphism ϕ, the inclusion

O(p, ϕ) = {p} ⊂ N(ε, ξ)

holds. Thus, ϕ has the 2WSP. Our theorem is proved.

9



Remark. Note that, for a diffeomorphism ϕ(x) = Ax of Cn, the following
statements are equivalent:

(1) ϕ has the usual shadowing property;
(2) ϕ has the orbital shadowing property;
(3) ϕ has the first weak shadowing property;
(4) the matrix A is hyperbolic.
The equivalence of statements (1) and (4) was established by Morimoto [3]

(later his proof was refined by Kakubari [4], see also [1, Theorem 3.2.1]), the
equivalence of statements (2), (3) and (4) follows from the proof of Theorem
3.2.1 of [1].

3. Open sets related to the 2WSP.

Let M be a closed smooth n-dimensional manifold with a Riemannian
metric dist. As before, we denote by N(a, A) the a-neighborhood of a set
A ⊂M .

Let us introduce two classes of diffeomorphisms related to the 2WSP.
Let us say that a diffeomorphism ϕ has the uniform 2WSP if there exists

a neighborhood W of ϕ with respect to the C1 topology having the following
property: given ε > 0 we can find d > 0 such that if ξ = {xk} is a d-
pseudotrajectory of a diffeomorphism ψ ∈ W , then there is a point x ∈ M
such that

O(x, ψ) ⊂ N(ε, ξ).

Denote by IU the set of diffeomorphims of M having the uniform 2WSP.
Let us say that a diffeomorphism ϕ has the Lipschitz 2WSP if there exist

two positive numbers d0 and L such that if ξ = {xk} is a d-pseudotrajectory
of ϕ with d ≤ d0, then there is a point x ∈M such that

O(x, ψ) ⊂ N(Ld, ξ).

Denote by IL the C1-interior of the set of diffeomorphims of M having the
Lipschitz 2WSP.

Theorem 2. If a diffeomorphism ϕ of M belongs to IU ∪ IL, then ϕ
satisfies Axiom A and the no-cycle condition.

Proof. Denote by F the set of diffeomorphisms ϕ having the following
property: there exists a C1-neighborhood W of ϕ such that any periodic
point of any diffeomorphism ψ ∈ W is hyperbolic. It was shown by Hayashi
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and Aoki [5,6] that any diffeomorphism ϕ ∈ F satisfies Axiom A and the
no-cycle condition.

We claim that IU ∪ IL ⊂ F . To get a contradiction, assume that there
exists a diffeomorphism ϕ ∈ (IU ∪ IL) \ F . Note that the set IU is C1-open,
hence the set IU ∪ IL is C1-open. Take a C1-neighborhood W of ϕ lying in
IU ∪ IL and find a diffeomorphism ϕ′ ∈ W having a nonhyperbolic periodic
point p. Let m be the period of p.

Passing from ϕ′ to its C1-small perturbation ϕ′′, we may assume that the
derivative D(ϕ′′)m(p) has an eigenvalue equal to 1.

First let us assume that m = 1. In this case, it is easy to see that we can
find a diffeomorphism ψ ∈ W having the following properties:

- there is a neighborhood U of p with local coordinates y = (y1, . . . , yn)
such that p is the origin;

- there is a number a > 0 such that, for y ∈ U with |y| < a,

ψ(y) = (y1, By
′),

where y′ = (y2, . . . , yn), and B is a hyperbolic matrix (here and below, |.| is
the Euclidean norm with respect to the corresponding local coordinates).

Standard reasons show that we can find a positive number b0 with the
following property: for any b ∈ (0, b0) there is a diffeomorphism ψb ∈ W such
that

ψb(y) = (y1 + by2
1, By

′) for |y| < a (21)

with respect to the coordinates y introduced above.
Let us first consider the case where the initial diffeomorphism ϕ ∈ IU

(and hence we can choose our neighborhood W belonging to IU). In this
case, we may assume that W has the property described by the definition of
the uniform 2WSP. Fix ε = a/2. Assume that there exists the corresponding
d (suitable for any diffeomorphism inW ). Take b ∈ (0, b0) such that ba2 < 4d.
Consider the sequence ξ = {xk}, where

xk =
(

yk
1 , . . . , y

k
n

)

with yk
1 =

a

2
and yk

j = 0, j = 2, . . . , n.

It follows from (21) that

|ψb(xk) − xk+1| =
ba2

4
. (22)
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By the choice of b, ξ is a d-pseudotrajectory of ψb. Formula (21) implies that
the only complete trajectory of ψb in the neighborhood N(a, 0) (with respect
to the coordinates y) is the fixed point y = 0, hence the a/2-neighborhood
of ξ contains no complete trajectories of ψb. The obtained contradiction
completes the consideration of the case ϕ ∈ IU .

Now we consider the case where the initial diffeomorphism ϕ ∈ IL (and
hence we can choose our neighborhood W belonging to IL). Fix a number
b ∈ (0, b0) and take d0 and L such that ψb has the Lipschitz 2WSP with these
constants. Take a positive number c0 < 1/2 such that 2ba2c20 < d0. Then,
for any c ∈ (0, c0), the sequence ξ = {xk}, where

xk =
(

yk
1 , . . . , y

k
n

)

with yk
1 = ac and yk

j = 0, j = 2, . . . , n,

is a 2ba2c2-pseudotrajectory of ψb. By our assumption, there exists a point
x such that

O(x, ψ) ⊂ N(2Lba2c2, ξ).

It was noted that the fixed point y = 0 is the only complete trajectory of ψb

in the neighborhood N(a, 0), hence the inequality

ca ≤ 2Lba2c2

holds for any c ∈ (0, c0). Since the latter inequality cannot hold for all small
c, we again get a contradiction.

To complete the proof, let us consider the case m > 1. We treat in detail
only the case ϕ′ ∈ IU .

Standard reasons show that we can find a diffeomorphism ψ ∈ W having
the following properties:

(1) p is a periodic point of ψ of period m (we denote pi = ψi(p), i =
0, . . . , m);

(2) if λ1, . . . , λn are the eigenvalues of the derivative Dψm(p), then λ1 = 1
and |λj| 6= 1 for j = 2, . . . , n;

(3) we can introduce local coordinates y = (y1, . . . , yn) in disjoint neigh-
borhoods Ui of the points pi (our notation of coordinates is the same for all
i but this will lead to no confusion) so that pi is the origin in Ui, and

(3.1) if L0 is the subspace of the tangent space TpM (identified with Rn)
corresponding to the eigenvalue λ1 ofDψm(p), then the spaces Li = Dψi(p)L,
i = 0, . . . , m− 1, coincide with the subspaces

{y : y2 = · · · = yn = 0}
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in the coordinates of the corresponding neighborhoods;
(3.2) there is a number a > 0 such that the mapping f (i), the restriction

of ψ to the set U ′
i = Ui ∩ {|y| < a}, maps U ′

i into Ui+1 (of course, Um = U0)
and is given by the formula

f (i)(y) = (giy1, Biy
′),

where y′ = (y2, . . . , yn).
Since ψ is a diffeomorphism, gi 6= 0, i = 0, . . . , m− 1. It follows from (2),

(3.1), and (3.2) that g0g1 · · · gm−1 = 1 and that the matrix B = Bm−1 · · ·B0

is hyperbolic (its eigenvalues are λ2, . . . , λn). Let

G1 = min
0≤i≤m−1

|gigi−1 · · · g0|, G2 = max
0≤i≤m−1

|gigi−1 · · · g0|, and G =
G1

G2

.

There exists a positive number b0 with the following property: for any
b ∈ (0, b0) there is a diffeomorphism ψb ∈ W coinciding with ψ outside Um−1

and such that fb(y), the restriction of ψb to the set U ′
m−1, is given by the

formula
fb(y) = (y1 + by2

1, Bm−1y
′). (23)

Assume that W has the property described in the definition of the uniform
2WSP, fix ε = aG/2, and find the corresponding d. Take b ∈ (0, b0) such that
ba2 < 4d. Consider the sequence ξ = {xk} constructed as follows. Represent
a number k ∈ Z in the form k = mj + i, where j, i ∈ Z and 0 ≤ i ≤ m− 1.
Let xk be the point of the neighborhood Ui with coordinates

y1 = gi−1 · · · g0
a

2G2
, yt = 0, t = 2, . . . , n.

Note that, for any point xk, its first coordinate y1 satisfies the inequalities

ε = G1
a

2G2
≤ |y1| ≤ G2

a

2G2
=
a

2
. (24)

If i 6= m− 1, then ψb(xk) = xk+1. If i = m− 1, then

|ψb(xk) − xk+1| ≤ b (gm−2 · · · g0)
2 a2

4G2
2

≤ b
a2

4
,

hence ξ is a d-pseudotrajectory of ψb.
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Formula (23) implies that the trajectory of the periodic point p is the
only complete trajectory of ψb belonging to the union of the sets U ′

i , hence it
follows from inequalities (24) that the set N(ε, ξ) contains no complete tra-
jectories of ψb. The obtained contradiction completes the proof of Theorem
2.

Denote by IUL the set of diffeomorphisms ϕ having the following property:
there exists a C1-neighborhood W of ϕ and two positive numbers d0 and L
such that any diffeomorphism ψ ∈ W has the Lipschitz 2WSP with constants
d0 and L. Obviously, IUL is an open subset of IU ∩ IL. By Theorem 2, any
diffeomorphism ϕ ∈ IUL satisfies Axiom A and the no-cycle condition.

Denote by SS the set of structurally stable diffeomorphisms.

Theorem 3. There exist diffeomorphisms belonging to IUL \ SS.

To prove this theorem, we need the following statement (a corollary of [1,
Theorem 1.2.5]).

Lemma 4. Let p be a hyperbolic fixed point of a diffemorphism ϕ. There
exist neighborhoods W (p) of ϕ in the C1 topology and U(p) of the point p
in M and positive numbers d(p) and L(p) having the following property. If
{xk} is a d-pseudotrajectory of a diffeomorphism ψ ∈ W (p) with d ≤ d(p)
and there exists a number l such that the inclusions xk ∈ U(p) hold for k ≥ l,
then there is a point x satisfying the inequalities

dist
(

ψk(x), xk+l

)

≤ L(p)d, k ≥ 0.

Proof of Theorem 3. Let ϕ be an Ω-stable diffeomorphism such that its
nonwandering set Ω(ϕ) consists of fixed points. We claim that ϕ ∈ IUL.

Since the set Ω(ϕ) is hyperbolic [7], it consists of a finite number of fixed
points, let

Ω(ϕ) = {p1, . . . , pN}.

Apply Lemma 4 and find the corresponding neighborhoods W (pi), U(pi),
and numbers d(pi), L(pi), i = 1, . . . , N . Let

W1 =
⋂

1≤i≤N

W (pi), d1 = min
1≤i≤N

d(pi), and L1 = max
1≤i≤N

L(pi).

It is easy to see that we can find the neighborhoods U(pi) and W1 (decreasing
them, if necessary) so that there exists a number ε > 0 such that, for any

14



i, any diffeomorphism ψ ∈ W1 has a unique fixed point p′i ∈ U(pi) and, in
addition,

Ω(ψ) ∩N(ε, U(pi)) = {p′i}. (25)

Since the diffeomorphism ϕ is Ω-stable, there exists a continuous Lya-
punov function

V : M → [1, N ]

such that

V (ϕ(x)) ≤ V (x), and V (ϕ(x)) = V (x) if and only if x ∈ Ω(ϕ)

(see [8]). Set
M ′ = M \

⋃

1≤i≤N

U(pi).

The set M ′ is compact, hence there exists a positive number a such that

V (ϕ(x)) − V (x) ≤ −3a for x ∈M ′. (26)

The continuous function V is uniformly continuous on M , hence there
exists a positive number δ such that |V (x) − V (y)| < a for x, y ∈ M with
dist(x, y) < δ. Find a C1-neighborhood W ′ of ϕ such that dist(ϕ(x), ψ(x)) <
δ for x ∈M and ψ ∈ W ′.

Set

d0 = min
(

d1,
ε

L1 + 1
, δ
)

.

Let us show that W = W1 ∩ W ′, d0, and L = L1 + 1 have the property
described in the definition of the set IUL. Fix a diffeomorphism ψ ∈ W and
let ξ = {xk} be a d-pseudotrajectory of ψ such that d ≤ d0.

The choice of W and d0 implies the inequalities

V (xk+1) − V (xk) = V (xk+1) − V (ψ(xk)) + V (ψ(xk)) − V (ϕ(xk))+

+V (ϕ(xk)) − V (xk) < −a. (27)

Since the function V is bounded, it follows from inequalities (27) that the
set {k : xk ∈M ′} is finite, hence there exists an index l and a neighborhood
U(pj) such that the inclusions xk ∈ U(pj) hold for k ≥ l.

By Lemma 4, there exists a point x such that

dist
(

ψk(x), xk+l

)

≤ L1d, k ≥ 0. (28)
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Since L1d < ε, the points ψk(x), k ≥ 0, belong to N(ε, U(pj)), and it follows
from relation (25) that

ψk(x) → p′j as k → ∞.

Hence, there exists an index m > 0 such that

dist
(

ψm(x), p′j
)

< d. (29)

It follows from inequalities (28) and (29) that

O(p′j, ψ) = {p′j} ∈ N(Ld, xl+m).

Hence, ϕ ∈ IUL. To complete the proof, it remains to note that there exist
structurally unstable Ω-stable diffeomorphisms with nonwandering set Ω(ϕ)
consisting of fixed points.

Let us describe some differences between the 1WSP and 2WSP.
It was mentioned in the proof of Theorem 1 that the mapping ϕ(x) = x

has the 2WSP (for any phase space). It is easy to see that, for any manifold
M with dimM > 1, the identity mapping does not have the 1WSP.

We do not have an example of a system having the 2WSP and not having
the 1WSP but it is possible to find such examples for “uniform” variants of
these properties. Let us define the uniform 1WSP similarly to the uniform
2WSP (see the beginning of this section).

It was noted in [9] that Mañé constructed in [10] a C1-open set O of
diffeomorphisms of the three-dimensional torus T 3 with the following prop-
erties:

– any diffeomorphism ϕ ∈ O has a dense trajectory (it is easy to see that
in this case any ϕ ∈ O has the uniform 1WSP);

– any diffeomorphism ϕ ∈ O is not Anosov (hence it is not Ω-stable).
It follows from Theorem 3 that any ϕ ∈ O has the uniform 1WSP and

does not have the uniform 2WSP.
Let us also mention a diffeomorphism ϕ of the two-dimensional torus T 2

studied in [11] (see also [1, Section 2.3]). The nonwandering set Ω(ϕ) consists
of 4 hyperbolic fixed points,

Ω(ϕ) = {p1, p2, p3, p4},
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where p1 is a sink, p4 is a source, and p2, p3 are saddles such that

W s(p2) ∪ {p3} = W u(p3) ∪ {p2}

(i.e., ϕ has the so-called saddle connection). It is assumed that the eigen-
values of Dϕ(p2) are −µ, ν with µ > 1, 0 < ν < 1, and the eigenvalues of
Dϕ(p3) are −λ, κ with κ > 1, 0 < λ < 1 (in addition, it is assumed that ϕ
satisfies some local linearity conditions).

It follows from the results of [12] that ϕ does not have the usual shadowing
property. Plamenevskaya showed that ϕ has the WSP if and only if the value
log(µ)/ log(ν) is irrational. Since ϕ satisfies the no-cycle condition, ϕ is Ω-
stable, and it follows from the proof of Theorem 3 that ϕ ∈ IUL. Thus,
the usual shadowing property, the weak shadowing property, and the second
weak shadowing property are related to quite different characteristics of ϕ.

In this connection, let us also note the following statement proved in [9]:
the C1-interior of the set of diffeomorphisms of a closed surface having the
WSP consists of structurally stable diffeomorphisms.

4. C1-interior of the set of diffeomorphisms having the OSP.

In this section, we prove the following result.

Theorem 4. If ϕ is in the C1-interior of the set of diffeomorphisms
having the OSP, then ϕ is structurally stable.

Proof. Denote by IO the C1-interior of the set of diffeomorphisms ϕ
having the OSP.

First we claim that IO ⊂ F . To get a contradiction, assume that there
exists ϕ ∈ IO \ F . Take a neighborhood W of ϕ lying in IO and find a
diffeomorphism ϕ′ ∈ W having a nonhyperbolic periodic point q of period
m. We assume that D(ϕ′)m(q) has an eigenvalue equal to 1 (see the proof
of Theorem 3). To simplify presentation, we assume that m = 1 (the case of
a periodic point of minimal period m > 1 is considered similarly) and write
ϕ instead of ϕ′. Applying a C1-small perturbation (so that the perturbed
diffeomorphism denoted again by ϕ belongs toW ), we may assume that ϕ has
the following property. With respect to some local coordinates (x1, . . . , xn),
q is the origin and there exists a number a > 0 such that ϕ maps a point
x = (x1, y) with |x| < 4a, where y = (x2, . . . , xn), to the point (x1, By),
where B is a hyperbolic matrix.
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In this case, the segment

∆ = {(x1, 0, . . . , 0) : 0 < |x1| < 4a}

consists of fixed points of ϕ
It was assumed that ϕ is in the C1-interior of the set of diffeomorphisms

having the OSP. Take ε = a and find the corresponding d < ε from the
definition of the OSP. There exists a natural numberm such that the sequence
ξ = {xk : k ∈ Z}, where

xk =











0 for k < 0,
(2ak/m, 0, . . . , 0) for 0 ≤ k ≤ m,
(2a, 0, . . . , 0) for k > m,

is a d-pseudotrajectory of ϕ. Let x ∈ N(ε, x0) be a point such that

distH

(

ξ, O(x, ϕ)
)

< ε.

Since the matrix B is hyperbolic, for any point (x1, y) with y 6= 0, its
trajectory leaves the set {|x| < 4a}, hence the inclusion

O(x, ϕ) ⊂ N(2a, ξ)

implies that x = (b, 0, · · · , 0).
The inclusion

ξ ⊂ N(ε, O(z, ϕ))

implies that |b| < a and |b − 2a| < a. The obtained contradiciton proves
that IO ⊂ F , hence any diffeomorphism ϕ ∈ IO satisfies Axiom A and the
no-cycle condition (and hence ϕ is Ω-stable).

It is known [6] that to establish the structural stability of a diffeomor-
phism ϕ ∈ IO it remains to prove the following statement: if p and q are
periodic points of ϕ, then their stable manifold W s(p) and unstable manifold
W u(q) are transverse.

To get a contradiction, let us assume that there is a diffeomorphism ϕ ∈
IO having periodic points p and q and a point r of nontransverse intersection
of W s(p) and W u(q). Note that in this case the point r is wandering (stable
and unstable manifolds of points of Ω are always transverse for an Ω-stable
diffeomorphism) and p and q are in different basic sets.
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To simplify presentation, we assume that p and q are fixed points.
First let us show that, for any C1-neighborhood W of ϕ, it is possible to

find a diffeomorphism ψ ∈ W with the following properties:
– p and q are fixed points of ψ;
– ψ is linear in a neighborhood of p;
– r is a point of nontransverse intersection of the stable manifold W s(p, ψ)

of p with respect to ψ and the unstable manifold W u(q, ψ) of q with respect
to ψ.

Indeed, let us introduce local coordinates x near p so that p is the origin.
Then, for any δ > 0, we may use the standard (bump function) procedure to
linearize ϕ in N(δ, 0) so that there exists a diffeomorphism ϕδ such that

– ϕδ(x) = ϕ(x) for x /∈ N(4δ, 0)
and
– ϕδ(x) = Dϕ(p)x for x ∈ N(δ, 0).
Standard estimates show that ϕδ converges to ϕ as δ → 0 with respect

to the C1-topology. Then, for any fixed a > 0, the local stable manifold
W s

a (p, ϕδ) of size a converges to W s
a (p, ϕ) as δ → 0 with respect to the C1-

topology.
Fix a small neighborhood U of p not containing the point r and find a > 0

such that W s
a (p, ϕ) and W s

a (p, ϕδ) for small δ are in U . Fix a natural number
m such that ϕm(r) ∈ W s

a (p, ϕ).
Since the point r is wandering, there exists a small neighborhood V of r

such that
ϕk(V ) ∩ V = ∅

for k 6= 0.
It follows from our considerations above (since m is fixed) that

ϕ−k
δ (W s

a (p, ϕδ)) → ϕ−k(W s
a (p, ϕ))

for k = 0, . . . , m as δ → 0 with respect to the C1-topology.
Hence, it is possible to construct diffeomorphisms ψδ such that
– ψδ(x) = ϕ(x) for x /∈ V ;
– ψδ maps the intersection ϕ−m(W s

a (p, ϕ)) ∩ V to ϕ−m+1
δ (W s

a (p, ϕδ)) ∩
ϕ(V );

– ψδ → ϕ as δ → 0 with respect to the C1-topology.
It follows that we can find a diffeomorphism ψ with the desired properties

in any C1-neighborhood of ϕ. In what follows, we denote ψ again by ϕ (and
we do the same after C1-small modifications of ϕ described below).
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In the following proof, we have to consider various types of behavior
of ϕ near the fixed point p. Let us select the case to which we pay the
main attention. We consider this case in detail (and describe the necessary
modifications for the remaining cases).

Let Σ be the spectrum ofDϕ(p). Denote dimW s(p) = s and dimW u(p) =
u (s+ u = dimM).

Case 1. The relation

Σ ∩ {λ ∈ C : |λ| > 1} ⊂ R (30)

and the inequality u ≥ 2 hold.
By (30), in local coordinates (y; z) in a neighborhood U of p, the matrix

Dϕ(p) has the block-diagonal form Dϕ(p) = diag(A,B), where ||A|| < 1,
||(B)−1|| < 1, and the eigenvalues of B are real. Applying an arbitrarily
C1-small perturbation of ϕ, we may assume that

B =







λ1 O
. . .

O λu





 ,

where 1 < |λ1| < · · · < |λu|.
Note that we use the notation (y; z), where the coordinate y is s-dimensio-

nal and the coordinate z is u-dimensional.
Let Es = {z = 0} and Eu = {y = 0}. Obviously, the component of the

intersection W s(p)∩U containing p belongs to Es and the component of the
intersection W u(p) ∩ U containing p belongs to Eu.

Take a > 0 such that if |(y; z)| < 4a, then (y; z) ∈ U . We may assume that
that our point r of nontransverse intersection satisfies the inequality |r| < a
with respect to our local coordinates. Let r′ = ϕ−1(r), let L = TrW

u(q), and
let L1 be the affine space L1 = L+ r.

We consider a C1-small perturbation of ϕ (again denoted ϕ) with the
following property:

– there exists a small open (with respect to the inner topology of W u(q))
disk C ⊂ W u(q) such that r′ ∈ C and

ϕ(C) ⊂ L1. (31)

The nontransversality of W u(q) and W s(p) at r means that

TrM 6= L + Es.

20



In other words, if L′ is the projection of L to Eu parallel to Es, then the
nontransversality means that dimL′ < u.

The latter inequality allows us to modify ϕ (for the last time) and assume
that the following statement holds:

L′ ∩ {z2 = . . . = zu = 0} = {0} (32)

(here z1, . . . , zu are the coordinates in Eu).
It is easy to see that there exists a constant c > 0 such that

|z1|

|z2| + . . .+ |zu|
≤ c (33)

if z = (z1, . . . , zu) ∈ L′ \ {0}.
For ε > 0, let Cu(ε, r) be the connected component of W u(q) ∩ N(ε, r)

containing r.
Then Cu(ε, r) ⊂ ϕ(C) ⊂ L1 if ε is small enough.
Let Ω1 and Ω2 be the basic sets of ϕ containing q and p, respectively. Let

E1 be the line {z2 = . . . = zu = 0} in Eu through p.
Case 1 is divided into two subcases.
Case 1.1. (E1 ∩ U) \ Ω 6= ∅.
Since the line E1 is ϕ-invariant in U , there are wandering points of ϕ in

any neighborhood of p. Let us assume for definiteness that

ζ = (0; a, 0, . . . , 0) /∈ Ω.

In this case, there exists a basic set Ω3 such that ζ ∈ W s(Ω3) (we denote
by W s(Ωi) and W u(Ωi) the stable and unstable manifolds of a basic set Ωi).
Note that Ω3 is different from Ω1 and Ω2.

Assume that the point r has coordinates r = (ry; 0).
For a natural number m, put ζm = (ry; aλ1

−m, 0, . . . , 0). Then

ϕk(ζm) = (Akry; aλ1
k−m, 0, . . . , 0)

for 0 ≤ k ≤ m−1. Consider a sequence ξm = {xk : k ∈ Z} defined as follows:

xk =











ϕk(r) for k < 0,
ϕk(ζm) for 0 ≤ k ≤ m− 1,
ϕk−m(ζ) for k ≥ m.
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It follows from our assumptions that for any d > 0 there exists m0 > 0 such
that if m ≥ m0, then ξm is a d-pseudotrajectory of ϕ.

Lemma 5.There exists ε0 > 0 such that if

distH

(

ξm, O(x, ϕ)
)

< ε (34)

for some ε ∈ (0, ε0) and x, then

O(x, ϕ) ∩N(ε, r) ⊂ Cu(ε, r).

To prove Lemma 5, we need some preliminaries. The following statement
is well known.

Lemma 6. If Ωi is a basic set of an Ω-stable diffeomorphism ϕ, then for
any α > 0 there exists β > 0 such that if

x ∈ W u(Ωi) ∩N(β,Ωi),

then
O−(x, ϕ) ⊂ N(α,Ωi).

Here and below,
O−(x, ϕ) and O+(x, ϕ)

are the negative semi-trajectory and the positive semi-trajectory of x, re-
spectively.

Proof (of Lemma 5.) Consider a Lyapunov function V applied in the
proof of Theorem 3. Since V is constant on basic sets, we denote by Vi the
value of V on a basic set Ωi. Since

r ∈ W u(Ω1) ∩W
s(Ω2) and ζ ∈ W u(Ω2) ∩W

s(Ω3),

we can find a positive number α such that

V1 − V2, V2 − V3 > 2α.

Decreasing the number a chosen above, we may assume that

V2 − α < V (x) < V2 + α (35)

for x ∈ N(4a, p).
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Consider a d-pseudotrajectory ξm constructed above and denote vk =
V (xk). Since V decreases along trajectories, we have the inequalities

vk < vm for k > m

and
vk > v0 for k < 0.

In addition, vm < V2 < v0 since x0 ∈ W s(p) and xm ∈ W u(p). Hence, if a
point x′ is close to x0 = r, then V (x′) > V2 > V3, and it follows that

x′ ∈ W u(Ωi), (36)

where i 6= 2, 3.
Obviously (under a proper choice of a) there exists δ > 0 such that if

i /∈ {1, 2, 3}, then
dist(xk,Ωi) ≥ δ

for all k. Hence, if i 6= 1 in (36), then inequality (34) cannot hold for small
ε > 0.

Thus, it is enough to consider the case of a point

x′ ∈ O(x, ϕ) ∩W s(Ω1) ∩N(ε, r).

Since V1 ≥ V2+2α and vk ≤ V2+α (see (35)), there exists a positive constant
β such that

xk /∈ N(2β,Ω1) for k ≥ 0. (37)

The Stable Manifold Theorem implies that there exists ε1 > 0 such that
for any l1 < 0 we can find E = E(ε1, l1) with the following property: for any
ε ∈ (0, E(ε1, l1)) and for any

x′ ∈ N(ε, r) \ Cu(ε, r) (38)

there exists l < l1 such that

ϕl(x′) /∈ N(2ε1, q). (39)

Find l2 < 0 such that

ϕk(r) ∈ N(ε1,Ω1) for k < l2 (40)
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and denote
2γ = min

l2≤k≤0
dist(ϕk(r),Ω).

Obviuosly, γ > 0. It follows from Lemma 6 that there exist ε2 > 0 and l3 < 0
such that

ϕl(x′) ∈ N(min(β, γ),Ω1) (41)

for any x′ ∈ N(ε2, r) ∩W
u(Ω1) and any l ≤ l3.

Set
ε3 = min(ε1, β, γ) and l4 = min(l2, l3).

Take 0 < ε0 < min(E(ε1, l4), ε2, ε3). We claim that this ε0 has the desired
property.

Fix ε ∈ (0, ε0), take a point x′ such that (38) holds, and find l < l4 such
that (41) is satisfied. Let x′′ = ϕl(x′).

Relations (37) and (41) imply that

dist(x′′, xk) ≥ β for k ≥ 0.

Relation (41) and the definition of γ imply that

dist(x′′, xk) ≥ γ for l2 ≤ k ≤ 0.

Finally, relations (39) and (40) imply that

dist(x′′, xk) ≥ ε1 for k ≤ l2.

Hence,
distH

(

O(x, ϕ), ξm
)

≥ ε3 > ε.

Lemma 5 is proved.
The inclusions

ζ ∈ W s(Ω3) and r ∈ W s(Ω1)

imply that there exists a number γ > 0 such that

dist(x, χ) ≥ γ

for any point
x ∈ O+(ζ, ϕ) ∪O−(r, ϕ)

and any point χ = (0; z1, . . . , zu) with |zi| ≤ γ.
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It follows from the construction of ξm that there exists ε > 0 such that
the set

I =

{

(y; z) : |y| < ε; |z1| < ε;
γ

|λu|
≤ |z2| + . . .+ |zu| ≤ γ

}

has the following property:

dist(xk, I) > ε, k ∈ Z. (42)

It was assumed that ϕ has the OSP, hence there exists m0 such that for
any m ≥ m0 there is a point ηm = (rm;χm) such that

distH

(

ξm, O(ηm, ϕ)
)

< ε. (43)

Of course, we may assume that ηm ∈ N(ε, r). Applying Lemma 5 (and
decreasing ε if necessary), we see that ηm ∈ Cu(ε, r) for m ≥ m0, hence

ηm = (rm; z1,m, . . . , zu,m) ∈ L1

for large m. By (33), η′m := |z2,m| + . . . + |zu,m| 6= 0. Since the OSP implies
that η′m → 0 as m→ 0, there exist numbers k(m) such that ϕk(ηm) ∈ {|x| ≤
4a} for 0 ≤ k ≤ k(m),

γ

|λu|
≤ |λ2|

k(m)|z2,m| + . . .+ |λu|
k(m)|zu,m| ≤ γ,

and k(m) → ∞ as m→ ∞.
Since

ϕk(m)(ζm) =
(

Ak(m)rm;λ
k(m)
1 z1,m, . . . , λ

k(m)
u zu,m

)

and
|z1,m||λ1|

k(m)

|z2,m||λ2|k(m) + . . .+ |zu,m||λu|k(m)
≤

≤
|z1,m||λ1|

k(m)

η′m|λ2|k(m)
≤ c

∣

∣

∣

∣

∣

λ1

λ2

∣

∣

∣

∣

∣

k(m)

→ 0

as m → ∞, the points ϕk(m)(ηm) ∈ I for large m. We get the desired
contradiction with inequality (43).

Now let us consider the following case.
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Case 1.2. E1∩U ⊂ Ω. Note that in this case the basic set Ω2 is nontrivial,
i.e., it contains an infinite set of different periodic points.

Consider the cone

K = {(y; z) : |z2| + . . .+ |zu| < |z1|/4}.

Obviously, there exists an open (with respect to the interior topology of
W u(p)) disk D ⊂ W u(p) centered at the point ζ = (0; a, . . . , 0) such that
D ⊂ K ∩ Eu.

By our assumption, the point ζ is nonwandering, hence ζ is a point of
transverse intersection of W u(p) with the stable manifold W s(p0) of some
point p0 ∈ Ω. Periodic points are dense in Ω, hence there is a sequence of
periodic points pk converging to p0. Since the stable manifolds of pk tend (in
the C1-topology) to W s(p0) (on compact subsets with respect to the inner
topology), there exists a periodic point p′ 6= p and a point

ζ = (0; z′1, . . . , z
′
u) ∈ W s(p′) ∩D.

We fix these points p′ and ζ and do not change them in the following below
process of constructing pseudotrajectories ξm. Note that z′1 6= 0.

Note that since p 6= p′, there exists b > 0 such that

dist(ϕk(ζ), p) ≥ b for k ≥ 0.

Fix a natural number m, denote

ζm =
(

ry; z
′
1λ

−m
1 , . . . , z′uλ

−m
u

)

,

and define a sequence ξm by the same formulas as in case 1.1.
The same reasons as in case 1.1 prove an analog of Lemma 5 for ξm.
Since

|λ−k
2 z′2| + . . .+ |λ−k

u z′u|
∣

∣

∣λ−k
1 z′1

∣

∣

∣

≤
|z′2| + . . .+ |z′u|

|z′1|

for 0 ≤ k ≤ m, the inclusions ϕk(ζm) ∈ K hold for k ≥ 0, Hence, we can
find ε > 0 such that the set I defined by the same formula as in case 1.1 has
property (42). We complete the proof in case 1.2 similarly to the previuos
case.
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Case 2. The equality dimW u(p) = 1 holds. In this case, the matrix Dϕ(p)
has exactly one eigenvalue λ such that |λ| > 1; of course, λ is real.

In the notation of case 1, the nontransversality of W u(q) and W s(p) at r
means that

L ⊂ Es. (44)

Consider the point ζ = (0; a) (as previously, we assume that {|x| < 4a} ⊂
U).

First let us assume that ζ /∈ Ω. For a natural m, we take ζm = (0; aλ−m)
and define a pseudotrajectory ξm = {xm} similarly to case 1.1. An analog of
Lemma 5 shows that if ε > 0 is small enough and, for a point x, inequality
(34) holds, then

O(x, ϕ) ∩N(ε, p) ⊂ Cu(ε, r) ⊂ W s(p),

hence any shadowing trajectory belongs to W u(q) ∩W s(p). Obviously, this
leads to a contradiction.

The case ζ ∈ Ω is treated similarly.
Case 3. The matrix Dϕ(p) has complex eigenvalues λ such that |λ| > 1.

As previously, let Σ be the spectrum of Dϕ(p). Replacing ϕ by a C1-small
perturbation, we may assume that any circle Cµ = {|λ| = µ} ⊂ C of radius
µ > 1 such that Cµ ∩ Σ 6= ∅ contains either one simple real eigenvalue of
Dϕ(p) or two simple complex conjugated eigenvalues.

Let {µ1, . . . , µv} be the set of all radii of the mentioned circles Cµ num-
bered so that 1 < µ1 < . . . < µv. If the circle Cµ1

contains a real eigenvalue,
then the proof does not differ from the proof given in case 1.

Consider the case where the circle Cµ1
contains two eigenvalues

λ1,2 = µ1(cos θ ± i sin θ). (45)

Let Eu
1 be the two-dimensional subspace of Eu with real coordinate z′ =

(z1, z2) corresponding to the pair (45). Denote by Eu
2 the subspace with

coordinate z′′ = (z3, . . . , zu) corresponding to the remaining eigenvalues λ
with |λ| > µ1.

We assume that the matrix Dϕ(p) represented in the block-diagonal form
Dϕ(p) =diag(A,B1, B2) corresponding to the decomposition x = (y; z′, z′′)
has the following property: a scalar block corresponds to a real eigenvalue
and a (2 × 2)-block corresponds to a complex conjugated pair. Obviously,
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in this case the inequality |z′′| < β|z′| with β > 0 implies the inequalities
|B−k

2 z′′| < β|B−k
1 z′| for k ≥ 0.

Let Π be the projection to Eu = Eu
1 ⊕ Eu

2 parallel to Es. Denote by
Π1 and Π2 the projections to Eu

1 parallel to Eu
2 ⊕ Es and to Eu

2 parallel to
Eu

1 ⊕ Es, respectively.
Let

L′ = Π1TrW
u(q).

Since it was assumed that W s(p) and W u(q) are nontransverse at r, we may
perturb ϕ so that dimL′ <dimEu

1 = 2.
Case 3.1. dimL′ = 1. Replacing ϕ by a C1-small perturbation, we may

assume that, for the number θ in (45), the ratio θ/π is rational. Find a
natural number l such that

(cos θ ± i sin θ)l = 1. (46)

Geometrically, condition (46) means the following: there exist l lines E1 =
L′, E2, . . . , El in the 2-dimensional space Eu

1 such that the linear mapping
x 7→ Dϕ(p)x takes Ei to Ei+1 (where El+1 = E1).

Take a point ζ = (0; z∗1 , z
∗
2 , 0, . . . , 0) such that |ζ| = a and ζ does not

belong to the union E = E1 ∪ . . . ∪ El. Let E ′ be the line in Eu
1 containing

the origin and the point ζ. There exist l lines E ′
1 = E ′, E ′

2, . . . , E
′
l such

that the mapping x 7→ Df(p)x takes E ′
i to E ′

i+1 (where E ′
l+1 = E ′

1). Let
E∗ = E ′

1 ∪ . . . ∪ E
′
l .

Let ζ /∈ Ω. Fix a natural number m, let ζm = (ry;B
−m
1 (z∗1 , z

∗
2), 0, . . . , 0),

and define a pseudotrajectory ξm similarly to case 1.1. Find γ ∈ (0, a/2)
such that

dist(ϕk(ζ), p) ≥ 3γ for k ≥ 0

and
dist(ϕk(r), p) ≥ 3γ for k ≤ 0.

For a line Ei, consider the set

I(E1) =

{

x ∈ Ei :
γ

µv

≤ dist(x, p) ≤ γ

}

.

Let I1 = I(E1) ∪ . . . ∪ I(El).
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Denote by I2 the set

I2 =

{

(0; 0, 0, z′′) :
γ

µv

≤ |z′′| ≤ γ

}

.

Find a positive number β such that the cone

K = {(y; z′, z′′) : |z′′| < β|z′|}

has the following property:

Π2Ka ⊂

{

(0; 0, 0, z′′) : |z′′| <
γ

2µv

}

,

where
Ka = K ∩ {|x| ≤ a}.

There exists a number ε ∈ (0, γ) having the following properties:
– if Π1x ∈ I1, then dist(x, E∗) > ε;
– if |Π1x| ≤ γ and Π2x ∈ I2, then dist(x,K) > ε.
It was assumed that ϕ has the OSP, hence, for m large enough, there

exist points ηm ∈ N(ε, r) satisfying inequality (43).
It follows from our assumption concerning the structure of Dϕ(p) that

ϕk(ζm) ∈ K for 0 ≤ k ≤ m. (47)

An analog of Lemma 5 shows that if ε > 0 is small enough, then Π1ηm ∈
L′. Hence, while the inequality |ϕk(ηm)| < 4a holds, we have the inclusions
Π1ϕ

k(ηm) ∈ E.
It is easy to see that, for m large, there exist numbers k(m) → ∞ as

m→ ∞ such that

|Πϕk(m)(ηm)| ≤ γ for 0 ≤ k ≤ k(m)

and there exist indices j ∈ {1, 2} such that

γ

µv

≤ |Πjη
′
m| ≤ γ, (48)

where η′m = ϕk(m)(ηm).

29



If j = 1 in (48), then it follows from the inequality dist(Π1η
′
m, E

∗) > ε
that

dist(η′m, xk) > ε for 0 ≤ k ≤ m

(recall that Π1xk ∈ E∗ for 0 ≤ k ≤ m). Since |η′m| < 2γ, it follows from the
choice of γ and ε that dist(η′m, xk) > ε for all k, and we get a contradiction
with inequality (43).

If j = 2 in (48), then the inclusion Π2η
′
m ∈ I2 and the inequality |η′m| <

2γ < a imply that dist(η′m, K) > ε. Combining the latter inequality with
inclusions (47), we again get the desired contradiction with inequality (43).

If ζ ∈ Ω, we apply a similar construction parallel to the arguments of
case 2.2.

Case 3.2. dimL′ = 0. In this case, our arguments are the same as in case
2.

The theorem is proved.

Remark. An analog of Theorem 4 for the case of the usual shadowing
property was proved in [13] involving quite different ideas.
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