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Abstract

In this paper, we study global attractors for implicit discretizations
of a semilinear parabolic system on the line.

It is shown that under usual dissipativity conditions there exists a
global (Z,, Z,)-attractor A in the sense of Babin, Vishik and Mielke,
Schneider. Here Z, is a weighted Sobolev space of infinite sequences
with a weight that decays at infinity, while the space Z, carries a
locally uniform norm obtained by taking the supremum over all Z,
norms of translates. We show that the absorbing set containing .4 can
be taken uniformly bounded (in the norm of Z,) for small time and
space steps of the discretization.

We establish the following upper semicontinuity property of the
attractor A for a scalar equation: if Ay is the global attractor for
a discretization of the same parabolic equation on the finite segment
[-N, N] with Dirichlet boundary conditions, then the attractors Ay
(properly embedded into the space Z,) tend to A as N — oo with
respect to the Hausdorff semidistance generated by the norm in Z,.

We describe a possibility of “embedding” certain invariant sets of
some planar dynamical systems into the global attractor A.

Finally, we give an example in which the global attractor A is
infinite-dimensional.
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1 Introduction

The theory of global attractors for partial differential equations and systems
is now a well-developed part of the modern theory of infinite dimensional
dynamical systems (see, for example, [H88], [L91a], [BV92], [T88], [SY02]).
For numerical approximations it is of interest to understand whether global
attractors persist in dynamical systems generated by discretizations of the
PDE’s and how their shape depends on various types of discretization both
in time and space (see [H94] for a general reference).

For a wide class of parabolic equations and discretization schemes, at-
tractors were studied by Ladyzhenskaya [L91b] (cf. also the approximation
results in [HLR88],[HR89]). There are several papers (see [EP96], for ex-
ample) which treat global attractors for the discretized semilinear parabolic
equation

U = Ugg + f(u). (1.1)

In all of these references the domain for the spatial variable z is assumed to
be bounded.

Investigation of global attractors for PDEs on unbounded domains began
in the last decade. The basic problem is that the semiflow lacks compactness
properties. If the underlying domain has a translational invariance then at-
tractors should have this invariance also (for example contain all translates
of a traveling wave) and hence cannot be compact in a norm that is trans-
lationally invariant. In a pioneering paper [BV90] Babin and Vishik made
two very important contributions to the above-mentioned problem. First,
the corresponding semigroups are studied in weighted spaces with weights
that decay at infinity. Second, they work with pairs of spaces H, H, and
define so-called (H, H,)-attractors. Here H is usually the Hilbert space on
which the semigroup S(t) acts and H, is the same space endowed with the
topology of weak convergence.

The set A is called a global (H, H,)-attractor if

(1) A is compact in H,;

(2) A is positively invariant with respect to S(t);

(3) A attracts bounded subsets of H with respect to the topology of H,.

This concept was further developed and applied to important examples,
such as the Ginzburg-Landau equation, by Feireisl [FF94], Collet [C94], Mielke
and Schneider [MS95] and Mielke [M97], [M99]. There, the space H, is taken
to be a weighted Sobolev space whereas H carries a locally uniform norm
(obtained by taking the supremum over all H, norms of translates, cf. (1.6)
below).

In the present paper, we realize the approach of [BV90] with the norms
taken from [MS95] for a dynamical system S that is generated by an implicit



discretization of the system

up = Dugg + f(u)a (1'2)
where u(z,t) € R, D € RF** and x € R. Taking h as time step and d as
space step the system reads

D
(upt! —up) = 5ty = 20 ) + ), meZmeN
(1.3)

SH

It is assumed that the nonlinearity f(u) is globally Lipschitz continuous
and satisfies for some a, 8 > 0 a dissipativity estimate

<u, f(u) >< —a<u,u>+p foraluecRF, (1.4)

where <, > is the usual inner product in R¥. This is a standard assumption
for proving upper semicontinuity of attractors in the context of ODE’s, see
[SH96, Ch.7].

We introduce the weight p(z) = (1 + e222)~7, where v > 1/2 and ¢ will
be chosen appropriately. Consider the space H, of sequences {vy, : m € Z}
with norm defined by

101[5,, = d Y pmlvm|>,  where ppn = p(md), (1.5)

and let
10115, = supd Y pmlvmy|?, (1.6)
y

where |v| is the Euclidean norm of v.
For the theory we choose as underlying spaces the subspaces Z, and Z,
of H, defined by finiteness of the norms

1vll1,, = [lvllo,, + [10-2llo,,

and
[V]l1,0 = 0]l + 10-vllg 4

respectively, where d_v is the discrete analog of the derivative v,.

The main result of the paper (Theorem 5.1) states that the system S has
a global (Z,, Z,)-attractor A. It is shown that the size of the absorbing set
containing 4, measured in the norm of the space Z,, is uniformly bounded
for small time and space steps. Morover, given a bounded set in Z,, the
time nh needed to attract this set (in the norm of Z,) into the absorbing
set is uniform as well.

We also establish the following upper semicontinuity property of the at-
tractor A in the case of a scalar equation (1.1). Here it is assumed that



the discretization steps are fixed. Let Ay be the global attractor for equa-
tion (1.1) restricted to the finite segment [—N, N] and subject to Dirichlet
boundary conditions. In Theorem 6.3 it is shown that, if A} is a proper
embedding of Ay into the space Z,, then dist(Ay, A) = 0 as N — oo,
where dist is the Hausdorff semidistance generated by the norm in Z,,.

One of the first results in this direction was obtained in the recent paper
[BLWO01] where a space discretization of the equation

Up = VUgy — M+ f(u) + g(z)

is studied under the assumptions v, A > 0 and uf(u) < 0 (see [Z02] for an
extension to a damped wave equation). In this case, the authors establish
results close to our Theorems 5.1 and 6.3 for the standard phase space #2.
Notice that their assumption on f excludes traveling waves (in contrast to
(1.4)) and hence allows for a compactness proof in £2.

It is well known that the dynamics of a discretization of a scalar equation
(1.1) considered on a bounded z-interval is rather simple — there exists a
global Lyapunov function (see [OKM93]), the global attractor consists of
fixed points and their unstable manifolds, and any trajectory tends to the
union of these fixed points.

We show that the dynamics of the system S is more complicated even in
the scalar case. Considering the discretization scheme as a lattice system,
it is possible to “embed” into the global attractor A invariant sets of some
planar dynamical system of quite a general form. These invariant sets are
realized by families of traveling waves or stationary solutions (compare the
“spatial chaos” analyzed in [AP93]).

Finally, we give an example in which the global attractor A is infinite-
dimensional. Our construction is guided by a result of [BV90] in the con-
tinuous case. There it was shown that infinite dimensional attractors arise
because they contain the unstable manifold of the origin and the latter one
may be infinite dimensional in case of a bimodal nonlinearity.

2 The setting and the basic energy estimate

Consider the discretization (1.3) of system (1.2) such that h,d < 1.
It is assumed that the matrix D is positive definite (and not necessarily
symmetric). We fix a number o > 0 such that

<Dv,v>>0<v,v>. (2.1)

We write scheme (1.3) in the form

un—|—1 —

- :Aun-l—l_'_?(un—f—l)’ (2.2)



where
u" = {u?, € R¥ : m € 7},
the operator A is defined by
1
(Au)m = ﬁp(um—kl — 22Uy + umfl);
and B
(f(u)m = f(um).

Note that we may write
(Av)p, = D(04+0-v)m,

where

(010)m = w and  (9_v)p = %

It is assumed that the nonlinearity f in (1.2) is globally Lipschitz continuous
with constant £ and satisfies condition (1.4). We assume everywhere below
that

he < - (2.3)

B~ =

Now let us describe the spaces where we study our system. We fix a
number 7 > 1/2 and introduce a weight function

pla) = (L+€%7) 7,
where € > 0 will be chosen later. We set
pm = p(md) = (1+’m?d*) 7.
It is easy to see that
6" (@)1, 10" ()] < cr(e)p(=), (2.4)
where c;(g) = max(ye,y(y + 1)e?). It follows from (2.4) that
c2pm < p(md + 0) < c3pm (2.5)

for any m € Z and 0] < 1, where ¢3 = c3* = exp(—7).

It follows from relations (2.4) and (2.5) that there exists a function a1 (¢)
(independent of d) such that a;(e) — 0 as € — 0 and

10 prm, 10_0_pm, 10+ 0_pum| < a1(€)prm- (2.6)

We specify our conditions on ¢ as follows. We fix € so small that

1 o
c3a1(e) < min (—, —,a,2[,> . (2.7)
2" [[D|?



Below we work with this fixed £. Note that there exists az(¢) > 0 (indepen-
dent of d) such that

K(e,d) == d Y ph, < ag(e) (2.8)
for any d € (0,1). In (2.8) and below,
o
m=—0o0

For two sequences v = {vy, : m € Z} and w = {wy, : m € Z}, let
(v,w) = dz < Uy, Wy, >

Let H, be the Hilbert space of sequences v = {v,, : m € Z} with the
scalar product

(v,w), = (v, pw) = dem < Upy, Wy >

and the corresponding norm defined by

2
10lI5,, = (v, p0) = dY_ pralvml*.

For y € Z, we define the shift T), by (Tyv)m = vyt+m. Let H, be the
space with the norm

[vllo, = sup [ Tyvllg ,-
YEL

Let Z, and Z, be the same spaces H, and H, but equipped with the
norms

[vll1,, = [[vllo,, + l0-2llo,,

and

[0]l1,0 = 1vllo, + 10-llo,u»

respectively.
Let us write Eq. (2.2) in the following equivalent form:

(I — hA)u™ = u™ + hf(untl), (2.9)
where I is the identity operator.
Lemma 2.1 Consider y € Z and let p = T_yp. For any v € H,, the
inequality

. a1(e)||D|? czai(e)
(v o) < = (o= 2P 110,018, + 25D mol,  (210)

holds.



Proof. Let us denote
R := (Av, pv) = (DO 0—v, pv).
Applying the usual formula
(040",0") = = (v',0_0"),
let us transform R as follows:
R=—(D0_v,0_(pv)) = —R1 — Ry,
where
Ry = (DO_v,p0-v) and Ry = (D0_v,(0-p)(T_1v)).
It follows from inequality (2.1) that
Ry > o||T, 0|5 (2.11)
The Cauchy inequality and estimates (2.5) and (2.6) imply that

Bol < PO S (D@ 1) + (T 10)l?) () <

< 5 (a1(@)|IDIPIITy0-vl[; + caar (e)ITyol[7) - (2.12)

N =

The statement of our lemma follows from inequalities (2.11) and (2.12).
[ |

Remark 2.2 Since inequality (2.7) holds, it follows from Lemma 2.1 that

czaq(g)

2
(Ao, pv) < oll2, (2.13)
Lemma 2.3 Under the assumptions (2.8) and (2.7), equation (2.9) defines
a dynamical system u™t' = S(u,),n € Z, on each of the spaces H, H,,
Z,, and Z,. Both mappings S and S~! are continuous in the respective
topologies and commute with shifts, i.e.,

SoTy=TyoS and S 'o y:TyOS_1 for yeZ. (2.14)

Proof. To study conditions under which the operator B = I — hA is invert-
ible and to estimate the norm of the inverse operator, we apply the theorem
stated in the end of Sec. 104 in [RN72]. Denote by A* and B* the operators
adjoint to A and B with respect to (-,-),.

7



It follows from the above-mentioned theorem that if there exists a posi-
tive number g such that

<B*B,Ua’0)p > /1’<U7'0>p and <BB*’07,U>P 2 :L"<’07U>,0’

then the operator B is invertible.
Let us estimate

(B*Bu,v), = (Bv, Bu), = (I ~ hA)v, (I — hA)), =

= (v,v), — h{v, Av), — h{Av,v), + h*(Av, Av), >
> (v,v), — 2h(v, Av),.
In this estimate, we take into account that (v, Av), = (Av,v), and
h%*(Av, Av), > 0.
It follows from (2.7) that 1 — hai(e) > 1/2. Applying estimate (2.13),
we obtain the inequality

(B*Buv,v), > =(v,v)- (2.15)

N | —

Since
(BB*v,v), = (B*v,B*v), = (I — hA™)v, (I — hA™)v), =

= (v,v), — h(v, A*v), — h{A%v,v), + h*(A*v, A*v),

and
(v, Av), = (v, A™v), = (A%, v),,

we see that

(BB v,v), > =(v,v),- (2.16)

N —

Inequalities (2.15) and (2.16) and the theorem mentioned above imply
that the operator B is invertible. If w = Bw, then inequality (2.13) implies
that

1 1,
(w,0)p = (Bo,v)p 2 5(0,0), = 70l -

It follows from the Cauchy inequality that
Lo 2
3 lIvllo,, < (w, )y < lvllg pllwll,p,

and we see that
B~ wlly , = lIvllg,, < 2[wlly,-

This means that HB_IHW <2



Thus, system (2.9) is equivalent to the relations

uth = Qu + hQf(u"Th), (2.17)
where Q = B~L.
For a fixed w € H,, consider the operator
F(v) = Quw + hQf(v). (2.18)

Since [|Qlly , = ||B_1H07p < 2, we have the estimates

IF@)lo,, < 2lwlly, + 28 ([FO)], + £lollo,) <

< 2[lwlly,, + 2h(k(e, d)[ £ (0)] + Lllvly ),

hence the operator F' maps the space H, into itself. Condition (2.3) implies
that if v,v" € H,, then

1
1F'(0) = F()llo,, < 2hL][w = Vllg,, < Sllv = 'llg 5

i.e., for any given w, F has a unique fixed point in H,,.

Thus, for any given u® € H,, relations (2.17) determine a unique se-
quence u" € H,,n > 0. It is obvious that any given u e H p also determines
a unique sequence u” € H,,n < 0, satisfying relations (2.9). This defines an
invertible mapping S on the space H, such that S(u™) = u"*! for all n € Z.
We are going to show that both S and S~ ! are continuous.

Let us first notice that both A and f commute with shifts Ty:

AoTy=T oA and foTy=Tyof forall y¢€Z, (2.19)
from which (2.14) follows. Moreover, together with (2.17) we obtain that
0wt = Q0w + S Q) ~ (T )
Since
[Pty = F(T urth) | =dY pmlfult?) = Fumh)? <

< E2||un—|—1 _ T—1Un+1||(2),p,

we see that
1
lo-um ]y, < 2M0-u" g, + 5 0-u" ], -

Hence,
||8_u"+1H0’p < Allo—u| ,-

9



This means that the same relations (2.17) define a dynamical system on the
space Z,; we denote this system by the same symbol.

Now let us pass to the spaces H, and Z,. From the equivariance (2.19)
we obtain

HTy(B—lw)Ho,p = HB_ITywHO’p <2|Tywlly, < 2[wl,, for yez,

and hence ||B7!|,, < 2.

The same reaso’ning as above shows that relations (2.2) generate dynam-
ical systems on the spaces H, and Z,. We denote these systems by the same
symbol § which will not lead to confusion. We claim that the operator S

is continuous in all our spaces. Take w,w’ € H, and let v = S(w) and
v = S(w'). Since

v=Quw+hQf(v) and o' =Qu' +hrQf(v), (2.20)
we see that )
lo =2"llg,p < 2w = w'lly,, + Sllv = vllg,,,
hence

18(w) = S(w)llg,, = llv = v'llg,, < 4llw —w'lly,- (2.21)

A similar estimate holds in the space H,.
The obvious estimate

2
oy < (1+5) ol

implies the continuity of S in the spaces Z, and Z,,.
To establish the continuity of S~! generated by the mapping

v (I —hA)v — hf(v),
we apply the same reasoning and the estimate

|f (om)| < [F(O)] + Llvm|.

3 The absorbing set

Now we show that the system S has a bounded absorbing set in the space
Ty
First we prove a variant of the discrete Gronwall lemma.

10



Lemma 3.1 Let an,by,n > 0, be two sequences of nonnegative numbers.
Assume that there exist positive numbers H and A such that the inequalities

% + ap+1 + bn+1 <A (31)
and
b —-b
% < A(1+4bpyi) (3.2)

hold for n > 0. Then the following estimates are satisfied for n > 0:
an <A +ag, by <T(AH)+ao(A+1)+ by, (3.3)

where T'(A, H) = A[(1+ A)(1+ H) + 1]. Moreover, for any § >0 and M >0
there exists some Ty = To(0, M, A) > 0 such that

ap, by <T(AH)+ 46 for nH > Ty, (3.4)
Z.fa()ab() < M.

Proof. Consider the number A = 1 + H and note that

Apt1 — @ A lg, 1 — A\
(o ) o = e,

Let us multiply inequality (3.1) by A" and sum the obtained inequalities for
n=20,...,k. We get the following inequality:

>\k+1(l —a k Ak-}—l -1
% + Z A"bpt1 <A I (3.5)
n=0
Since b, > 0, we have the estimate
Nettag 1 < AR — 1) + a,
and hence the estimate
ag
a1 <A+ N (3.6)
Since agy1 > 0, it follows from (3.5) that
k
/\’H_1 -1 ag
nz_:o/\nbn+1 < AT + I (3.7)

Now we substitute (3.1) into (3.2):

%SA(MFA—M—%H).

11



Let us write the latter inequality as follows:

Gpt1— @ bpy1 — b
A (% + an+1) + % < A(M), (3.8)
where A(A) = A(1+ A).

Let us multiply inequality (3.8) by A" and sum the obtained inequalities
for n =0,...,k. We get the following inequality:

Aetlg, | — Akp kot b
A “’gl % 4 ;“ 3" Xt — EO <
n=0
Ak‘-l—l -1
< A(A
<AN)—F5

Now we substitute estimate (3.7) with k replaced by k& — 1 into the latter
inequality and get the following estimate (taking into account that a, > 0):

Mot < AA)WFFE 1) + AP — 1) + ag(A + 1) + bo.
Thus, we get the estimate

At1
beor < A(AA+ A 4 AF D+

3 (3.9)
Estimates (3.6) and (3.9) prove (3.3) and since A¥ > 1+ kH we obtain (3.4)
by taking kH sufficiently large. |

Denote by Bfu the closed ball of radius R in the space Z,.

Lemma 3.2 There exists a number K > 0 with the following property: for
any M > 0 there ezists Ty = To(M) such that if u’ € B%, then u™ € Bfu
for nh > Ty.

Proof. The idea is to apply Lemma 3.1 to the sequences a, = ||Tyu"|

2
0,p
and b, = ||Ty8,u"||§p for any given y € Z. First, fix any u € H, and let
v = §(u). Take the scalar products of both sides of the equality

1 _
E(U —u) = Av + f(v) (3.10)
with pv, where p = T_,p. Note that ||Ty'u||gp = (v, pv). For the left-hand
side product

1 1

L= E(v—u,pfu):%@—u,p(v—u-l-v-i-u)),

we have the following expression:

2 2 2
O P O R 1 7

o7 o7 (3.11)

12



We estimate the first term of the right-hand side of the scalar product,
R := (Av, pv), applying Lemma 2.1.

Let us estimate the second term of the right-hand side of our product.
Due to our growth condition (1.4),

<?('U)7PA'U> = dz /A)m < f('Um);'Um > <

<BAY p — da Y pulvl” = Brle,d) - ol Lol

Combining the latter estimate with (3.11) and (2.10), we get the following

estimate: ) )
1Tyoll , — 1Tyl ,

2 =
D 2
< (U _ M) IT,0_02 , + (C?"“(a) - a) ITy0l2, + Br(e, d).

- 2 2
By our condition (2.7), the inequalities

2 2
ITwl2, - 1 Tull

2h

(0% g
0 < _§||Tyv||§,p - §||Ty8,’u||§,p + Br(e,d)  (3.12)

hold.

Now let us consider any positive trajectory {u” : n > 0} of our system
S. Taking v = «"*! and 4 = u™ in our considerations above, we see that
the inequalities

[Tyl — 1 Tyulls,

2h

+ %||Tyun+1”§,p + %HTyannH”i,p < Bk(e,d)
(3.13)

are valid for any y € Z and n > 0.
We again fix u € Hy, y € Z, and v = S(u). As previously, we denote
p =T_yp. Now we take the scalar products of both sides of equality (3.10)
with —,68+8_U.
Let us first consider the left-hand side L of the obtained equality:
1

L=~ (30— ), 0,0-0) =

1 R 1, . R

= 740- (p(v —u)),0-v) = S (p0—(v —u) + (0-p)T-1(v — u),0-v).
We see that L = L1 + Lo, where

1

Ll:h

(p0—(v —u),0-v) =
= %QA)(B_’U —0_u),0_v—0_u+0_v+0_u) =

13



2
R TR L TCRR R0

o o (3.14)
and
L= %((8_;3)T_1(v —u),0_v). (3.15)
The first term on the right in the obtained equality is
Ry := —(D0,0 v, 0,0 v) < —0||T, 010 v|[g - (3.16)

Let us consider the second term on the right,

Ry := —(f(v), p01.0-v) = (0_(pf (v)),0-v).

We represent this term in the form Ry = Ry 1 + Ra 2, where

Roy = {p0_F(0),0-0) =" pm 5 < S (om) — f(0m—1),0m — 1 >

and
Ry 2 = (0-(p)(T1 f(v)), 8-v).

It was assumed that f is Lipschitz continuous with constant £, hence
2
R2,1 < £||Ty8,v||0’p. (3.17)

Taking equality (3.15) into account, we conclude that

R = Ryo — Ly = dZ(afﬁ)m |:f(vm1) - w (0-v)m.-

Since
1

f(vm—1) — E('Umfl —Up1) = —AT v,

we see that
R' = —(0_p(AT-1v),0-v) = (D04 0_(T-1v),0_po_v).
Similarly to (2.12), we get the estimate
1
IB] < 3 (esan@IIDIPIT 240013, + @ IT,00]3,) . (318)
Combining estimates (3.16)—(3.18), we obtain the following inequality:

2 2
1Ty0-vllg,, = 1Ty 0-ullg,
2h

1
< (—a i Ecgal<e)||1>||2) 1,0:0_v]2,+

1
+ (L + §a1(6)> ||Ty6_v||§,p.

14



It follows from our condition (2.7) that

2 2
||Tya—”||o,p - ||Tya—“||o
2h

L < 2L(1+ || T,0-v|[j )-

We again consider a positive trajectory {u” : n > 0} of our system S
and take v = u"! and u = u™. We obtain the inequalities

|Ty0_um+f; , — 1Ty0-u 3
2h

2 <2+ |[To_urttg ). (3.19)

Now let us complete the proof of our lemma. Set

1
n=g min(o,«) and H = 2ph.

Let 1
A= Emax(ﬁ,ﬁﬁ(s, d))

and note that 1
A< Emax(ﬁ,,ﬁag(a))

by (2.8).
Fix M > 0, take a point u? € B%, and consider the corresponding
positive trajectory {u"} of our system S. For a fixed y € Z, let

an = |Tyu|;, and by = |T,0_u"|j (3.20)

and note that ag + by < M?2.
Inequalities (3.13) and (3.19) imply that the sequences a, and b, satisfy
the conditions of Lemma 3.1, hence there exists Tp = To(M) such that

an,bp < KE = A[(A+1)(1+2n) +1]+1
for nh > Ty. Since y is arbitrary, this means that

I

0,u? ”a—unHO,u < Kl

for nh > Ty. Our lemma is proved with K = 2K;. [ |

Remark 3.3 If we fix the number -y in the definition of the weight p, then
relations (2.7) show that our choice of € depends only on o,||D||, L, and «.
Analyzing the proof of Lemma 3.2, we see that the number K (the radius
of the absorbing ball in the space Z,) depends only on v, o, ||D||, £, «,
and B (below we call these numbers characteristics of the system S). We
show in our main theorem that the size of the global attractor of S in Z,, is
determined by these characteristics.
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4 Compactness
The following, almost obvious, statement holds.

Lemma 4.1 If B is a bounded subset of the space Z,,, then B is precompact
in Zp.

Proof. Let B* = clos; ,B. We claim that the set B* is compact in Z,,.
First we claim that the set B* is bounded in Z,. Indeed, there exists a
number N > 0 such that ||wl|, , < N for any w € B.
Fix any v € B* and find a sequence {v"} C B such that

" — —0 as n— oo. 4.1
0,p

Take y € Z such that
[ollo < 1Tyollg, + 1.

It follows from (4.1) that
[Tyo" = Tyvlly, +0 as n— oo,
hence there exists ng such that
ITyo™ — Tyoll,, < 1
for n > no. Recall that [[v"[|; , < N, hence if n > ng, then
[ollou < 1Ty0"llg,, +2 < [[v"[lgp +2 < N +2. (4.2)

The same arguments applied to ||0_v||y,, prove that the set B* is bounded
n Z,.

Now let us consider a sequence {v"} C B*, where v" = {v]}, : m € Z}.
We can find a subsequence (denoted again {v"}) and an element v = {v,, :
m € Z} such that v)), — v, as n — oo for any m € Z. Estimates (4.2) imply
that there exists a number M > 0 such that

log,| <M for n>0,m€Z,

and hence
|lvm| < M for m € Z.

It follows that for any § > 0 there exists R = R(d) such that

d Z P |08 — vm|? + [0_v" — O_w|2] < 6.
|m|>R

Since the set {m : |m| < R} is finite, there exists n; = n1(J) such that

d Z pm (|00 — vm|? + [0_0" — O_v[2] < §
Im|<R
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for n > n1. The relations above mean that
o™ ], =0

as n — 0o. Our lemma, is proved. |

Corollary 4.2 Let B be a bounded subset of the space Z,. For any t > 0,
the set B' = S'(B) is precompact in Z,.

Proof. Since our system S has an absorbing set in Z,, it follows from the
continuity of S established above that, for any ¢ > 0, the set B’ = S*(B) is
bounded in Z,. [ |

5 The global attractor
Now we establish the main result.

Theorem 5.1 I. Under our assumptions, the system S has a global (Z,,, Z,)-
attractor A, i.e., the following statements hold:

(1) A is nonempty, closed, bounded in Z,, and compact in Z,;

(2) A is invariant under S, i.e., S'(A) = A for any t € Z;

(8) A attracts any bounded subset B of Z, with respect to the distance
induced by the norm of Z,, i.e.,

dist ,(S*(B), A) -0 as t— oo,

where
disty ,(A, A") = inf |lv— .
isty,p(4, A') ilelgwlgA,llv wlly,

II. For any h and d, the attractor A belongs to the closed ball B{fu
of radius N in the space Z,, where the number K (depending only on
v,0,||D||, L, , and ) was introduced in Lemma 3.2.

III. The attractor A is translationally invariant, and an analog of state-
ment I(3) holds for the metric

distt (A, A") = supsup inf ||T,v — T,wl||, .
Lol 4) = supsup int |0~ Ty,

Proof. The proof mostly repeats the proof of Theorem 2.6 in [MS95]. It is
shown in [MS95] that statements I (in a slightly different form, see below)
and III of our theorem are implied by the following conditions:

(c1) the system S is translationally invariant (i.e., T,S = ST, for any
y € Z) and continuous in the spaces Z, and Z,;

(c2) S has a nonempty, bounded, and positively invariant absorbing set
B in Zy;
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(c3) for any B C B, there exists 7 > 0 such that the set S™(B) is
precompact in Z,,.

Condition (cl) is satisfied due to Lemma 2.3. Condition (c3) follows
from Corollary 4.2.

The only difference between the assumptions of our theorem and Theo-
rem 2.6 in [MS95] is the following one: in (c2), it is assumed that there exists
a positively invariant absorbing set, while the absorbing set constructed in
Lemma 3.2 above is not necessarily positively invariant. The only difference
in our conclusions is ¢ € Z instead of ¢ > 0 in statement I(2) (it is easy to
understand that this difference is due to the following reason: our system S
is invertible, while the system in [MS95] is not necessarily invertible).

It is well known that having an absorbing set, it is easy to construct a
positively invariant absorbing set. Indeed, let B = Bfu be the absorbing set
for the system S given by Lemma 3.2. There exists Ty > 0 (depending only
on K, i.e., on the characteristics of our system) such that

S™(B)yc B for th>Typ.

Consider the set
B= |J §(B).

0<7h<T)y
It follows from (3.3) (when applied to the sequences from (3.20)) that there
exists a number @ (depending only on the characteristics of §) such that
B c Bﬁu. Since B C B', the set B’ is absorbing and by construction it is
also positively invariant. Following [MS95], we define the global attractor
for S by the formula

.A == ﬂ Ot,

>0
where
o = closl,pSt(B').
Since BX is an absorbing set, oy C Bfu for large t, this implies state-

1u
ment IT of our theorem.

It remains to show that S*(A) = A for any ¢ € Z. For this, it is enough
to show that

Sw)eA and S7'(v) €A (5.1)

for v € A.
Take v € A and consider an arbitrary ¢ > 0. We claim that

Sw) €o; and S '(v) € 0. (5.2)

Since t is arbitrary, the inclusions above and the definition of A prove
inclusions (5.1). The set B' is positively invariant, hence o411 C o4, and we
may assume that ¢ > 1.
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Since v € A, we have the inclusion v € o;—1. There exists a sequence
vk € B' such that S* 'v, — v in the space Z,. Since § is continuous in Z,
(see Lemma 2.3), S*(v;) — S(v), hence the first inclusion in (5.2) holds.

Similar arguments applying the continuity of S~ ! prove the second in-
clusion in (5.2). [ ]

Remark 5.2 Notice that according to Lemma 3.2 the absorbing ball Bfu
attracts bounded sets in Z, after times that are uniform in h and d but we
are unable to prove that, given a neighborhood of the attractor and a bounded
set, there is a uniform bound for the corresponding attraction time.

6 Upper semicontinuity of attractors on finite seg-
ments

For the sake of presentation, here and below we consider the scalar equation
(1.1) (and note that similar results hold also for systems).

Fix h,d € (0,1) and a natural number N. Consider the tridiagonal
(2N 4+ 1) x (2N + 1) matrix

-2 1 0 0
) 1 -2 1 0
O
0 O 0 -2
Let
v=(v_n,...,oy) € RBNH (6.1)

and let f be a function satisfying the basic conditions formulated in Sec. 2.
Consider the implicit scheme

— Ano™ 4 T, (6.2)

where v" = (V" p,...,v%) € RVt and f(v) = (f(v-n),..., f(vn)) for
v=(v_nN,...,vy) € REN*L,

Scheme (6.2) corresponds to a discretization of the parabolic equation
(1.1) on the segment [—(N + 1)d, (N + 1)d] with the Dirichlet boundary
conditions.

For a vector v of the form (6.1), we set

v =(..,0,v_n,...,0N,0,...),
i.e., we set v5, = vy, for [m| < N and v¢, =0 for |m| > N. Let Hy be the
set of sequences v°.
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We denote ,
=2
|m|<N

Let p = {pm} be the weight introduced above. For a vector v € R2V+1
we introduce the values

lollo,, = [1v%llo,ps  [10llon = llv€llg,us
and so on. For u,v € R2VN+1 | the scalar product is defined by the formula
!
(u,v)N = dz U Uy«
Further, we set

N
(O_u,0_v)y=d D (0-u)m(0-v)m

m=—N+1
and define the norms |[v[|; , and [|v]|; , analogously.
Lemma 6.1 Lety € Z and let p = Typ. For any v € Hy, the inequality

S (o, ) (6.3)

(Anv, pv)§ <
holds.

Proof. First we note that if v* € My corresponds to v € R2N*1 then
(Av®)y, = (ANV)m for |m| < N. Since vg, = 0 for |m| > N, the following
relations hold:

(Av®, o) = d Y pn(Av®) gy, =

!
= dz P (ANV)mVm = (ANv, pU)N.
On the other hand, it follows from Remark 2.2 that

(a0t ) < B e ey = 9D g, Gy

Now the same reasoning as in Sec. 2 and estimate (6.3) show that
both mappings Sy and S;,l are continuous, hence scheme (6.2) defines a
dynamical system Sy on R2N+1,

Lemma 6.2 There exists a number A > 0 (independent of N ) having the
following property: for any system Sy, its global attractor Ayx belongs to the
ball

[l < A
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Proof. One can repeat the proof of Lemma 3.2 and Theorem 5.1; we refer
to shorter arguments since h and d are fixed (and we do not have to show
that A is independent of h and d) and the system Sy is finite-dimensional.

Consider w € R2N*1 et v = Sy(w), fix y € Z, and denote p = Typ.
Take the scalar product of both parts of the equality

%('u —w) = Ayv+ f(v)

with pv.
The left-hand side of the scalar product equals
o (0= (0 = w0+ )y =
57, (0 — W, pv —w v+ w))y =
1 . . '
= %[@,pv))N - <w,pw)>N + dz pm(’”m - wm)2]-

We estimate the term (Aywv, pv) N using inequality (6.3). For the second
term of the right-hand side of the scalar product, the following estimates
hold:

(F(0),pv)n <dS° pmB — day " pmv?, <
< k(g,d)B — afv, pv)N.

Hence, if we take v € R?M*! and n > 0 and set v" = S%(v) and a, =
(v™, pv™) N, then the inequality

Qp4+1 — Qn

o
oh < _§afn+1 + "“7(67 d)ﬁ

holds. It follows that there exists a number A’ (depending only on h and
f) such that
limsupa, < A’

Since there exists a constant C' such that

!
(00", pO_0")x < (0", "),

and y is arbitrary, our statement is proved. |

Let An be the global attractor of the system Sy, denote
Ay ={v® € Hy :v € Ax}.
Theorem 6.3 (Upper semicontinuity in Z,). The relation
disty ,(Ay,A) = 0 (6.4)

holds as N — oo.
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Remark 6.4 Note that in the statement of Theorem 6.3, the step size d is
assumed to be fixed while we let N tend to oo.

Proof. Since the attractor A is compact in Z,, it is enough to show that
for any sequence vy € Ay there exists a subsequence vy, such that

disty, (v, A) = 0. (6.5)

Lemma 6.2 implies that the sequence v%, belongs to a bounded subset of
the space Z,, hence it follows from Lemma 4.1 that v% has a convergent
subsequence in Z,. To simplify notation, we assume that

vy = v in Z,. (6.6)
To prove relation (6.5), it is enough to show that
v E A (6.7)

It follows from (6.6) that v € Z,. Let us show (compare with [BV90])
that if there exists a bounded subset B of the space Z, such that S"(v) € B
for n < 0, then inclusion (6.7) holds. Indeed, if v ¢ A, then the compactness
of A in Z, implies that

disty ,(v,A) =a > 0.
On the other hand, there exists n such that

disty ,(S"(B), A) <

M|

Since

v=_58"(8"(v)) € §*(B),

we have the inequality
disty p(v, A) <

N e

leading to a contradiction.
Now let us assume that the sequence ||S"(v)||; , is unbounded for n < 0.
Fix a number n < 0 such that

IS (v) ., > 34 (6.8)

(where the number A is given by Lemma 6.2). In this case, there exists
y € Z such that

IT,S™(w)||, . > 2A. (6.9)

Hl,p

The rest of the proof is based on the following statement.
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Lemma 6.5 If uy € R?Nt1 s a sequence such that uy — u in Z, as
N — oo, then the inverse images wy = S;,l(uzv) satisfy the relation w, —
S~ Hu) in Z,.

Proof. Since the mapping S~! maps the space Z, into itself (see Lemma
2.3), there exists w € Z, such that S(w) = u. In this case,

h 2h h
Um+1 + <1 + —) Um — 3 tUm—1 ~ hf(um)-

Wm =

&2 2
The vectors uy and wy satisfy the equality
wN = (I — hAN)’U,N — h?(uN),

hence
h 2h h
WN,m = _ﬁu?\l,m—kl + (1 + ﬁ) ’U’?V,m - ﬁ’u’ﬁv,m—l - hf(’U/N,m)

for |/m| < N. Introducing the restriction w™ € R2N+l by w! = w,, for
|m| < N and subtracting the equation for w,,, we see that

! h
o = w73, = A3 ol 5 (i1 = i)+

+ (1 + %) (u?\f,m - um) B %(U?V,m—l - 'U'mfl) - hf(uN,M) + hf(um)]2

It follows that
lwsy = wlg, < Cllug —ully, + Y pmlwml?, (6.10)
|m|>N
where the constant C' depends only on h,d, and f but not on N.
Since
1 + C3
d
the statement of our lemma follows from estimates (6.10) and (6.11). W
Let wh = S¥(vn) and w = S§™(v), where the vy and v satisfy (6.6)
and the number n has property (6.8). Applying Lemma 6.5 inductively (|n|
times), we see that

10~ (why = w)lly,, < [wy = wllg (6.11)

wy = w
in Z, as N — oo. Let y € Z be such that inequality (6.9) holds. Obviously,
T,wy = Tyw (6.12)

in Zp as N — oo.
The vectors wj, belong to the attractors Ay, hence it follows from
Lemma 6.2 that

ITynclly , < A.

The latter inequality, relation (6.12), and inequality (6.9) are contradictory
if N is large enough. Theorem 6.3 is proved. |
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7 Embedded dynamics

Let us describe some dynamical properties of the global attractor A corre-
sponding to equation (1.1). Consider scheme (1.3) as a lattice dynamical
system [AP93] on the two-dimensional lattice Z x Z with coordinates (m,n).
Three types of solutions for lattice systems are usually studied: traveling
waves, steady-state solutions, and spatially-homogeneous solutions.

Traveling waves. Let us introduce a “traveling-wave” coordinate ¢ =
n~+m in our discretization scheme, i.e., let us set u?, = z(q) = z(n+m). Of
course this is only one type of coordinate that belongs to waves of velocity
equal to one. We obtain the following equations for z(q):

z(g+1) —2(q) _ z(g+2) —22(q+1) +2(q)
h &

If we introduce the vector (z4,y,) = (z(g),2(q + 1)), then the equations
above are reduced to the system

+ f(z(q + 1)). (7.1)

d? d?
Tgr1 =Yg Ygr1 = — <1 + ﬁ) Zg + (2 + z) Yq — dzf(yq)- (7.2)
Let A be an invariant set for the two-dimensional dynamical system

($q+1ayq+1) = (}(xquq)a q€Z, (7.3)

where
Q(‘{an) = (ya —Kz + (1 + K)y + F(y))a

K > 1, and the function F' is globally Lipschitz continuous with a constant
l. We assume that

4l < K —1. (7.4)

Remark 7.1 Equality (7.8) generates a dynamical system since the map-
ping ® is invertible. Indeed, the equality ®(z,y) = (¢',y') is equivalent to
the equalities y =2’ and x = —(y' — (1 + K)z' — F(2'))/K.

Let us show that if A is a bounded invariant set of system (7.3), then the
dynamics of ® on A is realizable by a family of traveling waves for scheme
(1.3) under a proper choice of the steps h and d and the nonlinearity f.

Since A is bounded, there exists a positive N such that |y,| < N for any
trajectory (z4,y4) € A and for any g € Z. Obviously, there exists a glob-
ally Lipschitz continuous (with constant /) function F* with the following
properties:

» F(y) = F*(y) for |y| < N;

e there exist positive constants o/ and 8’ such that

yF*(y) > oy* - B (7.5)
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Now we take h,d € (0,1) such that 1+d?/h = K, set f(u) = —F*(u)/d?,
and consider the corresponding scheme (1.3). It is easy to see that our con-
ditions (7.4) and (7.5) imply conditions (2.3) and (1.4), respectively. Now
equalities (7.2) imply that any trajectory (z4,y,) € A of system (7.2) gen-
erates a traveling wave u)}, = Zy,n, of (1.3). Since |u}}| < N, the traveling
wave belongs to the global attractor A.

Steady-state solutions. Steady-state (or stationary) solutions do not
depend on “time” n, i.e., u)t, = z(m) for these solutions. In this case, scheme
(1.3) is reduced to the equalities

z(m +1) —2z(m) + z(m — 1)
a2
The same reasoning as in the case of traveling waves shows that any bounded
invariant set of system (7.3), where ®(z,y) = (y, —x+2y+F(y)), generates a
family of stationary solutions of scheme (1.3) belonging to its global attractor
(we leave the details to the reader).
Spatially-homogeneous solutions. Spatially-homogeneous solutions
do not depend on the “space” coordinate m, i.e., ul}, = z(n) for these solu-
tions. In this case, scheme (1.3) is reduced to the equalities

+ f(z(m)) =0.

z(n+1) —z(n)
)]

The corresponding dynamical system is one-dimensional and has the form

Tgt1 = P(zq).

Similarly to the first two cases, bounded invariant sets of this system gener-
ate families of solutions of scheme (1.3) belonging to its global attractor (in
this case, f(u) = (®(u) — u)/h).

8 An example of an infinite dimensional attractor

Let us give an example of a system S corresponding to equation (1.1) such
that its global attractor A is infinite-dimensional.

Fix a space step d such that the ratio d/x is irrational. Let [ be a natural
number. Define a(l) by the equality

_ 2
all)=1-h (ﬁ(cosld— 1)+ 1) .
Since
sin(m + 1)ld 4 sin(m — 1)Id = 2sinmld cos ld,
the sequence u" = {u]", }, where
=a"(l)bsinmld, n,m € Z,

n
um
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and b € R, satisfies the equalities

= Au" T 0" nez.

Since the ratio d/m is irrational, there exists an infinite set L of natural
numbers [ such that the inequalities

d2
|cosld — 1| < vy (8.1)

hold. Tt is easy to see that inequality (8.1) implies the inequality
la(l)| > 1. (8.2)

Consider an arbitrary natural number N and let [4,...,I5 be the first
N elements of the set L. Take numbers by,...,by such that |b;| < 1/N.
Inequalities (8.2) imply that the sequence U™, where

Uy =bia"(ly)sinmlid + --- + bya" (In) sinmlnd,

satisfies the inqualities |U}}| < 1 for n < 0, hence U™ is a negative trajectory
of scheme (1.3), where the nonlinearity f is such that f(u) = u for |u| < 1.
Since the values

(0_U")pm = bia™(l1)=(sinmlyd — sin(m — 1)l1d) + . ..

IS

satisfy the inequalities |(0_U"),| < 2/d, our negative trajectory is bounded
in the space Z, (and hence it belongs to the global attractor A, see the proof
of Theorem 6.3).

The numbers (I; — [;)d/m are irrational, hence the N x N matrix

sinlid ... sinlyd
G= ... . ..
sinNlid ... sinNlyd
is nonsingular.
Consider the initial value U° of our trajectory U™. The N-dimensional

vector V = (u?, ..., uY) satisfies the relations

Vi = bysinmlid + ...bysinmiyd

for m =1,...,N, hence V = Gb, where b = (by,...,by). Since the matrix
G is nonsingular, there exists ¢ > 0 such that the image of the ball |b;| <
1/N,i =1,..., N, contains the ball [u?| < £, =1,...,N. Since the initial
values U° belong to the global attractor A, we see that the dimension of A is
not less that V. Since N is arbitrary, the attractor A is infinite-dimensional.
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