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Abstract

In the first part of the paper, normal forms for the time-h-map of an ordinary
differential equation and its discretization near a fold bifurcation point in one dimen-
sion are derived together with suitable closeness estimates. These steps will pave
the way for an anticipated generalization of the results in [1]. The second, com-
plementary part of the paper shows that implicit Runge-Kutta methods completely
preserve the fold as well as the cusp bifurcation conditions in N dimension.

1 Introduction
Consider the ordinary differential equation
= f(z,a) (1)
together with its discretization
ZTni1 = @(h,xn, a), n=20,1,2,..., (2)

where a € R is a scalar bifurcation parameter, h > 0 is the step-size of the suf-
ficiently smooth one-step method ¢ : RT x R x R — R of order p > 1, and the
function f : R x R — R is of class CP***! with k& > 5 and uniformly bounded
derivatives.

By the definition of the order of the method, we have that
|®(h,.’£,0{) - w(haxaa” < const - hp+17 Vh € [Oa ho],Vl.’L'| < wOavlal < ay, (3)

where ®(h,-,a) : R — R is the time-h-map of the solution flow induced by (1)
at parameter value «, further hg, zp and oy are some (small) positive constants.
(Throughout the paper, the symbols const will denote the general constants in the
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estimates, with dependence only on f.)

Suppose that the origin £ = 0, a = 0 is an equilibrium as well as a fold-bifurcation
point for (1), that is the following conditions hold

ff=0, fF=0, fE+£0, fF+0, (4)

where—and throughout the paper also—subscripts h, z (or z), and « denote par-
tial differentiation with respect to their corresponding variables, while superscript
E denotes evaluation at equilibrium: that is, evaluation at z = 0 and a = 0. (The
evaluation operator is understood, of course, to have the lowest precedence, i.e., it
is performed after taking all partial derivatives.)

Our central result is formulated at the end of Section 2: Lemma 2.2 and Theo-
rem 2.5 provide the existence of some smooth invertible coordinate and parameter
changes transforming the mappings =z — ®(h,z,a) and z — @(h,z,a) into their
corresponding normal forms. As a consequence of (3), these coordinate and param-
eter changes as well as the normal forms themselves turn out to be O(h?)-close to
each other. The normal forms and estimates will be needed in the construction of
a conjugacy (sufficiently close to the identity) between the h-flow and the h-map
near the fold point.

Section 3 is somewhat independent in character of the anticipated general con-
jugacy result mentioned above, and its intention is to demonstrate that in a center
manifold reduction—required to carry over the results from the scalar case to the
general N-dimensional case—shifting the equilibria into the origin is, at least with
implicit Runge-Kutta methods, unnecessary, since it automatically takes place.

2 Derivation of the normal forms
In this section, we compute normal forms for the mappings
z+— ®(h,z,q) (5)

and
T = ¢(h,z, @) (6)

near the equilibrium, which is a fold-bifurcation point. Since now—as opposed to
[1]—they both depend on h also, this extra parameter together with uniform esti-
mates on [0, hg] should be built into the computations [4] we follow.

The properties of the solution flow together with (3) imply for h > 0, |z| < zg
and |a| < «ap that

®(h,0,0) =0, (7)
0(0,z,a) = (0,7, ) =z, (8)
Oy (h,z,a) = f(®(h,z,0),a), 9)
on(0,z, ) = ®4(0,z, ). (10)

Instead of (9), the shorter ®;, = fo® form will be used. We remark that the property
©(h,0,0) = 0 is not assumed here; nevertheless it often holds for discretizations, see
Section 3.



Lemma 2.1 Under the assumptions above and for h € [0, hol, |z| < z0, |a| < ay,
we have that

q)(h,a:,a) = f()(h,Oé) + fl(h, a)x + fQ(h’O‘)"BZ + ¢3(hv$’ a)x?’a
where

(ha ) = Ea - ha + hao? - wo(ha O‘)a (I)Ea # 0,
fi(h,a) = 1—|—g(h a) =1+ ha-Yi(h,®),

(h’ a) = hac:c ~h+ ha- ¢2(h a) h:v:v # 0,
¢3(h’ z, a) = h "l,b?,(h,.%‘, O[)

hold with some smooth functions g, ¥1,1%2 and 123.

Proof. We expand @ in a multivariate Taylor series at the equilibrium with the
remainders in integral form. For fy we have that

fo(h, a) = (I)E + a - Ipo1 (Ot) +h- IlOO(h) + ha - (I)Ea—l—

+h042 . 1102(0) + hZOé - IQOl(h) + h20£2 . Igog(h, Oé),
where—taking into account (4) and (7)-(9) repeatedly— we get that ®¥ = 0, and

1
IOOl(a) = / (I)C\t(Oa 07 TO[)dT = 07
0

1
IIOO(h) = / (I)h(Th,0,0)dT = 0.
0
Further, since
Ppha = (f o (I))ha = ((f:c o (I)) ' (I)h)a = (f:c o Q)a - @y + (f:c o (I)) cDpy

and
Bpy = (fo@)) = (fro®)P - @ + (fa 0 )" =0+ £ #0,
so we also have .
Tno1(h) = / (1 = 7)®ppa(Th,0,0)dT = 0,
0

and ) # 0. The explicit form of the smooth functions

1
Iip2(a) = / (1 = 7)Pphaa(0,0,7a)dr
0
and e
Ing2(h, ) = / / (1—71)(1 —0)®Phhaa(Th,0,00)dodT
0 JO

will not play any role in the following, hence grouping together these remaining
terms into 1y gives the desired expression for fy.
As for fi, one gets that

fl(h, a) = @E + o - 1011(04) +h- Ino(h) + ho - Illl(h, a),



where & = 1,

1
o1 (a) = / $,4(0,0, 7a)dT =0,
0

1
IllO(h) = / q)hw(Th,0,0)dT =0,
0
because ®p, = (f 0 @), = (fy 0 @) - .. Finally,
1 pl
L (h, o) = / / Dp3a(Th,0,0a)dodT.
o Jo
In the case of fy, we see that

fg(h, a) = (q)fw + - 1021(05) + h- @Eww + h2 . IQQO(h) + ho - 1121 (h, a)) ,

N =

where @£ = 0 and
Tooi (@) = /0 B30 (0,0, ra)dr = 0.
However,
Ofres = (£ 0 ®)fs = (Faz 0 ®)” - ((2)°)" + (o0 ®)" - @F, = ff3 - 1+ 0 £0.
Further,
Phhgz = (fz 0 P)zz - Pn+2(fz 0 @)y Py + (fz 0 @) - Phaa,

thus .
Tosg () = / (1 — 7)®hnaa(rh, 0,0)d7 = 0.
0
Finally,
1,1
Lioi(h,a) = / / Dhrza(Th,0,0a)dodr.
0 Jo
For the remainder 13, the integral formula gives

1 1
alh,z,0) = 5 [ (1= 1) @nslh, 7, ) (1)
0

But .
Durpz(h, T2, 0) = Ppye(0, 72, ) + b - / Dhyre(oh, T2, @)do
0

and ®,,,(0,7z,a) = 0, so the lemma is proved.
Now let us perform a coordinate shift by introducing a new variable
£ =z + do,
where &y = o (h, @) will be defined soon via the implicit function theorem. This shift

transforms (5) into & — ®(h,& — &y, @) + g, which—similarly, but more explicitly
than in [4]—turns out to be equal to

£ [fo(ha @) — g(h, @) (h, @) + fa(h, )83 (h, @) + h - 83 (h, @) 3o (h, c, 50)] +
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¢+ [g(h,0) = 2fa(h,)d0(h, @) + b 8 (k@) (o, d0) |+ (12)

+€2 - [ 2l @) + - So(h, @) (hy @, 80) | + - Pia (B, €, 0, 80)€°
with some smooth functions 1;30, 12)\31, 12)\32, and 121\33, where

{530 (h’a «, 5) = _/(2;3(h’ _55 CY), (13)

P31 (h, o, 8) = 3¢h3(h, —0,0) — 6 - %Js(h, —6, ), (14)

62 d?

~ ~ d ~ —~
¢32(h; «, 6) = _31/)3(,7'3 _(5a CV) + 36 - £¢3(ha _55 a) - ? ' @Qﬁii(h’a _57 Ot) (15)

and

R 1
P33(h, &, a, ) = %/0 (1 =7)2 - ®pge(h, 7€ — §,0)dr.

In order to annihilate the parameter-dependent linear term in (12), define

F(h,0,8) = 1 (g(h,0) = 2fo(h, )6 + b+ 6% - Fis (hy ) )

where, in the case of h = 0, the continuous extension of F' is used. Since we have
that

F(h,0,0) =0 Vh € [0, hol,
8F _2f2(h,0)

%(h,0,0) == —oF 40 Vh € [0, hy],

the implicit function theorem provides the local existence and uniqueness of a
smooth function dy(h, @), defined on h € [0, hg] and || < ay, for which

F(h,a,0p(h,)) =0
holds. From uniqueness, it is seen that this dp also satisfies do(h,0) = 0 for h €

[0, ho], so
bo(h, @) = a - Ya(h, @) (16)

holds true for h € [0, hy] and |a| < @y with some smooth function .

As a next step, introduce a new parameter ug = po(h, @) by

2
NO(h‘a a) = fO(f;L’ a) - g(h’ a)zo (h’ a) + & (h’ a)}fﬂ (h’ a) + 58(h1 Oé)’(/ﬁ\go (h7 «, 50),

i.e., as the &-independent term of (12) divided by h. Since po(h,0) = 0 and
%uo(h,()) = ®F £ 0 independently of h € [0,hq], the inverse function theo-
rem guarantees the local existence and uniqueness of a smooth inverse function
@y = ag(h,u) of @ — po(h,a). Moreover, the domain of definition of this inverse
function is easily seen to contain a neighbourhood of the origin independent of
h € [0, ho]. Further, @y(h,0) = 0, hence

aO(h'a M) =p- qpa(h’a N) (17)

holds for h € [0, hg] and |u| small with some smooth function ;.
Therefore (12) now reads

Evs hopo+E+h-qlhyuo)- €2+ k& Pma(h, &, o)
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with g(h, po) = %@EM +1Zm2 (h, po) and some smooth functions ‘l/p\mg and qug, where

Wi (h, o) = @o - o (h, Go) + 8o (h, @o) - Paz(h, To, do(h, Tn))
and N N
¢m3(h’7 57 /J’O) = ’(/133(]7‘7 67 a07 50(h7 a0))

A final scaling 5 := |q(h, po)|€ and 8 := |q(h, po)|po with s := sign(gq(h,0)) = £1
(being also independent of h € [0, hy]) yields the following normal form.

Lemma 2.2 There are smooth invertible coordinate and parameter changes trans-
forming the system
z— ®(h,z,q)

into
n hB+n+s-hn®+hn - 73(h,n, B)

where ﬁ3(ha UR /8) = {p\m3(ha 65”0) ’ |q(ha ,u'0)|_2 is a smooth function.

Now let us consider the discretization map . We prove an analogous result to
that of Lemma 2.1 first.

Lemma 2.3 Under the assumptions of Lemma 2.1 and for h € [0, hy], |z| < zo,
la| < ap, we have that

o(h,z,a) = fo(h,@) + fi(h, @)z + fo(h,@)z® + x3(h, z, @)z?,

where
f:(/)(h’ Ot) = h’p+1 ' XOO(h) + QOEa ~ha + ha - XOl(h7 Oé), (pfa = q)fa # 0,
fi(h,a) = 14g(h,a) =1+hPT1 - x10(h) + ha - x11(h, @),
~ 1
f2(h'7 Oé) = hp+1 ) X20(h’) + E(pfxw ~h+ ha- X21 (h'a CM), (pfzz = (I)Ea:a: 7é 07
X3(h,$,0€) = h'i(\,?,(h,fb,a)

hold with some smooth functions xo0, Xo1, X10, X11, X20, X21 and X3. Moreover, for
h €0, hol, |z| < zo and for |a| < ap,

[¥3(h, z, @) — x3(h, z, )| < const - hPHL. (18)
Proof. Proceeding similarly as in Lemma 2.1, we get that
fo(hya) = of +a-Too1(@) + h-Tigo(h) + ha - pF+

+ha? -Tigz(a) + h2a - Tooi (h) + h2a? - Toga (h, ), (19)

where the integrals Ts are defined just as in the proof of Lemma 2.1, but with ¢
instead of ®. Due to (4)-(9), here we also have ¥ = 0 and Ipp1(a) = 0. From (3)
at z = 0 we infer that for h € [0, hy] and for |a| < ay

fo(h,a) — fo(h,a)| < const - RPFL. (20)

Evaluating this at oo = 0 shows that |h - Tjgo(h)| < const - h?*. Further, differenti-
ating (10) yields that ¢ = @F .



As for ]71, one has that £ =1 and Ton(a) = 0, hence
fi(h,@) =1+ h-Ti0(h) + ha - Ti11 (b, @).

Since f is at least CP**) from [3] we obtain that
‘fl(h,a) — fi(h,@)| < const - BPHL. (21)

Evaluation at o = 0 yields |k -Ti10(h)| < const - hPHL
Considering fo, we obtain that o2, = 0 and Ipg1(a) = 0, thus

1 ~ -
Falhs ) = 3 (h o P 12 - Toso(h) + hav - Tuga (h, a))

and again,
‘fQ(h, @) — fa(h, a)‘ < const - hP*1. (22)

Evaluating this at o = 0, we see that |h2 - Ty (k)| < const - h?+1. Further, differen-
tiating (10) again yields that ¢, = ®F .

For the remainder x3, the same argument applies as in the proof of Lemma 2.1,
together with the estimate

1 1
|¢3(ha z, Of) - X3(h, T, a)‘ < const - hp+1 ' 5 /0 (1 - T)ZdTa
which completes the proof of the lemma. B

Now applying the corresponding coordinate shift with ;iinstead of &g, we arrive
at some formulae completely analogous to (12)-(15), where § is the implicit function
defined by (the continuous extension at h = 0 of)

~ 1 /. ~ N
F(h,a,6) = 3 (§(h,0) = 2a(h, )0 + h - 6% Ka1 (b, 0,9))
However, for the O(hP)-estimates, we will need a quantitative (or parametrized)
version of the implicit function theorem, see [8]. Instead of its full form (i.e. Ba-
nach space setting with more parameter-dependence), we restate that result in a
simplified form tailored to our needs and using our notations.

Lemma 2.4 Let F: R2 xR > R be a C7 mapping. Assume there exist a function
6o : R2 — R and some constants k1 > 0, ko > 0 such that for |6 — do(h,a)| <
and |h|,|a| < re we have

oF
% (ha a, 50(h’ CY))

O 1 a,8) = 2 (h, @, 501 )

Bl Y S kg < RLS

bl

‘ﬁ(h,a,do(h,a))‘ < (k1 — ko) - 71

Then for any |h|,|a| < 2, F(h,a,-) has a unique C?-smooth zero § = &(h, ) near
do(h, @), and the following estimate holds

‘g(h,a) - 60(h,a)‘ < (K1 — ko)L - [F(hy a, 80 (R, ).



In order to verify the conditions of this lemma, define r; := Z|pP | and Ky :=
%m. The estimate

OF
%(h,a,éo(h,a)) =
_9F h, R i
_ #—F%O(h,o&-x31(h,a,60)+5§(h,a).%X?ﬂ(h,a’éo) -

is seen to be valid—due to the form of f; and (16)—provided that r; is small. On
the other hand,

OF oF
%(h’a «, 6) - % (ha «, 50 (ha Oé))

< |2[6 - 50(h7 a)]?ﬁﬂ (h’a «, 5) + 260(]7‘5 a) [5(\31 (h’ a, 5) - 5<\31(ha «, 50)” +

<

d . d . d .
+|[0% = 65 (h, )] —=X31(h, t, 6) + 63 (R, ) [—X31(h,04,5) — —=Xx31(h; o, 50)] ‘ < Ko,

do dé do

if 1 and r9 are sufficiently small. Finally,

‘ﬁ(h,a, 50(h,a))‘ < |F(h, a, 60 (h, )| + ‘ﬁ(h, a, 8o(h, @) = F(h, a, 50(h,a))‘ <

200 | 7 1, 0) = ot +

+33(h, ) ‘5531(%04,50) — P31(h, @, 60)‘ < const - hP,

1 ..
S 0+ E |g(h,a) _g(h’7 Ol)| +

owing to (21), (22) and the estimate
‘)?31(7% a, 0p) — $31(h,04550)‘ < (23)
<3 ‘fs(h, —b0, @) — 3 (h, —50,04)‘ +

1 1
oo (h, )] ‘ﬁ /0 (1= 7)27 - (0anan(hs —700, ) — Bugaa(h, — 80, ) dr| <

< const - hP? + const - h?,

being valid due to (14), (11), (18) and the fact (see [3] again) that f is at least CP*5.
_ Therefore, Lemma 2.4 proves the local existence and uniqueness of the function
0 such that

F(h,a,d(h,a)) =0,

and

d(h,a) — dg(h, )| < const - hP (24)

holds for h € [0, ho] and |a| < ay.

Now let us define a new parameter i in an analogous way as we did before, i.e.
as the £-independent term divided by h, that is

~ _ ~ ~ ~ B B
ﬁ(h,a) — fO(l;; a) B g(h,a)}f(h,a) + f2(h’ a)}f (h'aa) -|—63(h, a))A(30(h,04,5)-




We see from the analogous expression of (13) for X359, from (18), (20)—(22) and (24)
that
|/7(h’, Ot) - lj'O(ha a)| < const - h? (25)

holds for h € [0, hy] and |a| < ap. In order to use a quantitative inverse function
theorem for a + Ji(h, o), we apply Lemma 2.4 again, but this time with G instead
of F', and @ instead of dy, where

G(h,p, ) == p — p(h, ).

To check the conditions of the lemma, define 1 := [¢F | and k2 := $k1. We have

that 5
‘ . (h, 122 Oé)

oo

ﬁ(h}; @) %g(h, o) + g(h, a)xa(h,a)

= (pEa + XOl(h, Oé) + adiXOI (ha Oé) -
o
holds with a suitable smooth function . By (24), (16) and (17) the expression
|6(h, @ (h,u))| can be made arbitrary small provided that |h|,|u| < ro are small
enough. The same is true for |+g(h, @ (h, 1))|. Moreover, the definition (19) of xo:
shows that x01(0,0) = 0, so from these we can conclude that

a_a(h’a K, aO(h’ :u'))

‘BG
Z K1,

provided that 79 is sufficiently small. The other condition

oG oG

bl it @ <
G ) = S )| <

is seen to hold by continuity if |« —@g(h, p)| < 71 and ry are small enough. Finally,
by (25),

‘G(ha ,u,,a()(h, :u'))‘ = |,u,0(h,a()(h, U)) - /’Z(h,ao(h, /1'))| < const - h”.

Therefore, we get a unique zero a(h, u) of G(h, y,-), which—by the construction of
G—is just the inverse function of a +— pi(h, ). Furthermore,

@ (h, 1) — @o(h, )| < comst - h? (26)

holds for h € [0, hy] and |u| sufficiently small.
As a conclusion, (6) becomes

Es b fitE+h-GhQ) E+h-& Rms(hé,R)
with g(h,p) = %(pfm + Xm2(h, i) and some smooth functions Xm2 and Xm3. We

claim that
|g(h, 1) — q(h, po)| < const - hP

also holds. Indeed, since
@h ik, @) — a(h o, )| < |Falh ) = folh )| +
+h |6(h, @) - Ra2(h, @, 8 (R, ) — 6o (h, @) - 3z (R, e, 6o, a))‘ ,
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we deduce the desired estimate from the O(hP)-estimates obtained so far together
with some standard (triangle) inequalities, and an estimate similar to (23) but with
(15) and using that f is at least CP*6.
By applying a final scaling
1:=1q(h,p)|§ and B :=[q(h, )|

with s := sign(g(h,0)) = £1 (being independent of h € [0, ko)), further taking into
account the fact that | —&|, |n — 17| and |8 — S| are all O(hP)-small, we have derived
the following normal form together with the desired closeness estimates.

Theorem 2.5 There are smooth invertible coordinate and parameter changes trans-
forming the system
z— plh,z,a)

into _ _
N hB+7+s-hi’ +hi - 73(h, 7, 8)

where 73 is a smooth function.
Moreover, the smooth invertible coordinate and parameter changes above and
those in Lemma 2.2 are O(hP)-close to each other, further

|3 — 13| < const - hP.

3 Preservation of bifurcations under Runge-
Kutta methods

In this section we show that the conditions for the fold bifurcation and for the cusp
bifurcation in N dimension are preserved by implicit Runge-Kutta methods.

Throughout the section, null(A4) and ran(A) denote the null space and the range
of the linear operator A, respectively. The evaluation operator £ again evaluates
functions at z = 0, a = 0, and also at h > 0, when it applies. Finally, the N x N
identity matrix is denoted by Iy.

Consider the ordinary differential equation

2= f(za) (27)
depending on a parameter o € R. Suppose that the smooth function f : RY xR —
RY has a fold bifurcation [5] at the equilibrium z = 0, a = 0, that is the following
conditions are satisfied:

[ ] fE = 0’
e dim null(fZ) =1,
o f& ¢ ran(f7),

o fE(v,v) ¢ ran(fF), where null(fF)=span(v).

10



Now consider a discretization ¢(h, z, @) of the above equation, with the function
0 :RY xRY x R — RY coming from an s-stage implicit Runge-Kutta method with
step-size h > 0, that is

Zn+1 = p(h, zn, @), n=0,1,2,... (28)
where )
@(haza a) =z+ hz% * ki(h,Z, O[),
i=1
and every function k; (1 = 1,2,...,s) satisfies the implicit equation
S
ki(h,z,0) = f(z+ 1Y Bij - kj(h, z,0), ) (29)
j=1
with some v;, Bi; (4,5 = 1,2,...,s) given real constants.

The origin z = 0, @ = 0 is a fold bifurcation point for the map ¢(h,-,-), if the
following conditions hold:

L4 (PE = (P(h,OaO) = Oa
o dim null(p? — Iy) =1,

* g ¢ ran(py — In),

o oL (v,v) ¢ ran(p? — Iy), where null(o? — Iy)=span(v).

Proposition 3.1 Suppose that the equation (27) has a fold bifurcation at the equi-
librium z =0, a = 0, and T := Y7 | v; # 0. Then the map (28) also has a fold
bifurcation at z =0, a = 0 for h > 0 sufficiently small.

Remark. It is well known that the condition I' = 1 is necessary for a Runge-Kutta
method to be of order at least one, hence the above assumption on I' is natural.

Proof of the proposition. Step 1. The first, well-known property follows from
the fact [7] that for h small enough, there is a locally unique solution to the defining
system of equations (29) for the functions k;, which is seen to be kP = k;(h,0,0) =
fP=0foreveryi=1,2,...,s.

Step 2. Next we show that null(fZ) C null((k;)7) for all i = 1,2,...,s. To this
end, choose 0 # v € null(fF) and use (29) to obtain for every i that

(B)fv=fE [ In+h> By~ (k) | v=fERD Bij- (kj) v,
j=1 j=1

that is ,
(k)Fv—h> By - fE(k)Fv =0, i=1,2,...,s.

Jj=1
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Notice that these s equations can be represented by a single matrix equation as

(k1) Fv

k E
(INs—h,ﬁ®sz) (2.)ZU :OERN.sa

(ks.)EU

z

where we have used the Kronecker product ® of the matrices g := [§;;] € R®**® and
fE. However, for small h, the matrix In.; —h-B® fF is invertible, hence (k;)Ev =0
for every 1 = 1,2,...,s, and the assertion follows.

Step 3. The previous step also proves that null(fZ) C null(pZ — Iy), since for any
v € null(f¥) we have that

S S
(0f —Inv=[hY % fZ | In+hD By (k)| |v=
i=1 j=1

S S
=hT fEu+ 0% fEY "N 3B - (k) Fv =0.
i=1 j=1

Step 4. In order to prove that null(pZ — I'y) is in fact one dimensional, choose an
arbitrary nonzero vector w from this subspace. A similar rearrangement as in the
previous step shows that

0= (pf —In)w=h- fF Aw,
where we have used the abbreviation
S S
A=T-Iyn +h22’)’zﬂij . (k])zE
i=1 j=1
Therefore, Aw € null(fF) C null((k;)¥) for all j =1,2,..., s, which implies that
AAw =T Aw+hY_ Y 7B - (k)F Aw =T - Aw.

i=1 j=1
But A is invertible, because I" # 0 and h is small, so we have

Aw =T -w,
which shows that w € null(fF), and also that null(¢? — I'y) = null(fF).
Step 5. As for the first range condition ¢ ¢ ran(¢? — Iv), suppose to the contrary

that there exists a vector w € RY such that ¢Z = (¢f — Ix)w holds. This is
equivalent to saying that

S S
RY i\ FE\ R Big- (ke | + 12 ) =h- 7 Aw,
i=1 j=1

which is just

FE= 5 18 (w323 b (k)

i=1 j=1
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This means, however, that fZ € ran(fF), a contradiction.
Step 6. Finally, to prove the second range condition, one has to work with the
bilinear forms representing the second derivatives. Suppose again, to the contrary,

that there exists a vector w € RY such that ¢ (v,v) = (¢¥ — In)w, where v €
null(f£) = null(¢? — Iy). Since

S
oL (v,0) =B i (k)5 (v,0),
=1

we first need to compute (k;)%, (v,v). To accomplish this, introduce the functions

F(z) = f(2,0)
and for any i = 1,2,....s

_z—l-hZﬂw i(h,z, ).

Now k; = F o G}, so according to the higher-order chain rule [6], we get that

(ki)E(v,0) = (Faz 0 G3)” ((Gi) v, (Gi)Fv) + (F, 0 Gy)” ((Gi)E (v, v)) =

fzz U+hZ/61J ”U+h2ﬂ1] EU +fz (( )Ez(” U))
7j=1

7j=1

But v € null(fF) C null((k;)¥) for every j, hence

(ki) (v,0) = f2(v,0) + £ ((Gi) (v, 0)) -

If <sz(’U,U) = (wf — In)w were true, then

- fEw,v) + fF (Z% )) £ Aw

would hold, in other words

E(vv)—% z(Aw Z’)’z JJA )>’

which would clearly violate our original assumption fZ(v,v) ¢ ran(fF). B
As for the cusp case, consider (27) again, but this time with & € R?. The smooth
function f : RY x R2 — RY has a cusp bifurcation [5] at the equilibrium z = 0,
=0, if
° fE =
e dim null(ff) =1,

o fZ(v,v) € ran(fF), where null(ff)=span(v),
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o fE (v,v,v) + 3fE (v, z) ¢ ran(fF), where v is as above and z is any solution
to the equation ffz = —fE(v,v).

Remark. One can make x unique assuming one extra condition, but we will
not make use of this property.

Consider the corresponding Runge-Kutta discretization ¢ : Rt xRY xR? — RV.
The equilibrium z = 0, @ = 0 is a cusp bifurcation point for the map ¢(h,-,-), if
the following conditions hold:

b go(h,O, 0) =0,
o dim null(p? — Iy) =1,
o oL (v,v) € ran(p? — Iy), where null(p? — Iy)=span(v),

o oL (v,v,v) + 3L (v,y) ¢ ran(p? — Iy), where v is as above and y is any
solution to the equation (pf — Ix)y = —¢Z, (v,v).

Proposition 3.2 Suppose that the equation (27) has a cusp bifurcation at the equi-
librium z =0, « =0, and T :== Y7 | v # 0. Then the corresponding Runge-Kutta
discretization map also has a cusp bifurcation at z =0, a = 0 for h > 0 sufficiently
small.

Proof. Due to the previous proposition, only the last two conditions have to be

checked.
Step 1. Suppose that fE(v,v) = fFu holds with some u € RY and 0 # v €

null(fF). Set
wi=A"! (I‘u + Z%‘ . (&)i(%’”)) )
i=1

where the linear operator A and the functions G; (i = 1,2,...,s) are as in the
previous proof, see Step 4 and 6 there. Then we have that

(o — Inyw = h- fEAw—h- f° (ru F3 <Gi>;ﬂ;<v,v>) _

=1

=hY v fPu+hd v fF((G)E(v,v) =
=1 =1

=07 (5 00) + £ (GIZ(00)) = h Dy ()Z(0,0) = @ (v,0).

i=1
Step 2. Suppose to the contrary that there exists a vector w € RV such that
012 (0,0,0) + 307 (v,9) = (97 — In)w (30)

holds with 0 # v € null(p? — Ix) = null(fF) and y being any solution to the
equation (pZ — In)y = —oF (v,v).
In order to compute the trilinear and the bilinear forms here, we appeal again
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to the higher-order chain rule [6] (with the same notations as in Step 6 in the proof
of the previous proposition) to get for every i = 1,2,...,s that

(ki) 2, (0,0,0) = (Fozz 0 Go)T ((Gi)F, (Gi) P, (Gi)Fv) +
+3 (Fop 0 Gi)” ((Gi)E, (v,v), (Gi)Fv) + (F. 0 Gi)” ((Gi)E,, (v, v,v)),

where symmetry of the bilinear forms has also been taken into account. Performing
some of the evaluations, we arrive at the following formula

(ki)fzz(v’v’v) = fz%z(v’v’v) + 3fz€ ((G’t)zEz(’U’v) ) + fz (( )zEzz('U’IU"U)) .

In a similar manner, we have that

(ki) (v,y) = £5 vy+hZﬁzg Yy |+ £ ((G)E(v,y) -

j=1
Now (30) is equivalent to the following

hZ%{fm v,0,0) + 311 ((Gi) 22 (v,0),0) + f7 ((Gi) ez (v0,0,0)) +

+3f5 | v y+h2ﬂm Yy | +357 (G (v,9)} = b~ [ Aw,
7j=1

that is

S

1
fzza(v,0,0) +315 v, 1 Z% zzvv)+Fy+hZZ%ﬁU =

i=1 j=1

:_ fz (Aw nyl zzzvv v _3271 zzvy)>

using again the symmetry of the bilinear forms.
The desired contradiction will immediately follow as soon as we have shown that

Z'Yz zz (v U)+Py+hZZ'YZIBZJ iz
i=1 j=1

solves
szw = _szz(vaU)'

But we know that y satisfies

(0f = In)(—y) = oL, (v,v),

which—Dby the last part of Step 6 in the proof of the previous proposition—implies

that ,
) = - (-0 = Yo @0 ).

By the definition of = and A, the right hand side is just fZ(—=z), so the proof is
complete. W
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