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Abstract

Our present work is a case study of numerical structural stability of flows un-
der discretization in the vicinity of a non-hyperbolic equilibrium. One-dimensional
ordinary differential equations with the origin undergoing fold bifurcation at bifur-
cation parameter value α = 0 are considered together with their discretizations. In
a neighbourhood of this equilibrium a conjugacy is constructed between the time-h-
map of the solution flow of the ODE and its stepsize-h discretization of order p ≥ 1
in the limiting case h → 0+.

As we have shown in [4], the conjugacy problem between the original ODE and
its discretization can be reduced to the construction of a conjugacy between the
corresponding normal forms, which in turn amounts to solving a one-dimensional
functional equation depending on the two parameters h and α. A solution—being
the required conjugacy map—is now obtained by applying the technique of funda-
mental domains.

The main emphasis in this work is put on estimating the distance between the
conjugacy map J(h, ·, α) and the identity on [−ε0, ε0] for 0 < h ≤ h0 and −α0 ≤
α ≤ α0. Since the origin is a fold bifurcation point, we can assume that both normal
forms possess two fixed points for α < 0 which merge at α = 0 then disappear for
α > 0. For α ≤ 0, we show that |x − J(h, x, α)| is O(hp) small, uniformly in x
and α ≤ 0, further, that this closeness result is optimal. For α > 0 however, we
are currently unable to establish uniform O(hp)-closeness: only a weakly singular
estimate O(hp · ln 1

α) is proved. Nevertheless, numerical experiments suggest that
this estimate is sharp for our particular construction of J . Uniform O(hp)-closeness
in the α > 0 case is proved under an additional assumption on the normal forms.

∗This research was supported by the DAAD project ”Dynamics of evolution equations under simul-
taneous time and space discretization”, by the DFG Research Group ”Spektrale Analysis, asymptotische
Entwicklungen und stochastische Dynamik” at Bielefeld University, further the Hungarian Scientific Re-
search Fund OTKA under Grant No. T037491.
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1 Introduction

Numerical structural stability of flows under discretization assuming some kind of
hyperbolicity has been thoroughly investigated in the past years, see, e.g., [1] and
[2].

Numerical counterparts of classical results on ordinary differential equations
have been established—such as the numerical flow box theorem (around a non-
equilibrium point) or the numerical Grobman-Hartman Lemma (around a hyper-
bolic equilibrium).

On one hand, the question of numerical structural stability of flows is captured by
the existence of a conjugacy mapping between the original flow and its discretization.
Such a conjugacy preserves the topological structure of the phase portrait, thus
the corresponding dynamical systems are topologically equivalent. Consequently,
it is often convenient to think of conjugacies as coordinate-transformations and
discretizations as special, small perturbations of the original flow.

On the other hand, numerical structural stability can quantitatively be expressed
by measuring the distance between the conjugacy and the identity map on the cen-
ter manifold. Under various hyperbolicity assumptions, this quantity can be shown
to be O(hp)-small, where h is the stepsize and p is the order of the discretization
method applied.

It is thus natural to compare exact and discretized dynamics in the simplest
non-hyperbolic case, that is, in one-parameter families of ODE’s with hyperbolicity
violated at a single value of the parameter.

A paper [3] by Gyula Farkas has been a step in this direction. He has constructed
a conjugacy between the time-1-map Φ(1, ·, α) of an ordinary differential equation
and the N th iterate (N ∈ N

+) of its stepsize h = 1/N discretization ϕ[N ](h, ·, α)
in the vicinity of a fold bifurcation point. Here α ∈ R is the bifurcation parameter
and the bifurcation point is chosen to be the origin. He also ”showed” that the
constructed conjugacy is O(hp)-close to the identity on the center manifold, where
p is the order of the one-step discretization method ϕ. Quotation marks have been
used in the previous sentence because the proof of the main estimate in [3] contains
some gaps in the α ≤ 0 case. However, the gaps are much larger in the α > 0
case, which can not be considered as proven: the main technical difficulty remained
unnoticed and unresolved here.

Our primary aim is to generalize and correct the above result in the limiting
case h → 0+, that is to construct a conjugacy J(h, ·, α) between the time-h-map
Φ(h, ·, α) of the ODE and its corresponding discretization ϕ(h, ·, α), further, to
prove a suitable closeness between the conjugacy map and the identity. Although
Φ(h, ·, α) in the present work is only an R → R map, some preliminary computa-
tions suggest that the same type of conjugacy result will hold near fold bifurcation
points of ODE’s and their discretizations in higher space dimensions. In addition,
the closeness estimate will remain true for the corresponding maps restricted to
their center manifolds—with the modification that all hp in the final estimates will
be replaced by hp−1. (A discretization of order p means O(hp+1)-closeness between
the maps Φ(h, ·, α) and ϕ(h, ·, α), but only O(hp)-closeness of the center manifolds,
so the restricted one-dimensional maps on the respective center manifolds have also
O(hp)-closeness.)
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In our previous work [4] we have shown that the conjugacy problem can be
reduced to the conjugacy of two normal forms depending on the stepsize h and the
bifurcation parameter α. Let us denote by

NΦ(h, x, α) := hα + x + hx2 + hx3 · η̂3(h, x, α)

the normal form of the map Φ(h, ·, α) computed in Lemma 2.2 in [4], and let

Nϕ(h, x, α) := hα + x + hx2 + hx3 · η̃3(h, x, α)

denote the normal form of the discretization map ϕ(h, ·, α) in Theorem 2.5 in [4].
These normal forms correspond to the case when there are two equilibria for α < 0
and there is no equilibrium for α > 0. The converse case can, of course, be treated
symmetrically.

Notice that [3] worked with slightly different normal forms having also an ad-
ditional factor a > 0 in the coefficient of the quadratic term. We have shown in
[4] that this coefficient can be chosen as a = 1, which will be vital for our later
arguments in Section 5.

Theorem 2.5 in [4] implies the following important inequality. There exists a
constant c > 0 such that for any h ∈ (0, h0], x ∈ [−ε0, ε0] and α ∈ [−α0, α0] (with
h0 > 0, ε0 > 0 and α0 > 0 being sufficiently small) we have that

|NΦ(h, x, α) −Nϕ(h, x, α)| ≤ c · hp+1|x|3. (1)

In what follows, the original ODE and its discretization will not be present
explicitly. All later closeness estimates of |J(h, x, α) − x| will be derived as conse-
quences of (1).

Therefore, our task is to construct a homeomorphism J(h, ·, α) in a small neigh-
bourhood of the origin with h ∈ (0, h0] and α ∈ [−α0, α0] as parameters such that
J(h, ·, α) solves the conjugacy equation

NΦ(h, J(h, x, α), α) = J(h,Nϕ(h, x, α), α), (2)

and also to estimate the quantity

sup
h∈(0,h0]

sup
|x|≤ε0

sup
|α|≤α0

|x − J(h, x, α)|
hp

.

This clearly shows that our investigations belong to the quantitative theory of func-
tional equations as well. (They can be considered as generalizations of the one-
dimensional Grobman-Hartman Lemma established by [5]. For a general treatment
of functional equations, we refer, e.g., to [6]. For general conjugacy results, includ-
ing the Grobman-Hartman Lemma and structural stability, see, e.g., [7].)

Let us now briefly summarize the content of each section. In Section 2, the
conjugacy is defined for α ≤ 0, h > 0, x ∈ [−ε0, ε0], using forward iteration of
the normal forms for x ≤ 0 (where the branch of attractive fixed points is located)
and inverse iteration of the normal forms for x ≥ 0 (containing the repelling fixed
points). Section 3 develops the uniform O(hp)-estimates for α ≤ 0, moreover, it
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shows that even a better closeness estimate holds in the region between the fixed
points, and that the given estimates at the fixed points are optimal.

Section 4 analyzes the growth rate of iterates of the normal forms for α > 0,
while in Section 5 we construct a conjugacy J , then prove a singular O(hp · ln 1

α)
logarithmic estimate of the distance between the map J and the identity. A uniform
O(hp)-estimate under an additional assumption on the distance of the normal forms
is also proved: if |x|3 in (1) is replaced by |x|4, then uniform closeness holds. Another
uniform O(hp)-closeness estimate without any additional assumption is proved on
a shrinking parabola-shaped domain in the (α, x)-plane. In conjecturing sharper
versions of some inequalities, and even in proving Lemma 4.8, the computer program
Mathematica has extensively been used.

In the last section, some comments and open questions are collected concerning
the fixed-point-free α > 0 case, where estimates turned out to be surprisingly harder
than their α ≤ 0 counterparts. We do believe that the current logarithmic estimate
is sharp—at least for our natural construction of J , as demonstrated in Sections
6.2–6.3 by some convincing numerical tests arranged in tabular forms and plots.

Sections 2–3 and Sections 4–5 are basically independent of each other—however
their basic theme is the same: after the conjugacy J has been defined recursively,
the (convergence) speed of sequences generated by the iterates of normal forms is
analyzed to prove the closeness estimates.

A notable feature of our estimates is that they are fairly explicit, meaning that
h0, ε0, α0 and the closeness estimates themselves are all expressed in terms of p,
c and K, where p ≥ 1 is the order of the discretization method, c > 0 is the con-
stant in (1), and K > 0 is a common uniform bound of the moduli of the functions
x 7→ η̂3(h, x, α) and x 7→ η̃3(h, x, α) together with their first and second derivatives
on [0, h0] × [−ε0, ε0] × [−α0, α0]. In other words, we specify how large the domain
of definition of J and the coefficients of the hp terms in the closeness estimates are.

As for future work, there are at least four directions planned to be examined or
elaborated further. Most importantly, instead of a one-dimensional setting, the fold
bifurcation problem can be considered in N dimension and center manifold reduc-
tion applied afterwards. Secondly, it is yet to be decided whether the logarithmic
estimate in the α > 0 case can be improved by possibly modifying the construction
of J . Thirdly, in the current construction, continuity of the mapping α 7→ J(h, x, α)
at α = 0 and x ≥ 0 is still an unresolved question of interest. Finally, other simple
types of bifurcations are also intended to be treated.

Concluding this introduction, some more notation is introduced. The super-
script E will denote function evaluation at h and α for functions from R

3 to R, that
is, for example, JE stands for the function J(h, ·, α). The range of parameters h
and α will be clear from the context. The symbol f [−1] means the inverse of a real
function f . Similarly, f [k] is the kth iterate (k ∈ Z) of f : R → R. The symbol id
denotes the identity function on R. Symbols b·c and d·e, as usual, denote the floor
and ceiling functions, that is the greatest integer and least integer functions, respec-
tively (for a reference and origin of their usage, see, e.g., the online encyclopedia
at http://mathworld.wolfram.com/IntegerPart.html). The set of nonnegative
integers is denoted by N. #A will denote the number of elements of the (finite)
set A. Finally, for any a, b ∈ R, the symbol [{a, b}] represents the closed interval
between the elements of the set {a, b}, that is [{a, b}] := [min(a, b), max(a, b)].
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2 Construction of the conjugacy in the α ≤ 0

case

Consider first the case α < 0. Let us denote the negative fixed point of NE
ϕ and

NE
Φ near the origin by ωϕ,− ≡ ωϕ,−(h, α) and ωΦ,− ≡ ωΦ,−(h, α), respectively.

Lemma 2.1 For every 0 < h ≤ h0 and −α0 ≤ α < 0 we have that

−
√

2
√
|α| ≤ ωϕ,− ≤ −

√
2

3

√
|α|

and

−
√

2
√
|α| ≤ ωΦ,− ≤ −

√
2

3

√
|α|,

provided that α0 ≤ 1
8K2 .

Proof. By definition, ωϕ,− < 0 solves α+x2 +x3 · η̃3(h, x, α) = 0. Since if |x| ≤ 1
2K ,

then |x3η̃3| ≤ 1
2x2 and hence

α +
x2

2
≤ α + x2 + x3 · η̃3(h, x, α) ≤ α +

3x2

2

holds, we get the desired estimates provided that
√

2
√
|α| ≤ 1

2K , which is true if
|α| ≤ 1

8K2 . The proof for ωΦ,− is similar. ¥

By iterating one of the normal forms, let us define two sequences xk and yk. Let
xk ≡ xk(h, α) be defined as

xk+1 := Nϕ(h, xk, α), k = 0, 1, 2, . . .

with x0 := 0, further let yk ≡ yk(h, α) be defined as

yk+1 := Nϕ(h, yk, α), k = 0, 1, 2, . . . (3)

with y0 < ωϕ,−, being independent of both h and α, and |y0| being chosen appro-
priately, see below. Note that y0 is a negative number.

Since, by Lemma 2.1, if h and |α| are sufficiently small, 0 < (NE
ϕ )′(ωϕ,−) < 1

holds, the fixed point ωϕ,− is attracting, hence limk→∞ xk(h, α) = limk→∞ yk(h, α) =
ωϕ,− . Moreover, a simple calculation shows that y0 < y1(h, α) can also be achieved,
for example, − 1

4K ≤ y0 ≤ −2
√

α0 suffices, hence it follows by induction that the
sequence yk is monotone increasing. Similarly, it can be assumed that the sequence
xk is monotone decreasing.

We remark that suitable values of h0, α0 and y0 have been built into the condi-
tions of the following lemmas and theorems corresponding to the α ≤ 0 case.

The following figure shows the branch of stable and unstable fixed points of NE
ϕ

in the (α, x)-plane together with the first few terms of the inner sequence xk(h, α)
and the outer sequence yk(h, α) with some h > 0 and α < 0 fixed. The arrows point
toward terms of the sequences with larger k indices.
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The intervals [xk+1, xk] and [yk, yk+1] (k ∈ N) constitute the so-called funda-
mental domains on which the homeomorphism JE is now piecewise defined.

Fix 0 < h ≤ h0 and −α0 ≤ α < 0 arbitrarily.
Let JE(x) := x for x ∈ [x1, x0] ≡ [hα, 0]. For n > 1, set

JE(xn) :=
(
NE

Φ

)[n]
(x0),

and recursively, for n > 1 and for x ∈ (xn, xn−1), let

JE(x) :=
(
NE

Φ ◦ JE ◦
(
NE

ϕ

)[−1]
)

(x). (4)

Here the right hand side has already been defined by the recursion. Finally, set

JE(ωϕ,−) := ωΦ,− .

Then JE is continuous, strictly monotone increasing on [ωϕ,− , 0], as it is a compo-
sition of three such functions, and satisfies (2).

Fix − 1
4K ≤ y0 ≤ −2

√
α0 as well. Let JE(y0) := y0, and for n > 1, set

JE(yn) :=
(
NE

Φ

)[n]
(y0).

On the interval [y0, y1], extend JE linearly. Recursively, for n > 1 and for y ∈
(yn−1, yn), set

JE(y) :=
(
NE

Φ ◦ JE ◦
(
NE

ϕ

)[−1]
)

(y).

Then JE is continuous, strictly monotone increasing on [y0, ωϕ,− ] and satisfies (2).
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The same construction is carried out for α = 0. This time, however, only the
sequence yk is needed, since the two fixed points merge then disappear as α passes
through 0−. Of course, J(h, 0, 0) := 0.

Currently, the construction is halfway ready—the function J has been defined
on (0, h0] × [−|y0|, 0] × [−α0, 0] so far.

On (0, h0]× [0, |y0|]× [−α0, 0], that is in the region of repelling fixed points, the
inverses of the normal forms are iterated. For any 0 < h ≤ h0 and −α0 ≤ α < 0,
set x̃0 := x0 = 0 and for k = 1, 2, . . .

x̃k ≡ x̃k(h, α) :=
(
NE

ϕ

)[−k]
(x̃0),

further for any 0 < h ≤ h0 and −α0 ≤ α ≤ 0, let ỹ0 := |y0| and for k = 1, 2, . . .

ỹk ≡ ỹk(h, α) :=
(
NE

ϕ

)[−k]
(ỹ0).

Then for α < 0, the monotone increasing sequence x̃k tends to ωϕ,+ , while the
monotone decreasing sequence ỹk converges to ωΦ,+ , where ωϕ,+ and ωΦ,+ denote
the positive fixed points of NE

ϕ and NE
Φ , respectively.

The construction for JE is analogous: for example, we set

JE(x̃n) :=
(
NE

Φ

)[−n]
(x̃0) and JE(ỹn) :=

(
NE

Φ

)[−n]
(ỹ0),

but now the relation JE =
(
NE

Φ

)[−1] ◦ JE ◦ NE
ϕ is used in the recursive extensions.

Remark 2.1 Notice that our construction is more direct than the one in [3], since
the intermediate pure quadratic function g(x, α) as well as the two auxiliary home-
omorphisms H and G in [3] are eliminated.

3 The closeness estimate for the conjugacy in

the α ≤ 0 case

3.1 The inner region

We now prove that the constructed conjugacy JE is O(hp)-close to the identity on
the interval [ωϕ,− , 0] uniformly for any h ∈ (0, h0] and α ∈ [−α0, 0).

We mention that O(hp−1)-closeness could be proved easily by arguing as [3]
with estimates formulated in terms of the sequence xk itself. Nevertheless, it turns
out that restoring this lost order is possible by a different subdivision of [ωϕ,− , 0],
established by the following preparatory lemma. The sequence sn defined below
successfully bridges the gap between two different orders of magnitude: it connects
the ”micro” level O(hα) with the ”meso” level O(

√
|α|). The meso-level and the

”macro” level O(1) will be connected by the sequence yk in Section 3.2.

Lemma 3.1 Let h0 ≤ 1
16 and

√
α0 ≤ min

(
1
2 , 1√

8K

)
. For every h ∈ (0, h0] and

α ∈ [−α0, 0), define

m ≡ m(h) := blog2 log2

1

h
c

and for 1 ≤ n ≤ m
sn ≡ sn(h, α) := − 2n√

h
√
|α|,
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further let s0 := hα ≡ x1. Then m ≥ 2,

ωϕ,− < −
√
|α|
2

≤ sm ≤ −
√
|α|
4

and for any 1 ≤ n < m we have that

ωϕ,− < NE
ϕ (sn+1) < sn+1 < NE

ϕ (sn) < sn < . . . < NE
ϕ (s1) < s1 < NE

ϕ (s0) < s0 < 0.

Proof. It is seen that 1
2 ≥ h2−m ≥ 1

4 is equivalent to 0 ≤ −m + log2 log2
1
h ≤ 1,

which is always satisfied due to the definition of m(h).
√

α0 has been chosen so small

that Lemma 2.1 can be applied, hence ωϕ,− ≤ −
√

2
3

√
|α| < −1

2

√
|α|. Also notice

that (due to the definition of ωϕ,− , NE
ϕ (0) < 0 and continuity) ωϕ,− < NE

ϕ (x) < x

holds for x ∈ (ωϕ,− , 0]. It is easy to see that hα + x ≤ NE
ϕ (x) < 0, if |x| ≤ 1

K .

The already shown inequality −
√

|α|
2 ≤ sn (1 ≤ n ≤ m) and condition

√
|α| ≤ 1√

8K

imply |sn| ≤ 1
K , hence it is sufficient to prove that sn+1 < hα + sn holds for

1 ≤ n < m. (The case n = 0 can be verified directly.) But this is equivalent to
h2−n−1

+ h · h−(2−n−1)
√

|α| < 1. The second term is strictly less than 1
2 , hence

h2−n−1 ≤ 1
2 remains to be shown. However, this reduces to log2 log2

1
h ≥ n + 1,

which is true, since m > n. ¥

Now the desired closeness is shown to hold on each of the subintervals defined
above. However, since the number of these subintervals tends to infinity as h → 0+,
the constants on the right hand sides of the estimates should be controlled carefully.
Thus, instead of a generic positive constant const, the symbol c > 0 being the same
as in (1) with fixed value is used throughout the proof.

Lemma 3.2 Suppose that h0 ≤ min
(

1
16 , p

√
1
8c

)
and

√
α0 ≤ min

(
1
2 , 1

19K

)
. Then

using the notations of the previous lemma, for every h ∈ (0, h0], α ∈ [−α0, 0) and
0 ≤ n < m we have the following estimates:

sup
[s0,0]

| id − JE | = 0, (5)

sup
[NE

ϕ (s0),s0]

| id − JE | ≤ c · hp+4|α|3, (6)

sup
[NE

ϕ (sn+1),NE
ϕ (sn)]

| id − JE | ≤ c · hp+2−n−1√|α|, (7)

sup
[ωϕ,− ,NE

ϕ (sm)]

| id − JE | ≤ 12c · hp
√
|α|. (8)

Proof. Step 1. h0 and α0 have been chosen such that max(|ωϕ,− |, |ωΦ,− |) ≤
min

(
1, 1

13K

)
(see Lemma 2.1), which implies that 0 < (NE

Φ )′ ≤ 1 + h · id and
(NE

Φ )′ is monotone increasing (due to 0 < (NE
Φ )′′) on [ωϕ,− , 0] ∪ [ωΦ,− , 0]. So the

above estimates can be evaluated at any x ∈ [ωϕ,− , 0] and therefore at any JE(x) ∈
[ωΦ,− , 0]. (We remind that, by construction, JE maps the interval [ωϕ,− , 0] onto
[ωΦ,− , 0].) Hence for any x ∈ [ωϕ,− , 0]

sup
[{x,JE(x)}]

(NE
Φ )′ ≤ 1 + h · max(x, JE(x)) (9)
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holds. (With the [{·, ·}] notation introduced earlier, both cases x ≤ JE(x) and
JE(x) < x can be treated simultaneously.) Taking also into account that JE is
strictly monotone increasing by construction, further inequality (1) and definition
(4), we get for any ωϕ,− ≤ a < b ≤ 0 that

sup
[NE

ϕ (a),NE
ϕ (b)]

| id − JE | = sup
[NE

ϕ (a),NE
ϕ (b)]

∣∣∣NE
ϕ ◦ (NE

ϕ )[−1] −NE
Φ ◦ JE ◦ (NE

ϕ )[−1]
∣∣∣ ≤

≤ sup
[a,b]

∣∣NE
ϕ −NE

Φ

∣∣ + sup
[a,b]

∣∣NE
Φ −NE

Φ ◦ JE
∣∣ ≤

≤ c · hp+1|a|3 + sup
x∈[a,b]

((
sup

[{x,JE(x)}]
(NE

Φ )′
)
|x − JE(x)|

)
≤

≤ c · hp+1|a|3 +
(
1 + h · max

(
b, JE(b)

))
sup
[a,b]

| id − JE |. (10)

Step 2. sup[s0,0] | id − JE | = sup[x1,x0] | id − JE | = 0, since JE = id on [x1, x0]
by construction.

Step 3. By (10) and the previous step,

sup
[NE

ϕ (s0),s0]

| id − JE | = sup
[NE

ϕ (x1),NE
ϕ (x0)]

| id − JE | ≤

≤ c · hp+1|x1|3 +
(
1 + h · max

(
x0, J

E(x0)
))

sup
[x1,x0]

| id − JE | = c · hp+4|α|3.

Step 4. By (10), we have that

sup
[NE

ϕ (s1),NE
ϕ (s0)]

| id − JE | ≤ c · hp+1|s1|3 +
(
1 + h · max

(
s0, J

E(s0)
))

sup
[s1,s0]

| id − JE |.

(11)

Here JE(s0) = JE(x1) = −h|α| = s0, |s1|3 = h
3
2 |α| 32 and narrowing the interval in

the supremum on the left hand side yields that

sup
[s1,NE

ϕ (s0)]

| id − JE | ≤

≤ c · hp+1+ 3
2 |α| 32 +

(
1 − h2|α|

)
max

(
sup

[s1,NE
ϕ (s0)]

| id − JE |, sup
[NE

ϕ (s0),s0]

| id − JE |
)

.

If the maximum is attained on the second term, the estimate from Step 3 is used
(together with h ≤ 1 and

√
|α| ≤ 1

2), while if the maximum is attained on the first
term, the resulting inequality is solved. In any case, we can establish that

sup
[s1,NE

ϕ (s0)]

| id − JE | ≤ c · hp+ 1
2

√
|α|, (12)

with the same c as before. Now, turning to (11) again, but this time also using Step
3 and (12), we get that

sup
[NE

ϕ (s1),NE
ϕ (s0)]

| id − JE | ≤

≤ c · hp+2+ 1
2 |α| 32 +

(
1 − h2|α|

)
max

(
c · hp+ 1

2

√
|α|, c · hp+4|α|3

)
.

Again, it is easy to see that in any case the right hand side can not be greater than
c · hp+ 1

2

√
|α|.
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Step 5. Repeating inductively, we get for 1 ≤ n < m that

sup
[NE

ϕ (sn),NE
ϕ (sn−1)]

| id − JE | ≤ c · hp+2−n√
|α|.

By (10),
sup

[NE
ϕ (sn+1),NE

ϕ (sn)]

| id − JE | ≤

≤ c · hp+1|sn+1|3 +
(
1 + h · max

(
sn, JE(sn)

))
sup

[sn+1,sn]
| id − JE |. (13)

Here |sn+1|3 = h3·2−n−1 |α| 32 . Further, since sn ∈ [NE
ϕ (sn),NE

ϕ (sn−1)], by the induc-
tion hypothesis we have that

JE(sn) − sn ≤ |JE(sn) − sn| ≤ c · hp+2−n√
|α|,

from which it is easy to deduce that

JE(sn) ≤ −
√
|α|
2

h2−n

using that hp ≤ 1
8c ≤ 1

2c by assumption. Obviously, sn ≤ −
√

|α|
2 h2−n

holds as well.
So (13) yields that

sup
[Nϕ(sn+1),NE

ϕ (sn)]

| id − JE | ≤ c · hp+1+3·2−n−1 |α| 32 +

+

(
1 −

√
|α|
2

h1+2−n

)
max

(
sup

[sn+1,NE
ϕ (sn)]

| id − JE |, sup
[NE

ϕ (sn),sn]

| id − JE |
)

. (14)

Clearly, the supremum on the left hand side is not increased if it is taken only on
[sn+1,NE

ϕ (sn)]. Evaluating the first case in the maximum we have that

sup
[sn+1,NE

ϕ (sn)]

| id − JE | ≤ c · hp+1+3·2−n−1 |α| 32√
|α|
2 h1+2−n

= 2c · hp+2−n−1 |α| ≤ c · hp+2−n−1√|α|,

since
√
|α| ≤ 1

2 , and similarly, evaluating the second case in the maximum on the
right hand side of (14) (and using the induction hypothesis also) yields the same,
since for 1 ≤ n < m

c · hp+1+3·2−n−1 |α| 32 + c · hp+2−n√
|α| ≤ c · hp+2−n−1√|α|. (15)

Therefore, we have shown that

sup
[sn+1,NE

ϕ (sn)]

| id − JE | ≤ c · hp+2−n−1√|α|.

Now with this additional information substituted back into the right hand side of
(14) together with the induction hypothesis, we see as in (15) that

sup
[NE

ϕ (sn+1),NE
ϕ (sn)]

| id − JE | ≤ c · hp+2−n−1√|α|.

The induction is complete.
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Step 6. Finally, by using (10) we get that

sup
[ωϕ,− ,NE

ϕ (sm)]

| id−JE | ≤ c·hp+1|ωϕ,− |3+
(
1 + h · max

(
sm, JE (sm)

))
sup

[ωϕ,− ,sm]
| id−JE |,

since ωϕ,− is a fixed point of NE
ϕ . Now we use inequality |ωϕ,− | ≤

√
2
√
|α| from

Lemma 2.1, further inequality NE
ϕ (sm) ≤ sm ≤ −

√
|α|
4 from Lemma 3.1 and (7)

with n = m − 1 together with the assumption hp ≤ 1
8c to obtain JE (sm) ≤

−
√

|α|
4 +c·hp

√
|α| ≤ −

√
|α|
8 and sm ≤ −

√
|α|
8 , finally the decomposition [ωϕ,− , sm] =

[ωϕ,− ,NE
ϕ (sm)]∪ [NE

ϕ (sm), sm] in the supremum on the right hand side to point out
in the first case that

sup
[ωϕ,− ,NE

ϕ (sm)]

| id − JE | ≤
√

8c · hp+1|α| 32

h

√
|α|
8

= 16
√

2c · hp|α| ≤ 8
√

2c · hp
√
|α|,

while in the second case—using (7) again—that

sup
[ωϕ,− ,NE

ϕ (sm)]

| id − JE | ≤ 2c · hp
√
|α|.

Now the proof of the lemma is complete. ¥

Remark 3.1 At ωϕ,− , we can obtain a slightly better estimate in terms of α.
Namely, we have

| id−JE |(ωϕ,−) = |ωϕ,−−ωΦ,− | ≤ c·hp+1|ωϕ,− |3+
(

sup
[{ωϕ,− ,ωΦ,−

}]
(NE

Φ )′
)
|ωϕ,−−ωΦ,− |,

which—since the positive supremum is at most 1 − h
2

√
|α| together with Lemma

2.1—implies that

|ωϕ,− − ωΦ,− | ≤ 2c · hp |ωϕ,− |3√
|α|

≤ 4
√

2c · hp|α|.

Remark 3.2 on optimality. The following explicit example illustrates that the
distance of fixed points of functions satisfying (1) may be bounded from below by
O(hp) (h → 0). Hence the fact that fixed points must be mapped into nearby fixed
points by the conjugacy JE implies that better estimates than O(hp) of | id − JE |
generally can not be expected.

Indeed, set η̂3(h, x, α) := 0 and η̃3(h, x, α) := hp · x. Then NΦ(h, x, α) = hα +
x + hx2 and Nϕ(h, x, α) = hα + x + hx2 + hp+1x4 satisfy (1) in a neighbourhood of

the origin, further, ωΦ,− = −
√
|α| and ωϕ,− = −

√
1

2hp

(√
1 + 4hp|α| − 1

)
. Using

inequality 1 + t
2 − t2

8 ≤
√

1 + t ≤ 1 + t
2 − t2

8 + t3

16 for 0 ≤ t ≤ 1, one can show that

|ωϕ,− − ωΦ,− | ≥ hp

(
1

2
|α| 32 − hp|α| 52

)

holds, if, for example, h ≤ 1 and
√
|α| ≤ 1

2 .
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3.2 The outer region

In the following lemma—also interesting in itself—we first estimate the growth of
iterates of the normal form NE

ϕ , i.e. the convergence speed of yk(h, α).

Lemma 3.3 Suppose that the positive numbers h0 and α0 are small enough, further
|y0| has been chosen appropriately. Then for −α0 ≤ α ≤ 0, 0 < h ≤ h0 and k ≥ 0
we have that

−|y0| ≤ yk(h, α) ≤ 0,

while for −α0 ≤ α ≤ 0, 0 < h ≤ h0 and k ≥ b 1
hc + 1 we have that

−
√

2|α| − 2

kh
≤ yk(h, α) < 0. (16)

Proof. The first estimate follows from the fact that the sequence yk is monotone
increasing, as we have seen (for example, the condition − 1

4K ≤ y0 ≤ −2
√

α0 guar-
antees this).

As for the second estimate, we prove by induction on k. For k = b 1
hc+1, kh ≤ 2

holds if h is small enough, hence −
√

2|α| − 2
kh ≤ −1 ≤ y0 ≤ yk < 0, if |y0| is small

enough.
For k > b 1

hc + 1, we have that yk+1 = Nϕ(h, yk, α) ≥ hα + yk + h
2y2

k, if |yk| is
small enough (for example, if |yk| ≤ |y0| ≤ 1

2K ). Hence it is sufficient to prove

hα + yk +
h

2
y2

k ≥ −
√

2|α| − 2

(k + 1)h
. (17)

To this end, notice that the function x 7→ hα + x + h
2x2 is monotone increasing

provided that x > − 1
h . It is easy to see that −

√
2|α| − 2

kh > − 1
h , if k > b 1

hc + 1,
further h and |α| are small enough. Then, by the induction hypothesis, we see that

hα +

(
−

√
2|α| − 2

kh

)
+

h

2

(
−

√
2|α| − 2

kh

)2

≥ −
√

2|α| − 2

(k + 1)h
(18)

implies (17). However, since now |α| = −α, (18) is equivalent to hk
√

2|α| ≥ − 1
k+1 .

Therefore, the induction is complete. ¥

Remark 3.3 The precise conditions for h0, α0 and |y0| are collected in the next
lemma.

Remark 3.4 Estimate (16) has been devised by superimposing the following pieces
of information: on one hand, the convergence speed of the sequence yk(h, 0) = O( 1

hk )
(k → ∞) can be inferred from [8], while, on the other hand, we know from Lemma
2.1 that limk→∞ yk(h, α) = O(

√
|α|), if −α0 ≤ α < 0 is small.

Our estimate of yk is simpler and more explicit than the corresponding one in
[3], in which a majorizing sequence zk containing a fractional power of k is used. We
will only need fractional powers in the finer analyses in Sections 4 and 5 for α > 0.

Now it is proved that the conjugacy JE is O(hp)-close to the identity on the
interval [−|y0|, ωϕ,−) for any h ∈ (0, h0] and α ∈ [−α0, 0), as well as on the interval
[−|y0|, 0] for any h ∈ (0, h0] when α = 0.

12



Lemma 3.4 Suppose that h0 ≤ 1
5 ,

√
α0 ≤ min

(
1
2 , 1

26K

)
and max

(
−1,− 1

13K

)
≤

y0 ≤ −2
√

α0. Then for each h ∈ (0, h0] and α ∈ [−α0, 0) we have that

sup
[y0,ωϕ,− )

| id − JE | ≤ c

(
3y2

0 + 4
√

α0 +
4

1 − h0
+ 12

)
hp, (19)

and similarly, for h ∈ (0, h0] and α = 0 the estimate

sup
[y0,0]

| id − JE | ≤ c

(
3y2

0 +
4

1 − h0

)
hp (20)

holds.

Proof. Step 1. The assumptions have been set up such that Lemma 2.1 and

Lemma 3.3 are both applicable (hence ωϕ,− < −
√

|α|
2 holds for example, when

α < 0), further 0 < (NE
Φ )′ ≤ 1 + h · id and (NE

Φ )′ is monotone increasing on
[−|y0|, 0].

Step 2a. Consider the case α ∈ [−α0, 0) first. It is clear that

sup
[y0,ωϕ,− )

| id − JE | = sup
n∈N

sup
[yn,yn+1]

| id − JE |. (21)

Step 2b. Now since JE(y0) = y0 and JE is linear on [y0, y1], we get that

sup
[y0,y1]

| id − JE | = | y1 − JE(y1)| = |NE
ϕ (y0) −NE

Φ (y0)| ≤ c · hp+1y2
0,

by a weaker form of (1).
Step 2c. For n ≥ 1, similarly to (10), we obtain that

sup
[yn,yn+1]

| id − JE | ≤ sup
[yn,yn+1]

∣∣∣NE
ϕ ◦ (NE

ϕ )[−1] −NE
Φ ◦ (NE

ϕ )[−1]
∣∣∣ +

+ sup
[yn,yn+1]

∣∣∣NE
Φ ◦ (NE

ϕ )[−1] −NE
Φ ◦ JE ◦ (NE

ϕ )[−1]
∣∣∣ =

= sup
[yn−1,yn]

∣∣NE
ϕ −NE

Φ

∣∣ + sup
[yn−1,yn]

∣∣NE
Φ −NE

Φ ◦ JE
∣∣ ≤

≤ sup
[yn−1,yn]

∣∣NE
ϕ −NE

Φ

∣∣ + sup
y∈[yn−1,yn]

((
sup

[{y,JE(y)}]
(NE

Φ )′
)
| y − JE(y)|

)
≤

≤ c · hp+1y2
n−1 +

(
1 − h

2

√
|α|

)
sup

[yn−1,yn]
| id − JE |,

using the fact that for y ∈ [y0, ωϕ,− ] the inclusion [{y, JE(y)}] ⊂ [y0, ωϕ,− ]∪[y0, ωΦ,− ]

holds, further, sup[y0,max(ωϕ,− ,ωΦ,−
)](NE

Φ )′ ≤ 1+h ·max(ωϕ,− , ωΦ,−) ≤ 1− h
2

√
|α| by

Step 1.
Step 2d. Repeating inductively, for any n ≥ 1 we have that

sup
[yn,yn+1]

| id − JE | ≤

≤ 1 · sup
[y0,y1]

| id − JE | + c · hp+1
n−1∑

i=0

(
1 − h

2

√
|α|

)n−1−i

y2
i

13



with c being the same constant as in (1). Hence in order to show (19), it is sufficient
to verify—by virtue of Step 2a and 2b—that

sup
h∈(0,h0]

sup
α∈[−α0,0)

sup
k∈N

(
h

k∑

i=0

(
1 − h

2

√
|α|

)k−i

y2
i (h, α)

)
≤ const (22)

holds with a suitable const > 0.
Step 2e. We first estimate (22) for 0 ≤ k ≤ b 1

hc, using the first estimate of
Lemma 3.3.

h
k∑

i=0

(
1 − h

2

√
|α|

)k−i

y2
i ≤ h

k∑

i=0

y2
i ≤ h

b 1
h
c∑

i=0

y2
0 ≤

≤ h

(
1

h
+ 1

)
y2
0 ≤ 2y2

0.

Step 2f. We can now estimate (22) for k ≥ b 1
hc+1 by making use of the second

estimate of Lemma 3.3 and Step 2e.

h




b 1
h
c∑

i=0

+
k∑

i=b 1
h
c+1




(
1 − h

2

√
|α|

)k−i

y2
i ≤

≤ 2y2
0 + h

k∑

i=b 1
h
c+1

(
1 − h

2

√
|α|

)k−i
(

2|α| + 4
√

2|α|
ih

+
4

i2h2

)
≤ . . .

Now we use ih ≥
(
b 1

hc + 1
)
h > 1

h · h = 1, and
∑k

i=b 1
h
c+1

(
1 − h

2

√
|α|

)k−i
≤

1

1−
(
1−h

2

√
|α|

) to proceed.

. . . ≤ 2y2
0 + h

1

1 −
(
1 − h

2

√
|α|

)
(
2|α| + 4

√
2|α|

)
+ h

k∑

i=b 1
h
c+1

1k−i 4

i2h2
≤

≤ 2y2
0 + 2

(
2
√
|α| + 4

√
2
)

+
4

h

∫ ∞

b 1
h
c

1

i2
di ≤

≤ 2y2
0 + 4(

√
α0 + 2

√
2) +

4

h

1
1
h − 1

≤

≤ 2y2
0 + 4

√
α0 +

4

1 − h0
+ 12,

which is a suitable choice for const in (22). This estimate, substituted back into
(21), yields (19). The proof of the lemma in the case α ∈ [−α0, 0) is complete.

Step 3. Consider now the case α = 0. Then the estimate 0 < (NE
Φ )′ ≤ 1 can

be used on [y0, 0]. As in Step 2d, we arrive at the following condition

h
k∑

i=0

y2
i ≤ const (23)

to be proved, uniformly in h and α for all values of k ∈ N. But (23) can be proved
along the lines of Step 2e and 2f, being now much simpler, thanks to the last two
estimates of Lemma 3.3 at α = 0. ¥
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3.3 Conclusion and further remarks

Taking into account Lemma 3.2 and Lemma 3.4, we have thus proved the following
theorem.

Theorem 3.5 Suppose that h0 ≤ min
(

1
16 , p

√
1
8c

)
and

√
α0 ≤ min

(
1
2 , 1

26K

)
, further

max
(
−1,− 1

13K

)
≤ y0 ≤ −2

√
α0. Then, for every h ∈ (0, h0] and α ∈ [−α0, 0], the

conjugacy defined in Section 2 satisfies

sup
[y0,0]

| id − JE | ≤ 22c · hp,

where c > 0 is the same as in (1).

Now a similar task has to be carried out to acquire the appropriate estimates
on [0, |y0|] as well, for any h ∈ (0, h0] and −α0 ≤ α ≤ 0. These proofs are however
a bit more technical due to the ubiquitous inverses of the normal forms. We only
illustrate how some of the estimates can be derived in this case by showing two
fragments of the proof. The case −α0 ≤ α < 0 is considered now and attention is
focused only near the boundary of the interval [0, ωϕ,+ ].

1. We begin proving the counterpart of Lemma 3.2. Let us formulate two basic
inequalities first.

| id − JE |(x) =
∣∣∣
(
NE

Φ

)[−1] ◦ NE
Φ −

(
NE

Φ

)[−1] ◦ JE ◦ NE
ϕ

∣∣∣ (x) ≤

≤
(

sup
[{NE

Φ (x),JE◦NE
ϕ (x)}]

(
(NE

Φ )[−1]
)′

)
(∣∣NE

Φ −NE
ϕ

∣∣ (x) +
∣∣NE

ϕ − JE ◦ NE
ϕ

∣∣ (x)
)
≤

≤
(

sup
[{NE

Φ (x),JE◦NE
ϕ (x)}]

(
(NE

Φ )[−1]
)′

)
(
c · hp+1|x|3 + | id − JE |

(
NE

ϕ (x)
))

. (24)

On the other hand, by using that
((

NE
Φ

)[−1]
)′

≤ 2 is valid on a small neighbourhood

of the origin, inequality

∣∣∣
(
NE

Φ

)[−1]
(x) −

(
NE

ϕ

)[−1]
(x)

∣∣∣ =
∣∣∣
(
NE

Φ

)[−1]
(x) −

(
NE

Φ

)[−1] ◦ NE
Φ ◦

(
NE

ϕ

)[−1]
(x)

∣∣∣ ≤

≤


 sup

[{x,NE
Φ ◦(NE

ϕ )
[−1]

(x)}]

(
(NE

Φ )[−1]
)′




∣∣∣NE
ϕ ◦

(
NE

ϕ

)[−1]
(x) −NE

Φ ◦
(
NE

ϕ

)[−1]
(x)

∣∣∣ ≤

≤ 2c · hp+1
∣∣∣
(
NE

ϕ

)[−1]
(x)

∣∣∣
3

(25)

is also at our disposal.

Now using (24) and the definitions x̃1 ≡
(
NE

ϕ

)[−1]
(0), further JE(0) = 0, we

establish that

sup
[0,x̃1]

| id − JE | ≤
(

sup
[{NE

Φ (x̃1),0}]

(
(NE

Φ )[−1]
)′

)
· c · hp+1|x̃1|3 ≤ 2c · hp+1|x̃1|3.
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Now it is verified that x̃1 has the correct order of magnitude in terms of h and

α. To this end, use the fact that, say, 1
2 ≤

((
NE

ϕ

)[−1]
)′

≤ 2 holds on a small

neighbourhood of the origin to get

1

2
h|α| ≤

(
inf

[hα,0]

(
(NE

ϕ )[−1]
)′)

|hα| =

(
inf

[{0,NE
ϕ (0)}]

(
(NE

ϕ )[−1]
)′

)
∣∣0 −NE

ϕ (0)
∣∣ ≤

≤
∣∣∣
(
NE

ϕ

)[−1]
(0) −

(
NE

ϕ

)[−1] (NE
ϕ (0)

)∣∣∣ ≡ |x̃1| ≤

≤
(

sup
[{0,NE

ϕ (0)}]

(
(NE

ϕ )[−1]
)′

)
∣∣0 −NE

ϕ (0)
∣∣ =

(
sup
[hα,0]

(
(NE

ϕ )[−1]
)′

)
|hα| ≤ 2h|α|.

Thus, sup[0,x̃1] | id−JE | ≤ 16c ·hp+4|α|3. (However, with a little analysis, similar to

(26) below, one can show that sup[hα,0]

(
(NE

ϕ )[−1]
)′

=1, hence estimate sup[0,x̃1] | id−
JE | ≤ 2c · hp+4|α|3 is closer to the truth.) The rest of the proof can be carried over
similarly.

2. Secondly, it is shown that the repelling fixed points are sufficiently close to
each other, i.e. the conjugacy JE is O(hp)-close to the identity also at ωϕ,+ . By
(24) at x = ωϕ,+ we have that

|ωϕ,+ − ωΦ,+ | = | id − JE |(ωϕ,+) ≤

≤


 sup

[{NE
Φ (ωϕ,+ ),ωΦ,+

}]

(
(NE

Φ )[−1]
)′




(
c · hp+1 · ω3

ϕ,+ + |ωϕ,+ − ωΦ,+ |
)

.

Now let us examine this supremum. We observe that

sup
[{NE

Φ (ωϕ,+ ),ωΦ,+
}]

(
(NE

Φ )[−1]
)′

= sup
[{NE

Φ (ωϕ,+ ),ωΦ,+
}]

1

(NE
Φ )′ ◦ (NE

Φ )[−1]
=

sup
[{ωϕ,+ ,ωΦ,+

}]

1

(NE
Φ )′

≤ 1

(NE
Φ )′(min(ωϕ,+ , ωΦ,+))

≤

1

(NE
Φ )′

(√
|α|
2

) ≤ 1

1 + h
2

√
|α|

≤ 1 − h

4

√
|α|, (26)

by taking into account that the positive function (NE
Φ )′ is monotone increasing, the

corresponding estimates (cf. Lemma 2.1)

√
|α|
2 ≤

√
2
3

√
|α| ≤ ωϕ,+ , ωΦ,+ ≤

√
2
√
|α|

for both positive fixed points of the normal forms, further the fact that (NE
Φ )′(x) ≥

1+hx, if 0 ≤ x is sufficiently small, finally the inequality 1
1+x ≤ 1− x

2 , if 0 ≤ x ≤ 1.
From these we express the desired quantity to get

|ωϕ,+ − ωΦ,+ | ·
h

4

√
|α| ≤

(
1 − h

4

√
|α|

)
c · hp+1 · ω3

ϕ,+

which in turn results in the inequality

|ωϕ,+ − ωΦ,+ | ≤ 8
√

2 c · hp · |α|.
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4 Preparation of the closeness estimates: speed

of the orbits in the α > 0 case

For the construction of a conjugacy and the corresponding closeness estimates in
the α > 0 case, the current preparatory section analyzes some properties of the
orbit of 0 under mappings of the form x 7→ hα + x + hx2 + hx3 · η(h, x, α) with η
from a suitable function class. (Then, of course, η will be replaced either by η̂3 or η̃3.)

Let pn ≡ pn(h, α) denote any sequence satisfying p0 = 0 and

pn+1 = Nη(h, pn, α) (27)

for n ∈ N, where Nη(h, x, α) := hα + x + hx2 + hx3 · η(h, x, α) and η is any smooth
function with |η|, | d

dxη| and | d
dx2 η| bounded, again, by some K > 0 uniformly for

all h ∈ (0, h0], x ∈ [−ε0, ε0] and α ∈ (0, α0], when h0 > 0, ε0 > 0 and α0 > 0 are
sufficiently small. In what follows, we fix parameters h ∈ (0, h0] and α ∈ (0, α0]
arbitrarily.

First notice that the asymptotic behaviour of pn can be qualitatively different for
different choices of η—for example, pn can be unbounded, but can tend to a finite
limit as well. In order to make its behaviour uniform, we will cut pn at some suitable
value κ > 0 and consider only the terms of the sequence below this cutting-level.

Lemma 4.1 Let κ := min
(

3
8 , (13K̃)−1

)
with K̃ := K + 3h0. Then the sequence

pn reaches level κ at some n, further, for pn ≤ κ the sequence is strictly monotone
increasing, and for 0 < x ≤ κ both

(
NE

η

)′
(x) and

(
NE

η

)′′
(x) are positive.

Proof. Since 0 < x ≤ 1, we have
(
NE

η

)′
(x) ≥ 1 + hx(2 − 3Kx − Kx) being pos-

itive due to x ≤ (4K)−1. Similarly,
(
NE

η

)′′
(x) ≥ h(2 − 6Kx − 6Kx − Kx) > 0

because of x ≤ (13K)−1. Strict monotonicity of pn follows easily from pn+1 − pn >
hp2

n(1−Kpn) > 0. Finally, since (pn+2 − pn+1)− (pn+1 − pn) = h · (t(pn+1)− t(pn))
with t(x) := x2 + x3 · ηE(x), and t(pn+1) − t(pn) = t′(ξ) · (pn+1 − pn) with some
ξ ∈ (pn, pn+1), further t′(ξ) ≥ ξ(2 − 3ξK − ξK) > 0, the proof is complete. ¥

Remark 4.1 The role of K̃ will be explained by Lemma 4.2, while that of 3
8 by

Lemma 4.8.

Having assured the strict monotonicity of pn, the rest of this section will be
devoted to devising suitable upper estimates for the sequence.

The behaviour of pn under the level κ is the juxtaposition of two, qualitatively
different phases.

In the interval [0,
√

α], the sequence is mainly determined by the term hα in the
recursive definition (27), hence here pn ≈ nhα, see (33) in the proof of Lemma 4.6.

However, after the level O(
√

α) has been passed, higher order terms begin to
dominate and the linear growth suddenly turns into a steep increase.

Therefore, splitting our investigations into two is natural: the ”trivial” linear
part, and the tail part of the sequence will be treated separately. In this latter
region—due to the fact that higher order terms are only ”weakly” α-dependent,
as α is present only in η—it is reasonable to expect some similarities between the
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α > 0 (α → 0+) and the α = 0 cases—and indeed, we will explicitly exploit this
phenomenon. Hence, an essential part of the proofs in this section will not contain
α. It seems hard, however, to control the growth rate of pn effectively as n increases,
that is, to devise suitable global estimates of pn in terms of n and to say something
meaningful about the index where the sequence reaches level κ, see Proposition 6.1
and the subsequent remarks. Nevertheless, a ”backward” approach will work, that
is, properties of the inverse-iteration can be grasped better by considering pN−k as
k increases, where N is chosen such that pN ≈ κ.

In exploring quantitative properties of this sequence described by the current
Section, the program Mathematica has been heavily relied upon.

We first obtain an a priori inverse estimate for one term in the sequence in terms
of its successor.

Lemma 4.2 Suppose h0 ≤ 1
3 , hα ≤ 1, further κ and K̃ are as above. Then for all

n ≥ 1 satisfying pn ≤ κ we have that

pn−1 ≤ pn − hα + h2α − hp2
n + hK̃p3

n. (28)

Proof. Substituting n−1 (instead of n) into (27), rearranging, and using the upper
and lower bounds of η together with the fact that pn−1 is nonnegative, we see that

pn − hα − hp2
n−1 − hKp3

n−1 ≤ pn−1 ≤ pn − hα − hp2
n−1 + hKp3

n−1. (29)

From the left hand side inequality—since pn is monotone increasing and positive—
we get

pn − hα − hp2
n − hKp3

n ≤ pn−1. (30)

Now we first show that the left hand side of (30) is nonnegative for n ≥ 2. Using
pn ≤ 1

2 , Kpn ≤ 1
2 and h ≤ 1

3 , we have h(α+p2
n+Kp3

n) ≤ h(α+ 1
2pn+ 1

4pn) ≤ hα+ 1
4pn.

From this we get that the left hand side of (30) is nonnegative if 4
3hα ≤ pn. But

since p1 = hα and p2 > 2hα, condition 4
3hα ≤ pn is implied by n ≥ 2. So we

temporarily assume n ≥ 2.
Rearrangement of (30) thus yields

−(pn − hα − hp2
n − hKp3

n)2 ≥ −p2
n−1

for n ≥ 2. Now let us combine this with the right hand side inequality of (29),
showing for n ≥ 2 that

pn−1 ≤ pn − hα − h(pn − hα − hp2
n − hKp3

n)2 + hKp3
n−1.

Now we will simplify the right hand side here to arrive at the desired result. To
this end, first replace the term hKp3

n−1 with hKp3
n by monotonicity, then expand

the square to get

pn−1 ≤ pn − hα − hp2
n + hKp3

n + 2h2pn(α + p2
n + Kp3

n)− h3(α + p2
n + Kp3

n)2. (31)

Let us examine the last two terms above. The last negative term can safely be
omitted, so we are left with estimating 2h2pn(α+ p2

n +Kp3
n) from above. But using

again pn ≤ 1
2 and Kpn ≤ 1

2 , we get 2h2pn(α + p2
n + Kp3

n) = 2pnh2α + 2h2p3
n(1 +

Kpn) ≤ h2α + hp3
n3h.

Hence, by suitable upper estimates, (31) has been transformed into (28), with
K̃ := K + 3h0 for n ≥ 2.
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Finally, we directly verify (28) for n = 1. A direct substitution p0 = 0 and
p1 = hα yields that it is sufficient to have h2α−hp2

1 +hK̃p3
1 ≥ 0, which is, however,

implied by hα ≤ 1. ¥

Remark 4.2 Inequalities (28) and (30) quantitatively express the natural fact that
the inverse mapping of (identity + higher order terms), i.e. of (27), has the form
(identity − perturbed higher order terms). Of course, it is not apparent at the first
sight, how big this perturbation can be in terms of the parameters h and α.

Let us denote by N ≡ N(h, α) the unique index where the sequence pn passes
level κ, that is determine N ∈ N in such a way that pN ≤ κ but pN+1 > κ.

Although pN ≤ κ, it will be important later to exclude the possibility of pN

being too small as h, α → 0+. The next Lemma shows that, under appropriate
conditions, pN is uniformly separated from 0.

Lemma 4.3 Suppose that the conditions of Lemma 4.2 hold and α0 ≤ κ. Then
pN ≥ κ

2 for all h ∈ (0, h0] and α ∈ (0, α0].

Proof. Suppose, to the contrary, that pN < κ
2 holds. Then by Kκ ≤ 1, 3h0 ≤ 1

and κ ≤ 1, one would get

κ < pN+1 = hα + pN + hp2
N + hp3

N · ηE(pN ) ≤ hα +
κ

2
+ h

κ2

4
+ h

κ3

8
K ≤

hα +
κ

2
+ h

κ2

4
+ h

κ2

8
=

κ

2
+ hα +

3hκ2

8
≤ κ

2
+

α0

3
+

κ2

8
≤ κ

2
+ κ

(
1

3
+

1

8

)
< κ,

a contradiction. ¥

In a similar fashion, we can replace the level κ to be passed by
√

α. This type
of result will also be needed later.

Lemma 4.4 Suppose that the conditions of Lemma 4.2 hold and 0 < α0 ≤ κ2. If m

is the index such that pm ≤ √
α, but pm+1 >

√
α, then pm ≥

√
α

2 for any h ∈ (0, h0]
and α ∈ (0, α0].

Proof. Suppose, to the contrary, that pm <
√

α
2 . Then by pmK ≤ κK ≤ 1, 3h0 ≤ 1

and α ≤ 1, we would get
√

α < pm+1 = hα + pm + hp2
m + hp3

m · ηE(pm) ≤ hα + pm + 2hp2
m ≤

hα +

√
α

2
+ h

α

2
≤

√
α

2
+

3

2
hα ≤

√
α

2
+

√
α

2
=

√
α,

a contradiction. ¥

For k ∈ N sufficiently large, we now deduce a rough, but direct auxiliary estimate
for pN−k based on Lemma 4.2. However, it will be required later to have estimates
not only for pN−k, but also for pN∗−k, where 0 < N∗ ≤ N , so we have to prove a
bit more general statement.

Lemma 4.5 Suppose that the conditions of Lemma 4.2 hold. Set k1 := 1
hκ and let

N∗ ∈ N
+ be arbitrary with N∗ ≤ N . Then for k1 ≤ k ≤ N∗

pN∗−k ≤ 2

hk
. (32)

19



Proof. Due to the monotone increasing property of pn and the fact that we are
dealing with upper estimates, it is sufficient to prove everything for N instead of
N∗ ≤ N .

The proof is by induction on k. Since κh ≤ 1, it is clear for k = dk1e that
pN−k ≤ pN ≤ κ ≤ 2

h( 1
hκ

+1)
≤ 2

hk .

So assume (32) is true for some k ≥ k1. Then by (28)—omitting the nonpositive
−hα + h2α due to h ≤ 1—we see that

pN−(k+1) ≤ pN−k − hp2
N−k + hK̃p3

N−k.

Since the function p 7→ p − hp2 + hK̃p3 is monotone increasing for 0 < p ≤ κ < 1
2h ,

it is enough to show

2

hk
− h

4

h2k2
+ hK̃

8

h3k3
≤ 2

h(k + 1)

to finish the induction. But the above is equivalent to

8K̃

h2k3
≤ 4

hk2
− 2

hk(k + 1)
,

which is a bit more strengthened if its right hand side is decreased by writing
4

hk2 − 2
hk2 . So it is sufficient to establish

8K̃

h2k3
≤ 2

hk2
,

being equivalent to 4K̃ ≤ hk, which latter is however implied by 4K̃ ≤ 1
κ = hk1 ≤ hk

due to the definition of κ and k1. ¥

Remark 4.3 The lemma above can be considered as a counterpart of Lemma 3.3.

Remark 4.4 In this elementary argument one could replace the 2 in the numerator
in (32) by 1 + δ, with δ being an arbitrarily small positive number. However, the
limiting process δ → 0+ is not allowed, because this would shift k1 to infinity (or
the cutting-level κ to zero).

On the other hand, by scanning the proofs of (46) and (52), it can be seen that
a constant strictly greater than 1 in the numerator in (32) would destroy the order
of magnitude of the upper estimate (52): instead of the logarithmic singularity ln 1

α ,
one would get only

(
1
α

)ε
, with a suitable ε > 0 as α → 0+. So, for the sake of a

sharper result, we are going to analyze deeper the growth rate of pn.

First, we prove that the maximal index N ≡ N(h, α) is O( 1
h
√

α
), as h, α → 0+.

Lemma 4.6 Suppose that the conditions of Lemma 4.2 hold and 0 < α0 ≤ κ2.
Then we have

#{pn|pn ∈ [0,
√

α]} ≤ 1

h
√

α
,

#{pn|pn ∈ [
√

α, κ]} ≤ 2

h
√

α
+

1

hκ
,

and hence

N ≤ 3

h
√

α
+

1

hκ
≤ 4

h
√

α
.
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Proof. Since 0 ≤ pn ≤ κ, again hp2
n(1 + pn · ηE(pn)) ≥ 0, so for 0 ≤ n ≤ N we get

the trivial lower estimate from (27)

pn ≥ nhα, (33)

which yields the upper estimate to the number of elements of the first set in the
Lemma. To get the second estimate, apply (32) but noticing that at most 1

hκ ele-
ments should be counted separately due to the restriction on the starting index k
in (32). ¥

Remark 4.5 It is possible to prove N ≤ 2+δ
h
√

α
, with δ > 0 being arbitrary small.

But, as remarked previously, such an improvement would be of no help for the fol-
lowing estimates.

Returning to our ”backward approach”, we develop two lemmas—the refined
counterparts of Lemma 4.2 and Lemma 4.5.

The first subtle step is to conceal cubic terms in the inverse iteration by intro-
ducing a new sequence sk.

Lemma 4.7 Suppose that the conditions of Lemma 4.2 hold, and again, 1
hκ =: k1 ≤

k ≤ N∗ with some N∗ ≤ N . Then

pN∗−(k+1) ≤ pN∗−k − hskp
2
N∗−k, (34)

where sk ≡ sk(h, κ) := 1 − 1
hkκ for k ≥ k1.

Proof. Inequality (28) implies that pN∗−(k+1) ≤ pN∗−k − hp2
N∗−k(1 − K̃pN∗−k).

Now use (32) and the definition of κ to obtain

1 − K̃pN∗−k ≥ 1 − K̃
2

hk
=

hk − 2K̃

hk
≥ hk − 1

κ

hk
= sk ≥ 0.

These yield (34). ¥

Now we can state and prove our main tool in the α > 0 case. The Lemma below
yields additional information on the convergence speed of the backward iteration,
being fundamental to the final closeness estimates.

Lemma 4.8 (The 3
2-Lemma) Suppose that the conditions of Lemma 4.2 hold, but

now 1
hκ2 ≤ k ≤ N∗ with some N∗ ≤ N . Then

pN∗−k ≤ 1

hk
+

1/κ

(hk)3/2
. (35)

Proof. Again, it is enough to prove everything for N instead of N∗.
We prove by induction on k. The induction can be started because for k =

1
hκ2 ≥ 1

hκ , (32) yields that pN−dke ≤ 2(hd 1
hκ2 e)−1 ≤ 2κ2 = 1

hk + 1/κ

(hk)3/2 .

Let us now introduce the abbreviation P (h, k, κ) := 1
hk + 1/κ

(hk)3/2 and suppose

that pN−k ≤ P (h, k, κ) holds for some k ≥ 1
hκ2 . Then using (34) together with the

monotonicity of the function p 7→ p−hskp
2 (being true since pN−k ≤ κ < 1

2hsk
), we

get
pN−(k+1) ≤ pN−k − hskp

2
N−k ≤ P (h, k, κ) − hskP

2(h, k, κ).
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Hence, clearly, in order to finish the induction, it is sufficient to establish that

Q(h, k, κ) := P (h, k + 1, κ) − P (h, k, κ) + hskP
2(h, k, κ) ≥ 0,

for all h ∈ (0, 1), κ ∈ (0, 3
8 ] and k ≥ 1

hκ2 .
To this end, we first shift the second argument in Q by setting ` := k − 1

hκ2 ,
then introduce a new variable A := 1 + hκ2` to get

Q(h, k, κ) ≡ Q

(
h,

1

hκ2
+ `, κ

)
≡ Q

(
h,

A

hκ2
, κ

)
.

(So ` ≥ 0 is arbitrary, thus A ≥ 1 is also arbitrary.) Albeit the expressions above
are mathematically equivalent, yet, from a structural point of view, they are sub-
stantially different: the last form can be simplified to

Q

(
h,

A

hκ2
, κ

)
≡

κ2

(
1

A + hκ2
− 1

A
+

1

(A + hκ2)3/2
− 1

A3/2
+

(1 +
√

A)2(A − κ)hκ2

A4

)
,

where a new parameter ν := hκ2 is immediately introduced. Also dropping the
positive factor κ2 outside, and noticing that the whole expression is not increased
if the only explicitly remaining κ is replaced by its maximal value 3

8 in (A − κ), we
arrive at the following inequality in two variables

0 ≤ 1

A + ν
− 1

A
+

1

(A + ν)3/2
− 1

A3/2
+

(1 +
√

A)2(A − 3
8)ν

A4
(36)

to be shown for all A ≥ 1 and (even for all) ν ≥ 0.
Let us abbreviate the right hand side of (36) by R(A, ν) and notice that R(A, 0) =

0 for all A ≥ 1. Furthermore, notice that for ν > 0, the partial derivative ∂νR(A, ν)
satisfies

∂νR(A, ν) =
(1 +

√
A)2(A − 3

8)

A4
− 3

2(A + ν)5/2
− 1

(A + ν)2
>

(1 +
√

A)2(A − 3
8)

A4
− 3

2A5/2
− 1

A2
=

(
√

A − 1)(4A + 9
√

A + 3)

8A4
≥ 0.

The proof is complete. ¥

Remark 4.6 The exponent in (35) has been postulated to be 3
2 , because it is the

”simplest” number between 1 and 2. Numerical tests suggest that this fractional
order is necessary, since if the exponent 3

2 was replaced by 2, then—according to the
tests—nonnegativity of the counterpart of Q

(
h, A

hκ2 , κ
)

would not hold uniformly,
i.e. for any small κ > 0 in the factor (A − κ), it is possible to choose A À 1 and
0 < ν ¿ 1 such that the corresponding Q-expression is negative.

The very same fact is indicated in [8] as well, when studying the recursion

uk+1 = g(uk),

with g(x) ≡ x− bxq+1 +O(xq+2) and b > 0, q ∈ N being fixed parameters. If u0 > 0
is sufficiently small, then the sequence uk tends to 0 as k → ∞. The convergence
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speed of this iteration in terms of b and q together with strict lower and upper
bounds for uk are given in [8], provided that k is large enough. We remark that
the same limiting relation in the q = 1 case—though with a different proof—also
appears in [5]. It is seen that the iteration uk with q = 1 is of the same type as
our backward iteration pN−k when α = 0. The upper bounds given in [8] have a
similar fractional order structure as (35). However, it will be important for us to
have explicit estimates from a starting index of the form const

h ; estimates only from
a sufficiently large and unspecified starting index k would be insufficient.

We add that the sharpest estimate concerning this class of iteration we know
about is contained in [9]. Define, similarly as above,

uk+1 = uk − u2
k + O(u3

k)

and suppose that u0 > 0 is chosen so small such that uk → 0. Then [9] sketches the
proof of

uk =
1

k
+ O

(
log k

k2

)
.

However, the above sharper convergence rate is not yet an explicit estimate, and
even if it was, it would not make our later closeness estimates better.

Remark 4.7 After the form of inequality (35) to be proved was set, the maxi-
mal value 3

8 of κ became sharp—it originates from the Taylor series expansion of
Q

(
h, 1

hκ2 , κ
)

about the origin:

lim
h→0

d

dh

(
Q

(
h,

1

hκ2
, κ

))
=

κ4

2
(3 − 8κ).

This necessary condition κ ≤ 3
8 for nonnegativity of Q turned out to be sufficient as

well, further κ = 3
8 allows the nice factorization in the lower estimate of ∂νR(A, ν).

During the search for the proof of Q ≥ 0, the combined symbolic, numeric and
graphical capabilities of Mathematica proved to be indispensable. The main source
of problems has been the fact that the function Q with two parameters fixed often
exhibits unimodality. The simple structural manipulations described in the Lemma
above successfully eliminate unimodality as well as reduce the number of parameters
by suitably grouping them together.

5 Construction of a conjugacy and closeness

estimates in the α > 0 case

Let us consider our mappings

x 7→ NΦ(h, x, α) ≡ hα + x + hx2 + hx3 · η̂3(h, x, α) (37)

and
x 7→ Nϕ(h, x, α) ≡ hα + x + hx2 + hx3 · η̃3(h, x, α) (38)

for any fixed h ∈ (0, h0] and α ∈ (0, α0]. Both η̂3 and η̃3 satisfy the assumptions
at the beginning of Section 4, that is they are smooth functions with a common
uniform bound K > 0. Suppose, that they are sufficiently close, that is there exists
a positive constant c > 0 such that

|NΦ(h, x, α) −Nϕ(h, x, α)| ≤ c · hp+1|x|ω (39)
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holds for all h ∈ (0, h0], x ∈ [−ε0, ε0] and α ∈ (0, α0], where the order is assumed to
be ω = 3 (what we have proved in [4]) or ω = 4 (an additional assumption).

For every fixed h ∈ (0, h0] and α ∈ (0, α0] we construct a conjugacy between
(37) and (38), that is a strictly monotone increasing map x 7→ J(h, x, α) in a
neighbourhood [−ε0, ε0] of the origin such that

NE
Φ ◦ JE = JE ◦ Nϕ. (40)

We will deal only with the case x ∈ [0, ε0], the negative part x ∈ [−ε0, 0] (using
the appropriate inverse mappings) is similar.

To this end, suppose—again as in Section 4—that the sequence pn is the orbit
of 0 under (37), while the sequence qn is the orbit of 0 under (38), with p0 = q0 ≡ 0.
Hence, all the results of Section 4 can be applied to both pn and qn—quantities κ,
K and K̃ are the same in both cases, however, of course, a clear distinction should
be made between the cutting indices: let us denote by Np the index where pNp ≤ κ
but pNp+1 > κ, and similarly, by Nq the index where qNq ≤ κ but qNq+1 > κ. Since
we are going to work with pn and qn simultaneously, they both should be kept below
κ for the results of Section 4 to work, so a common cutting index N∗ is now defined
as

N∗ := min(Np, Nq).

The following figure shows the first few (but same number of) terms of the
sequences qn(h, α1) and qn(h, α2) in the (α, x)-plane with some α1 > 0, α2 > 0
and h > 0 fixed. Condensation of the sequences near the horizontal axis is clearly
visible, however, for any α > 0, due to the absence of the fixed points, they will
eventually pass this axis, then begin increasing rapidly. (Note that for the sake of
a better comparison, the value of q0 has been redefined on this plot as q0 := −1

2 .
The branch of stable and unstable fixed points of NE

ϕ are also displayed. Again,
the arrows point toward terms of the sequences with larger n indices.)

-0.01 -0.005 0.005 0.01

-0.4

-0.2

0.2

Figure 5.1

The figure below depicts part of the global dynamics of the map NE
ϕ near the

bifurcation point in the (α, x)-plane. The same n0 (0 ≤ n ≤ n0) number of terms
of the sequences yn(h, α), y0 := −1

2 and qn(h, α), q0 := −1
2 are displayed together
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(cf. Figure 2.1 and Figure 5.1), with h > 0 fixed and α running from −0.01 to 0.01
on an equidistant grid.
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Figure 5.2

Now fix h ∈ (0, h0] and α ∈ (0, α0]. Set

JE(0) := 0. (41)

Then (40) recursively forces the definition of JE at qn to be

JE(qn) :=
(
NE

Φ

)[n]
(JE(0)) ≡

(
NE

Φ

)[n]
(0) ≡ pn.

Define further JE(x) := x for x ∈ [0, q1]. This will be a compatible extension, since
JE(q1) = p1 by definition, but q1 = p1 ≡ hα. Then using these, together with (40)
recursively, we can extend JE homeomorphically in an (upper semi-)neighbourhood
of the origin. We have thus proved the following theorem.

Theorem 5.1 For every fixed h ∈ (0, h0] and α ∈ (0, α0], there exists a conjugacy
J(h, ·, α) between (37) and (38) defined in a uniform neighbourhood [−ε0, ε0] of the
origin with ε0 := κ > 0.

Our aim now will be to measure the distance of JE from the identity.

Remark 5.1 Due to the monotonicity of the mapping JE , its growth rate and its
distance from the identity can not be affected by the chosen extension on [0, q1],
hence the only degree of freedom in the construction is prescribing the value of
JE(0).

First we present an auxiliary estimate, similar to (10) before. Suppose 0 < a < b.
Using (40), Lemma 4.1 for the monotonicity and (39), we get

sup
[NE

ϕ (a),NE
ϕ (b)]

| id − JE | = sup
[NE

ϕ (a),NE
ϕ (b)]

∣∣∣NE
ϕ ◦ (NE

ϕ )[−1] −NE
Φ ◦ JE ◦ (NE

ϕ )[−1]
∣∣∣ ≤
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≤ sup
[a,b]

∣∣NE
ϕ −NE

Φ

∣∣ + sup
[a,b]

∣∣NE
Φ −NE

Φ ◦ JE
∣∣ ≤

≤ c · hp+1bω + sup
x∈[a,b]

((
sup

[{x,JE(x)}]
(NE

Φ )′
)
|x − JE(x)|

)
≤

≤ c · hp+1bω + (NE
Φ )′

(
max

(
b, JE(b)

))
· sup

[a,b]
| id − JE |. (42)

For n ∈ N
+, let us abbreviate the supremum by

Sn ≡ Sn(h, α) := sup
[qn−1,qn]

| id − JE |

and the derivative by

Dn ≡ Dn(h, α) := (NE
Φ )′

(
max

(
qn, JE(qn)

))
.

With n ≤ N∗, a = qn−1 and b = qn, (42) therefore becomes

Sn+1 ≤ DnSn + c · hp+1qω
n .

Applying this recursively, we construct the upper estimate for n ≤ N∗

Sn+1 ≤
(

n∏

i=1

Di

)
S1 + c · hp+1




n∑

i=1




n∏

j=i+1

Dj


 qω

i


 , (43)

where, of course, the product
∏n

j=n+1 Dj is understood to be 1.

The first term on the right hand side vanishes, since S1 ≡ 0 by construction.
The second term, however, is monotone increasing in n ≤ N∗, so we get

sup
[0,qN∗+1]

| id − JE | ≤ c · hp


h

N∗∑

i=1




N∗∏

j=i+1

Dj


 qω

i


 . (44)

In order to be able to estimate the right hand side of (44), we prove an important
estimate concerning the sum of powers of µN∗−k, where

µn ≡ µn(h, α) := max(qn, pn),

for 0 ≤ n ≤ N∗.

Lemma 5.2 Suppose that the conditions of Lemma 4.2 hold and 0 < α0 ≤ κ2.
Then there exist positive constants const1(κ) > 0 and const2(κ) > 0, depending
only on κ, such that for any index i ∈ {0, 1, . . . , N∗} and for any h ∈ (0, h0] and
α ∈ (0, α0] we have that

2h
i∑

k=0

µN∗−k ≤ const1(κ), (45)

provided that 0 ≤ i ≤ b 1
hκ2 c, and

2h
i∑

k=0

µN∗−k ≤ const2(κ) + 2 ln(h i), (46)
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provided that b 1
hκ2 c + 1 ≤ i ≤ N∗.

Further, for any δ > 0 there exists a positive constant const3(δ, κ) > 0, depending
on δ and κ, such that for any h ∈ (0, h0] and α ∈ (0, α0] we have that

h
N∗∑

k=0

(µN∗−k)
1+δ ≤ const3(δ, κ). (47)

Proof. By the definition of N∗ and µn, 0 ≤ µn ≤ κ for any n ∈ {0, 1, . . . , N∗}. If
i ≤ b 1

hκ2 c, then

2h

i∑

k=0

µN∗−k ≤ 2h

b 1
hκ2 c∑

k=0

κ ≤ 2hκ

(
1

hκ2
+ 1

)
≤ 2

κ
+ 2h0κ <

2

κ
+ κ,

which shows (45).
Assume now that N∗ > b 1

hκ2 c+1 and b 1
hκ2 c+1 ≤ i ≤ N∗. (Case N∗ = b 1

hκ2 c+1
is just like (45).) From (45) and Lemma 4.8 we deduce that

2h
i∑

k=0

µN∗−k ≤
(

2

κ
+ κ

)
+ κ + 2h

i∑

k=b 1
hκ2 c+2

1

hk
+

1/κ

(hk)3/2
≤

(
2

κ
+ 2κ

)
+ 2h

∫ i

b 1
hκ2 c+1

(
1

hx
+

1/κ

(hx)3/2

)
dx ≤

(
2

κ
+ 2κ

)
+ 2h

∫ i

1
hκ2

(
1

hx
+

1/κ

(hx)3/2

)
dx =

(
2

κ
+ 2κ

)
+ 4 − 4

κ
√

h i
+ 4 lnκ + 2 ln(h i) ≤

(
2

κ
+ 2κ + 4 + 4 lnκ

)
+ 2 ln(h i),

proving (46). (We remark that keeping the term − 4
κ
√

h i
would not make (46) any

sharper, since −4 ≤ − 4
κ
√

h i
≤ 0.)

Finally, for (47) use N∗ ≤ 4
h
√

α
from Lemma 4.6. Then it suffices to turn to the

weaker estimate (32) to get that

h
N∗∑

k=0

(µN∗−k)
1+δ ≤ h

b 1
hκ

c+1∑

k=0

κ1+δ + h
N∗∑

k=b 1
hκ

c+2

(
2

hk

)1+δ

≤

κ1+δh

(
1

hκ
+ 2

)
+ h

∫ 4
h
√

α

1
hκ

(
2

hx

)1+δ

dx =

(
κδ + 2hκ1+δ

)
+

21+δκδ

δ
− 21−δαδ/2

δ
≤ κδ + κ1+δ +

21+δκδ

δ
,

completing the proof.
It is seen that the choices for the constants const1(κ) := 2

κ + κ, const2(κ) :=
2
κ +2κ+ 1

10 (due to 4+4 lnκ ≤ 4+4 ln 3
8 < 1

10) and const3(δ, κ) := κδ +κ1+δ + 21+δκδ

δ
are appropriate. ¥
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Now let us examine the product
∏N∗

j=i+1 Dj in (44) for i ∈ {1, 2, . . . , N∗ − 1}.
Computing Dj ≡ (NE

Φ )′ (µj) and using 1 + x ≤ ex (x ∈ R), we get that

N∗∏

j=i+1

Dj ≤ exp


2h

N∗∑

j=i+1

µj + 3hK

N∗∑

j=i+1

µ2
j + hK

N∗∑

j=i+1

µ3
j


 ,

but taking into account (47), the right hand side can be simplified further to get

N∗∏

j=i+1

Dj ≤ const4 · exp


2h

N∗∑

j=i+1

µj


 , (48)

with a suitable positive constant const4 > 0, uniformly in h and α.
Using the value of const3(δ, κ) set at the very end of the proof of Lemma 5.2,

κ ≤ 1, h0 ≤ 1
3 and κK ≤ 1

13 we see that

3hK
N∗∑

j=i+1

µ2
j + hK

N∗∑

j=i+1

µ3
j ≤ 3hKconst3(1, κ) + hKconst3(2, κ) ≤

3hK(5κ + κ2) + hK(5κ2 + κ3) ≤ (5κ + κ2) 4hK ≤ 24h0κK ≤ 8

13
,

hence e8/13 < 2 =: const4 is a possible choice.

Substituting this into (44), we arrive at the estimate

sup
[0,qN∗+1]

| id − JE | ≤ 2c · hp


h

N∗∑

i=1

exp


2h

N∗∑

j=i+1

µj


 · qω

i


 , (49)

where c is the same as in (39).

Remark 5.2 Since ex−x2/2 ≤ 1 + x ≤ ex (x ∈ R
+), it is seen that

const · exp


2h

N∗∑

j=i+1

µj


 ≤

N∗∏

j=i+1

Dj ≤ 2 exp


2h

N∗∑

j=i+1

µj




also holds with a suitable uniform constant const > 0.

Now we are prepared to prove the following Theorem.

Theorem 5.3 Suppose that κ has been defined as in Lemma 4.1. Suppose further,

that h0 ≤ min

(
1
3 , p

√
exp(−2/κ)

128c

)
and 0 < α0 ≤ κ2, with c > 0 being the same as

in (39). If ω = 4 in (39), then the conjugacy JE defined between (37) and (38)
satisfies

sup
[0,κ/4]

| id − JE | ≤
(
12 c e2/κ

)
hp, (50)

uniformly in h ∈ (0, h0] and α ∈ (0, α0].
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Proof. The choice of h0 and α0 satisfy the assumptions of all Lemmas listed so far.
First, by using q0 ≡ 0 and reindexing the sums, we show that the complicated

part of (49)

h
N∗−1∑

i=0

exp


2h

N∗∑

j=i+1

µj


 · q4

i ≡ h
N∗∑

i=1

exp


2h

i−1∑

j=0

µN∗−j


 · q4

N∗−i ≤

h
N∗∑

i=1

exp


2h

i∑

j=0

µN∗−j


 · q4

N∗−i

is uniformly bounded. Applying (45), the trivial estimate qN∗−i ≤ κ, (46) and (32),
further inequalities const2(κ) ≥ const1(κ) from the end of the proof of Lemma 5.2
and N∗ ≤ 4

h
√

α
from Lemma 4.6, we have that

h

N∗∑

i=1

exp


2h

i∑

j=0

µN∗−j


 · q4

N∗−i =

h




b 1
hκ2 c∑

i=1

+
N∗∑

i=b 1
hκ2 c+1


 exp


2h

i∑

j=0

µN∗−j


 · q4

N∗−i ≤

h

b 1
hκ2 c∑

i=1

econst1(κ) · κ4 + h
N∗∑

i=b 1
hκ2 c+1

econst2(κ)+2 ln(h i) ·
(

2

h i

)4

≤

econst2(κ)


hκ4 1

hκ2
+ h

N∗∑

i=b 1
hκ2 c+1

h2i2
16

h4i4


 =

econst2(κ)


κ2 +

16

h
(
b 1

hκ2 c + 1
)2 + 16

N∗∑

i=b 1
hκ2 c+2

1

hi2


 ≤

econst2(κ)

(
κ2 + 16hκ4 + 16

∫ 4
h
√

α

1
hκ2

1

hx2
dx

)
=

econst2(κ)
(
κ2 + 16hκ4 − 4

√
α + 16κ2

)
≤ econst2(κ)

(
17κ2 + 16h0κ

4
)
≤

κ e2/κ+2κ+1/10

(
17κ +

16

3
κ3

)
< κ e2/κ · 16.

Hence we have proved so far that

sup
[0,qN∗+1]

| id − JE | ≤ 32cκ e2/κ · hp ≤ 12c e2/κ · hp, (51)

uniformly in h ∈ (0, h0] and α ∈ (0, α0].
Finally we show, that the interval on which the supremum is taken is uniformly

large. There are two possibilities: N∗ = Nq or N∗ = Np. In the first case, Lemma
4.3 applied to the sequence qn (with its own cutting-index) yields that [0, qN∗+1] ⊃
[0, qNq ] ⊃ [0, κ/2]. In the second case however, when N∗ = Np, we can turn to
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the left inequality in (51) itself together with the fact that JE(qN∗) = pN∗ by
construction, to establish relation

|qNp − pNp | = |qNp − JE(qNp)| ≤ sup
[0,qN∗+1]

| id − JE | ≤ 32cκ e2/κ · hp
0 ≤ κ

4
,

if h0 ≤ p

√
exp(−2/κ)

128c . But the result of Lemma 4.3 is again that pNp ≥ κ
2 , so qNp ≥ κ

4

must be true. Therefore [0, qN∗+1] ⊃ [0, qNp ] ⊃ [0, κ/4] and the Theorem is proved.
¥

Remark 5.3 Since, by definition, κ ≤ 1
13K , that is 26K ≤ 2

κ , we see that if the
common uniform bound K in the mappings (37) and (38) is increased, then the
upper estimate (50) and the upper bounds on h0 and α0 become worse.

For the case ω = 3 in (39), the situation currently seems to be not so ”uniform”.

Theorem 5.4 Suppose that κ has been defined as in Lemma 4.1. Suppose further,
that h0 ≤ 1

3 , 0 < α0 ≤ κ2, and c > 0 is the same as in (39). If ω = 3 in (39), then
the conjugacy JE defined between (37) and (38) satisfies

sup
[0,qN∗+1]

| id − JE | ≤ c

(
const5(κ) + const6(κ) ln

1

α

)
· hp. (52)

Proof. Estimate (49) will be used with ω = 3. We apply the same type of manip-
ulations as in the proof of Theorem 5.3 to get

h
N∗∑

i=1

exp


2h

N∗∑

j=i+1

µj


 · q3

i ≤ h
N∗∑

i=1

exp


2h

i∑

j=0

µN∗−j


 · q3

N∗−i

h

b 1
hκ2 c∑

i=1

econst1(κ) · κ3 + h
N∗∑

i=b 1
hκ2 c+1

econst2(κ)+2 ln(h i) ·
(

2

h i

)3

≤

econst2(κ)


hκ3 1

hκ2
+ h

N∗∑

i=b 1
hκ2 c+1

h2i2
8

h3i3


 =

econst2(κ)


κ +

8

b 1
hκ2 c + 1

+ 8
N∗∑

i=b 1
hκ2 c+2

1

i


 ≤

econst2(κ)

(
κ + 8hκ2 + 8

∫ 4
h
√

α

1
hκ2

1

x
dx

)
=

econst2(κ)

(
κ + 8hκ2 + 8 ln 4 + 16 lnκ + 4 ln

1

α

)
. ¥

Remark 5.4 Unfortunately, estimate (52) is singular as α → 0+. Besides this, we
can not control the interval [0, qN∗ ] in the supremum, so it may shrink too much if
N∗ = Np as α → 0+.

A positive result in the ω = 3 case we have is that on a special shrinking domain,
namely on a parabola-shaped domain in the (α, x)-plane, a better closeness result
holds.
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Theorem 5.5 Suppose that κ has been defined as in Lemma 4.1. Suppose further,

that h0 ≤ min
(

1
3 , p

√
1

16ce2κ

)
and 0 < α0 ≤ κ2, with c > 0 being the same as in (39).

If ω = 3 in (39), then the conjugacy JE defined between (37) and (38) satisfies

sup
[0,

√
α/4]

| id − JE | ≤
(
4ce2α

)
hp.

Proof. Similarly to the cutting-indices Nq, Np and N∗, let us define Nq(
√

α) to
be the index such that qNq(

√
α) ≤ √

α, but qNq(
√

α)+1 >
√

α. Let us denote by

Np(
√

α) the corresponding index for the sequence pn. Further, let N∗(
√

α) :=
min(Nq(

√
α), Np(

√
α)). Then it is easy to reconsider that all formulae (44)–(49) are

still valid if N∗ is replaced by this (not greater) N∗(
√

α). So, as a starting point,
we have

sup
[0,qN∗(

√
α)+1]

| id − JE | ≤ 2c · hp


h

N∗(
√

α)∑

i=1

exp


2h

N∗(
√

α)∑

j=i+1

µj


 · q3

i


 .

But, by the definition of N∗(
√

α), further using Lemma 4.6 to get N∗(
√

α) ≤ 1
h
√

α
,

we see that

h

N∗(
√

α)∑

i=1

exp


2h

N∗(
√

α)∑

j=i+1

µj


 · q3

i ≤ h

N∗(
√

α)∑

i=1

exp


2h

N∗(
√

α)∑

j=2

√
α


 · √α

3 ≤

h e2

N∗(
√

α)∑

i=1

√
α

3 ≤ e2α

(
1

h
√

α
+ 1

)
h
√

α ≤ 2e2α.

Hence we know that

sup
[0,qN∗(

√
α)+1]

| id − JE | ≤ 4ce2α · hp. (53)

Now, similarly to the end of the proof of Theorem 5.3, we show that the domain of
the supremum contains [0,

√
α/4], uniformly in h ∈ (0, h0]. If N∗(

√
α) = Nq(

√
α),

then by Lemma 4.4 with m = Nq(
√

α) we see that qm ≥
√

α
2 , while if N∗(

√
α) =

Np(
√

α), then by (53)

|qNp(
√

α)−pNp(
√

α)| = |qNp(
√

α)−JE(qNp(
√

α))| ≤ sup
[0,qN∗+1]

| id−JE | ≤ 4ce2α·hp
0 ≤

√
α

4
,

if, for example, h0 ≤ p

√
1

16ce2κ
. But again, by Lemma 4.4 with m = Np(

√
α),

pm ≥
√

α
2 , so qm ≥

√
α

4 . ¥

Remark 5.5 We have tacitly assumed (especially in Lemma 5.2) that N∗ ≥ 1
hκ2 .

However, this is not a real restriction, since otherwise every estimate is ab ovo
trivial—just as the proof of (45) in Lemma 5.2—and we would have uniform bound-
edness in the Theorems.
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6 Further results for the α > 0 case

6.1 The tangent estimate

Although the following nice proposition finally has not been used in the closeness es-
timates, we still include it, because it reveals some information about the behaviour
of the direct iteration pn, and, together with the subsequent remarks, served as a
motivation for the ”backward” approach. (The number N , of course, is Np here.)

Proposition 6.1 (The Tan-Estimate) Suppose that the conditions of Lemma

4.2 hold and 0 < α0 ≤ κ. Then for 0 ≤ n < min
(
N, π

2h
√

2α
− 1

)
we have

pn ≤
√

α

2
tan(

√
2α hn).

Proof. We prove by induction on n. The case n = 0 is trivial. If n = 1, then

p1 ≡ hα ≤
√

α

2
tan(

√
2α h)

is equivalent to
√

2α h ≤ tan(
√

2α h), but this latter is true since x ≤ tan x (if, e.g.,

0 ≤ x ≤ 1), and
√

2α h ≤ √
2α0h0 ≤

√
2κh0 ≤

√
2 · 3

8 · 1
3 < 1.

So suppose the induction hypothesis is true for some n ≥ 1. Then

pn+1 ≤ hα +

√
α

2
tan(

√
2α hn) + 2h

(√
α

2
tan(

√
2α hn)

)2

holds, since pn+1 = Nη(h, pn, α) ≤ hα+pn +2hp2
n, if, e.g., 0 ≤ pn ≤ κ ≤ 1

K (implied
by n < N). In order to finish the induction, it is sufficient to establish

hα +

√
α

2
tan(

√
2α hn) + 2h

(√
α

2
tan(

√
2α hn)

)2

≤
√

α

2
tan(

√
2α h(n + 1)).

By using the abbreviation x :=
√

2α h, the inequality above can be rewritten as

x + tan(nx) + x tan2(nx) ≤ tan((n + 1)x). (54)

Since n < π
2x − 1 by assumption, we know that

0 < tan((n + 1)x) =
tan x + tan(nx)

1 − tan x · tan(nx)
.

But due to 0 < x < 1 and n < π
2x , both tanx and tan(nx) are positive, so the

denominator above is also positive. Hence, instead of (54), it is enough to prove

(
x + tan(nx) + x tan2(nx)

)
(1 − tan x · tan(nx)) − tan x − tan(nx) ≤ 0.

However, the left hand side can be factored to get

−
(
1 + tan2(nx)

)
(tanx − x + x tan x · tan(nx)) ,

so it must be nonpositive, because tanx − x ≥ 0 and x, tan x, tan(nx) ≥ 0. ¥
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Remark 6.1 The tangent estimate, i.e. the function t 7→
√

α
2 tan(

√
2α ht), has

been obtained as the solution of the initial value problem Ẋ = hα+2hX2, X(0) = 0.
(Of course, the multiplying constant 2 could be replaced by 1+δ, for any positive δ,
but the limit δ → 0+ is not allowed.) This ordinary differential equation has been
chosen because its stepsize-1 explicit Euler discretization is just the sequence pn with
a slightly modified definition pn+1 := hα + pn + 2hp2

n. Thus, we have proved in the
Proposition above that for this particular equation the explicit Euler discretization
is a lower approximation to the true solution—although, of course, from our view-
point the roles are reversed: the known true solution is an upper estimate for the
more implicit sequence pn. The previous observation can be extended to a general
class of ordinary differential equations: it can be shown that under a simple assump-
tion on the sign of the right hand side and its derivative of the ordinary differential
equation, the explicit/implicit Euler discretization is a lower/upper approximation
to the exact solution, provided that the discretization stepsize is sufficiently small,
see in [10]. This more general result however can not be directly applied to prove
Proposition 6.1, because here the stepsize is 1. A fundamental and very interesting
question would be to determine classes of equations where—or explain, in our case,
why—the discretization is such a surprisingly sharp estimate of the true solution
even with so large stepsizes.

Remark 6.2 The tangent estimate is ”nearly global”: it is a very good upper
estimate of pn as long as the tangent function is defined and not ”too large”. Of
course, when the tangent reaches its first singularity, it becomes a useless estimate
of pn. This is exactly the main difficulty with the ”direct” approach: estimating pn

as n increases is hard in the region when the tangent estimate is no longer valid but
still pn < κ for some time.

Remark 6.3 We mention [11] as a peculiar result concerning the forward and back-
ward iterates of the sequence wn+1 = w2

n + 1
4 + α, w0 = 1

2 . These recursions appear
several times in the literature in connection with the phenomenon of intermittency,
but probably this is the first paper containing a proof of the following observation.
If S(α) denotes the number of steps needed for wn to reach, say, 1, then [11] shows
that limα→0+

√
α S(α) = π

2 . The calculations in the proof are elementary, but quite
involved—the basic idea is to compare the difference equation with the correspond-
ing differential equation similar to the one mentioned in Remark 6.1 above, and
prove that the leading coefficients in the series expansion of their solutions satisfy
the same type of recursive relations. This asymptotic relation in the case of pn

with η ≡ 0 in (27)—simply being a shifted version of wn above—would mean that
limα→0+ h

√
α N(h, α) = π

2 .

6.2 Numerical test results

The optimality of Theorems 5.3–5.5 above—under assumption (41)—will now be
illustrated by some numerical tests.

The following setting has been chosen: for n ∈ N
+, let

qn+1 := hα + qn + hq2
n

denote the pure quadratic iteration with q0 := 0, while

pn+1 := hα + pn + hp2
n +

1

2
hp+1pω

n
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with p0 := 0 is a perturbed sequence. Choice of the cutting level κ := 3
8 conforms

to the requirements of Lemma 4.1.
What we measure in every case is the quantity

dist :=
|pN∗ − qN∗ |

hp

under different choices of the exponents p ∈ N
+ and ω ∈ {3, 4}, further, the pa-

rameters h and α. The quantity dist · hp is clearly a numerical lower estimate of
sup[0,qN∗+1] | id − JE |, see, e.g., at the end of the proof of Theorem 5.3.

For the sake of comparison, we will also indicate the value of N∗. Since pn ≥
qn ≥ 0, we have N∗ = Np.

Due to its simplicity and elegance, we include the actual Mathematica 5 code
devised to perform the computations.

After fixing the values of p and ω, the following definition

perturbedsequence=Compile[{h,α},NestWhile[
{hα+#[[1]]+h #[[1]]2+1

2h
p+1#[[1]]ω,Last[#]+1}&,{0.,1},#[[1]]<3

8&]]

will yield {pNp ,Np} in a list, while

quadraticsequence=Compile[{h,α,iternumber},Nest[
{hα+#[[1]]+h #[[1]]2,Last[#]+1}&,{0.,1},iternumber-1]]

will determine {qNp ,Np}, with iternumber:=Np. Now—with h1 and α1 repre-
senting concrete numerical quantities—evaluate the following three commands

perturbedsequence[h1,α1]

quadraticsequence[h1,α1,Last[%]]

Abs[First[%]-First[%%]]/hp
1

to obtain finally the value of ”dist”.

Remark 6.4 The code for perturbedsequence and quadraticsequence given
above uses machine precision numbers (see the Compile commands and the dots
behind the 0’s), since this substantially reduces the time needed to obtain ”dist”
when α is very small. For large and medium values of α, the moderate comput-
ing time made it possible to exploit Mathematica’s arbitrary precision arithmetic
as well. At h = 10−1 and 10−2, we have experienced total agreement between
calculations based on machine precision and arbitrary precision—providing a good
reliability check. However, for h = 10−5, and p = 3, α = 10−3, for example, machine
precision turned out to be insufficient, so arbitrary precision has been applied, since
in this case |pN∗ − qN∗ | ≤ 1.5 · 10−16.

The actual output—together with a graphical representation some of the data—
is listed below. The arrangement of these tables is explained by the fact that in this
way it is a bit easier for the eye to compare pairs of α-exponents and recognize the
logarithmic law.
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6.2.1 ω = 3, p = 2, h = 10−1

α 10−1 10−2 10−4 10−8

dist 1.602 · 10−2 6.814 · 10−2 2.169 · 10−1 5.239 · 10−1

N∗ 29 134 1549 1.5706 · 105

α 10−3 10−6 10−9 10−12

dist 1.397 · 10−1 3.650 · 10−1 6.066 · 10−1 8.292 · 10−1

N∗ 474 15688 4.9671 · 105 1.5708 · 107

α 10−5 10−10

dist 3.061 · 10−1 6.835 · 10−1

N∗ 4947 1.5708 · 106

α 10−7 10−14

dist 4.748 · 10−1 1.0096

N∗ 49655 1.5708 · 108

The relation between α and ”dist” is illustrated graphically by the following loga-
rithmic plot: on the horizontal axis, values of log10

(
1
α

)
are displayed against the

values of ”dist” on the vertical axis. For the sake of convenience, linear interpolation
has been used between the discrete points.

2 4 6 8 10 12 14
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0.4

0.6

0.8

1

Figure 6.1

6.2.2 ω = 3, p = 3, h = 10−1

α 10−1 10−2 10−4 10−8

dist 1.601 · 10−2 6.799 · 10−2 2.155 · 10−1 5.579 · 10−1

N∗ 29 134 1549 1.5706 · 105

α 10−3 10−6 10−9 10−12

dist 1.392 · 10−1 3.909 · 10−1 6.444 · 10−1 8.745 · 10−1

N∗ 474 15689 4.9671 · 105 1.5708 · 107
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α 10−5 10−10

dist 3.036 · 10−1 7.243 · 10−1

N∗ 4947 1.5708 · 106

α 10−7 10−14

dist 4.690 · 10−1 1.060

N∗ 49655 1.5708 · 108

The corresponding graph is quite similar to the one above:
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Figure 6.2

6.2.3 ω = 3, p = 3, varying h

α 10−3

h 10−1 10−2 10−3 10−4 10−5

dist 1.392 · 10−1 1.399 · 10−1 1.403 · 10−1 1.402 · 10−1 1.402 · 10−1

N∗ 474 4705 47017 4.701 · 105 4.701 · 106

α 10−4

h 10−1 10−2 10−3 10−4

dist 2.155 · 10−1 2.189 · 10−1 2.199 · 10−1 2.198 · 10−1

N∗ 1549 15446 154419 1.5441 · 106

α 10−5

h 10−1 10−2 10−3 10−4

dist 3.036 · 10−1 3.017 · 10−1 3.006 · 10−1 3.006 · 10−1

N∗ 4947 49413 4.9407 · 106 4.9406 · 107

6.2.4 ω = 4, p = 2, h = 10−1

α 10−3 10−4 10−5 10−6 10−7

dist 2.145 · 10−2 2.412 · 10−2 2.619 · 10−2 2.708 · 10−2 2.681 · 10−2

N∗ 474 1549 4947 15689 49655
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α 10−8 10−9 10−10 10−11 10−12

dist 2.731 · 10−2 2.753 · 10−2 2.734 · 10−2 2.746 · 10−2 2.662 · 10−2

N∗ 157063 496714 1.5708 · 106 4.9672 · 106 1.5708 · 107

The logarithmic plot this time is completely different:
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6.3 Conclusions of the numerical tests

Case ω = 3. From the linear graphs of Figure 6.1 and 6.2, it is seen that the
quantity ”dist” grows like const · ln 1

α , as α → 0+. Since dist · hp is a numerical
lower estimate of sup[0,qN∗+1] | id− JE |, this numerical evidence—together with the
right hand side of estimate (52)—gives a convincing argument that if the crucial
(but natural) assumption JE(0) := 0 is made, then the distance of the constructed
conjugacy and the identity map indeed shows a logarithmic singularity as α → 0+.

Further, ”dist” seems to be more or less independent of p, as Figure 6.1 and 6.2
are nearly the same, moreover, values of ”dist” show stabilization as h → 0+ and
α > 0 is fixed.

Case ω = 4. Numerical results together with Figure 6.3 clearly show uniform
boundedness of ”dist”, which, of course, has been proved in Theorem 5.3.

In all cases, the values of N∗ very closely follow the asymptotic formula N∗ ≈
π

2h
√

α
≈ 1.5708

h
√

α
(α → 0+) stated in Remark 6.3 in Section 6.1.

6.4 Open questions

A conjugacy JE has been constructed between the mappings (37) and (38) in a
uniform neighbourhood of the origin for all, sufficiently small values of the parame-
ters h and α. As for the closeness estimates, further the continuity of the mappings
J(·, x, α) and J(h, x, ·), we remark the following.

1. Originally, in our earlier work [4], we have proved cubic closeness of the normal
forms, i.e. ω = 3 in (39). Currently, however, as we have seen, the desired uniform
closeness of JE and the identity map is proved only under the extra assumption
ω = 4. We do not know whether it is possible to modify the construction of the
conjugacy J in such a way that |J−id|

hp becomes uniformly bounded even for ω = 3.
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We have indicated (see Remark 5.1 in Section 5) that it would be enough to
consider suitable modifications of the value of JE(0), for every h > 0 and α > 0.
Nevertheless, JE(0) and the extension on [0, q1] should be not only O(hp), but

O(hpα), since if S1 6≡ 0 in (43), then the term
(∏N∗

i=1 Di

)
S1 ≈ const

α S1 generally

will not be annihilated.
We now briefly mention an attempt in this direction.

Attempts to transform the normal forms further. It can be asked whether
it is possible to eliminate the cubic term in (37) (or in (38)). For simplicity, set
η̂3 ≡ a ∈ R, h = 1 and α = 0. Then we aim to find a near-identity transform
trans : x 7→ x + bxν with suitable b and ν such that it brings our mapping map :
x 7→ x + x2 + ax3 into a mapping with the cubic term eliminated. In other words,
we would like to find b and ν such that elimmap := trans [−1] ◦map ◦ trans contains
no cubic terms.

The actual computations were performed again in Mathematica. If the value
of ν is set, then the following command computes the series expansion of elimmap
about the origin up to order 10:

ComposeSeries[InverseSeries[x+bxν+O[x]10],x+x2+ax3+O[x]10,

x+bxν+O[x]10]//Simplify

Substituting different values of ν into the above expression, the following pattern
emerges. With 2 ≤ ν ∈ N set, it is possible to choose b (also depending on a) such
that elimmap contains no terms of order 2ν. This suggests trying Puiseaux-series
instead of Taylor-series, however, ν = 3

2 leads to elimmap ≡ x + x2 + 1
2bx5/2 +(

a + b2

4

)
x3 + . . ., so an unwanted term of order 5

2 enters. It was also in vain to try

trans ≡ x + bxν + cxµ with various choices of ν and µ.
Therefore, we conclude that—at least with these type of transformations—it

does not seem to be possible to convert the general ω = 3 case into the ω = 4 case.

2. The other question is the continuity of the conjugacy mapping. In our con-
struction, we have assured that x 7→ J(h, x, α) is a homeomorphism, for every fixed
h and α. Continuity of h 7→ J(h, x, α) (0 < h ≤ h0) is also seen to hold. How-
ever, it would be a reasonable aim to decide whether—by possibly modifying the
construction—the mapping α 7→ J(h, x, α) can be shown to be continuous at the
critical bifurcation value α = 0 and x ≥ 0 as well. The reason for this discrepancy
at α = 0, x ≥ 0 is that while in the fixed point-free α > 0 case the conjugacy
equation (40) extends J(h, ·, α) to the whole [−ε0, ε0] interval if it is defined on one
fundamental domain, in the case of α = 0—due to the presence of the fixed point
at x = 0—two fundamental domains are needed on each half-line.
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the consultations and helpful suggestions about the paper as well as their kind
hospitality during the author’s stay at the University of Bielefeld in the autumn of
2002 and 2003.

38



References

[1] B. M. Garay, On stuctural stability of ordinary differential equations with
respect to discretization methods, Numer. Math. 72, No. 4 (1996) 449–479.

[2] M. C. Li, Structural stability of flows under numerics, J. Differ. Equations
141, No. 1 (1997) 1–12.

[3] G. Farkas, Conjugacy in the discretized fold bifurcation, Computers & Math-
ematics with Applications 43 (2002) 1027–1033.
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[8] T. Hüls, Numerische Approximation nicht-hyperbolischer heterokliner Orbits,
PhD Thesis, University of Bielefeld, 2002.

[9] N. G. de Bruijn, Asymptotic Methods in Analysis (Chapter Iterated Func-
tions), North Holland, Amsterdam, 1961.
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