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Abstract

A parabolic reaction-diffusion equation is considered on the real
line. An existence theorem is proved in a weighted Sobolev space with
a specific weight. Estimates of solutions and their higher derivatives
are obtained. The existence of the global attractor in the sense of
Babin-Vishik is established.

1 Introduction

The qualitative study of dynamical systems generated by partial differential
equations on unbounded domains has been started not long ago. This study
was stimulated by Babin and Vishik who gave a definition of an attractor
which corresponds to a pair of spaces (see [1], [2]). Later several papers
appeared, studying attractors of dynamical systems generated by various
partial differential equations and by their discretizations (see [6], [3], [7], [8]
for example).

We consider the equation

∂tu(t, x) = ∆u(t, x) − f(u(t, x)), (1)

u|t=0 = u0, (2)

with a smooth globally Lipschitz continuous nonlinearity f . In [2], Babin
and Vishik have proved the existence of an (H, Hw)-attractor of the dynam-
ical system generated by equation (1) on an unbounded domain, where H
is a weighted analog of the Sobolev space W 1

2 and Hw is the same space
endowed with the weak topology. In [6], Mielke and Schneider studied the
Ginzburg-Landau equation and proved the existence of the global attractor
in the case where the two topologies chosen, correspond to the weighted
Sobolev norm and a stronger norm called ”‘uniformly local”’.
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In this paper, we prove the existence of the attractor for the dynami-
cal system generated by the one-dimensional equation (1)-(2) for the same
pair of spaces as in [6]. Our estimates will also be essential in proving the
convergence of attractors for discretizations of (1), see the subsequent paper
[4].

The structure of the paper is as follows. Section 2 contains the termino-
logy, notation and elementary properties, we later use. The main result of
Section 3 is an existence theorem for a solution of equations (1)-(2). Section
3 contains the estimates of solutions of equation (1)-(2) while Section 4
provides estimates of higher derivatives. Finally, in Section 5 we prove the
existence of the attractor.

2 Terminology and elementary properties

In this section, we introduce notation and conventions we later use. Also we
mention some known facts.
1) Let E be a Banach space. We use the symbol ‖ · ‖E to denote its norm.
The symbol E∗ denotes the space of continuous linear functionals on the
space E.

Given a number p ∈ [1; +∞], choose p′ such that 1
p + 1

p′ = 1 holds.
We define some spaces of mappings:

a) Lp([0;T ];E), T ≥ 0, is the space of mappings u : [0;T ] → E defined for
almost all t ∈ [0;T ], such that the function ‖u(·)‖E belongs to the space
Lp([0;T ]), cf. [7].
b) C∞

0 ((0;T ); E) is the space of mappings u ∈ C∞([0;T ];E) such that
supp u ⊂ (0; T ). Similarly,

C∞
0 ([0;T ); E) := {u ∈ C∞([0;T ];E) : supp u ⊂ [0;T )}.

2) Let Ω ⊂ R be an open interval. We denote by H l(Ω) the usual Sobolev
spaces of real valued functions that have local derivatives in L2(Ω) up to the
order l.

Fix a number γ < 0 and introduce the weight function ϕ(x) := (1+|x|2)γ .
We denote by H0,γ(Ω) the space of locally integrable functions u : Ω → R,

defined for almost all x ∈ Ω, such that

‖ϕ1/2u‖L2(Ω) =

∫

Ω

ϕ(x)|u(x)|2 dx < +∞.

The space H0,γ(Ω) is endowed with the scalar product

〈u; v〉0,γ :=

∫

Ω

ϕ(x)u(x)v(x) dx.
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We also use the Sobolev spaces Hl,γ(Ω) (l ∈ N) of functions u ∈ H0,γ(Ω)
such that Dαu ∈ H0,γ(Ω) for all α ≤ l. The spaces Hl,γ(Ω) are endowed
with the scalar product

〈u; v〉l,γ :=
∑

0≤α≤ l

〈Dαu;Dαv〉0,γ .

In the following we consider the weight functions ϕε(x) := ϕ(εx) for ε > 0.

Lemma 2.1 (properties of the functions ϕε and spaces Hl,γ)
There exist constants C1 = C1(ε, γ) and C2 = C2(γ) that are independent
of Ω, with the following properties.

(1) If a function u belongs to the space Hl,γ(Ω)(l = 0, 1, or 2), then

ϕ
1/2
ε u ∈ H l(Ω), and the following inequalities hold:

C−1
1 ‖ϕ1/2

ε u‖Hl(Ω) ≤ ‖u‖l,γ ≤ C1‖ϕ
1/2
ε u‖Hl(Ω). (3)

Note that H0(Ω) := L2(Ω).

(2) The following inequalities hold:

|ϕ′
ε(x)| ≤ C2ε(ϕε(x))1−(2γ)−1

≤ C2εϕε(x), x ∈ R. (4)

For a proof, we refer to [3].
It follows from Lemma 2.1 that for any fixed ε, the norms with weights

ϕε instead of the weight ϕ in the spaces H l
γ(Ω) are equivalent to the original

ones.

We also use the Sobolev space
0

W 1
2 (Ω) which is the closure of C∞

0 (Ω)
w.r.t. the norm of W 1

2 (Ω). Additional properties can be found in [5]. We

denote the corresponding weighted space by
0

H1,γ(Ω).
3) Let E and E0 be Banach spaces, E ⊂ E0. Given arbitrary elements
f ∈ E∗

0 and v ∈ E0, we denote 〈f ; v〉E0 := f(v). We will omit the index ’E0’
when it does not lead to a confusion. We call a mapping w ∈ L1([0;T ];E0)
an E0-derivative of a mapping u ∈ L1([0;T ];E) if for any mapping ϕ ∈
C∞

0 ((0;T ); E∗
0), the identity

T
∫

0

〈ϕ(t); w(t)〉 dt = −

T
∫

0

〈∂tϕ(t); u(t)〉 dt (5)

holds. We call such a derivative a weak derivative as opposed to the ’strong’
Sobolev derivatives.

If E0 = E∗, we call the mapping w the derivative of the mapping u and
denote it by ∂tu. Note that the meaning of the introduced symbol depends
on the embedding of E into E∗. We fix the embedding later if necessary.
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Lemma 2.2 (traces and the integration by parts formula)
Let H be a Hilbert space with a scalar product 〈·; ·〉H , let V be a Banach
space such that V ⊂ H ⊂ V ∗ (in this case, we have the standard embedding
of the space V into the space V ∗ which is the composition of the embeddings
V →֒ H →֒ H∗ →֒ V ∗), and let p be a number from the interval [1; +∞]. Let
functions u, v ∈ Lp([0;T ];V ) ∩L∞([0;T ];H) have the derivatives ∂tu, ∂tv ∈
Lp′([0;T ];V ∗). Then for any t ∈ [0;T ], the traces u(t) ∈ H and v(t) ∈ H
are well-defined and the following equality holds:

T
∫

0

〈∂tu; v〉 dt +

T
∫

0

〈∂tv; u〉 dt = 〈u(T ); v(T )〉H − 〈u(0); v(0)〉H .

See [1], p.30 for a proof.
Note that the value of a mapping u ∈ Lp([0;T ];V ) at a point is not

defined, in general. Below we denote by u(t) the trace of the mapping u at
a point t.

We also note that under the conditions of Lemma 2.2, the function
〈u(t); v(t)〉H has a Sobolev derivative

∂t〈u(t); v(t)〉H = 〈∂tu; v〉 + 〈∂tv; u〉

of the class L1[0;T ].
4) We use the Gronwall lemma in the following two forms.

Lemma 2.3 (Integral Gronwall inequality) Consider functions f ∈ W 1
1 ([0;T ])

and g : [0;T ] → R
+ such that for some constants C1 and C2 ≥ 0, the fol-

lowing inequality holds:

f(t) + g(t) ≤ C1 + C2

t
∫

0

f(τ) dτ for all t ∈ [0;T ].

Then the following inequalities hold:

f(t) ≤ C1e
C2t and g(t) ≤ C1e

C2t.

Lemma 2.4 (differential Gronwall inequality)
Let f ∈ W 1

1 [0, T ] be a function satisfying the following inequality:

f ′(t) ≤ −λf(t) + C0,

for almost all t ∈ [0;T ], where the constant λ ≥ 0. Then the following
inequality holds for all t ∈ [0;T ]:

f(t) ≤ C0λ
−1(1 − e−λt) + f(0)e−λt.

A proof for the case f ∈ C1[0;T ] can be found in [1], p.18. The case
f ∈ W 1

1 [0;T ] is treated similarly.
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3 Existence theorem

Let Ω ⊂ R be an interval. We consider the boundary value problem

∂tu(t, x) = ∆u(t, x) − f(u(t, x), t, x), (6)

u|t=0 = u0, (7)

u|∂Ω = 0, (8)

where these equalities are true for almost all (t, x) ∈ [0;T ] × Ω.
We assume that f ∈ C(R × [0;T ] × Ω) satisfies the following inequality:

|f(u, t, x)| ≤ Cf |u| (9)

with a constant Cf . We also assume that u0 ∈ H0,γ(Ω).
Assume that the function f = f(u) is Lipschitz continuous and satisfies

the following dissipativity condition:

f(u) · u ≥ λ0|u|
2 − λ1 (10)

with some constants λ0 > 0 and λ1 ∈ R (we work with such functions in
Section 5). It is easy to see that such a function f has a zero v ∈ R. By
the change of variable u := u − v, we obtain an equation (6)-(8) with the
function f̃(u) = f(u+v) having 0 as a zero. Since the function f̃ is Lipschitz
continuous too, it satisfies inequality (9).

We consider two kinds of solutions of equation (6)-(8). A weak solution
of equation (6)-(8) is a mapping

u ∈ L∞([0;T ];H0,γ(Ω)) ∩ L2([0;T ];
0

H1,γ(Ω))

having ∂tu as a weak derivative and satisfies the equalities (6)-(8). Here we
embed the right-hand side of equation (6) into the space

L2([0;T ]; (H1,γ(Ω))∗)

according to the following formula:

T
∫

0

〈∆u − f ; w〉dt = −

T
∫

0

∫

Ω

(u′
x(ϕw)′x + ϕfw)dxdt

for all mappings w ∈ L2([0;T ];H1,γ(Ω)). Note that if the function ∆u − f
belongs to the space L2([0;T ];H0,γ(Ω)) the standard embedding of this func-
tion to the space L2([0;T ]; (H1(Ω))∗) leads to the same result.

A strong solution of equation (6)-(8) is a mapping

u ∈ L∞([0;T ];H1,γ(Ω)) ∩ L2([0;T ];H2,γ(Ω))
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having ∂tu as a strong derivative and satisfying the equalities (6)-(8).
We note that any strong solution is also a weak solution. Furthermore,

if γ ≤ −1/2 (this is the case considered in Section 5), then the above-
mentioned change of variables u := u − v transforms all functional spaces,
we use, onto themselves.

For a bounded interval Ω, the following equalities hold:

H0,γ(Ω) = L2(Ω),
0

H1,γ(Ω) =
0

W 1
2 (Ω),

and the corresponding norms are equivalent. Hence, the definition of the
weak derivative implies that the mapping

u ∈ L∞([0;T ];L2(Ω)) ∩ L2([0;T ];
0

W 1
2 (Ω))

is a weak solution of equation (6)-(8) if and only if for any mapping

v ∈ L2([0;T ];
0

W 1
2 (Ω)) ∩ L∞([0;T ];L2(Ω)), v(T ) = 0,

having a strong derivative ∂tv ∈ L2([0;T ];L2(Ω)), the following equality
holds:

t
∫

0

∫

Ω

(u′
xv′x + f(u)v − u∂tv) dxdt = 〈u0; v(0)〉L2(Ω).

Thus, weak and strong solutions of equation (6)-(8) correspond to the stan-
dard weak and strong solutions of a parabolic equation on a bounded do-
main. The corresponding theory states that under our assumptions, there
exists a weak solution of equation (6)-(8). If u0 ∈ H1,γ(Ω) is additionally
assumed, a strong solution of equation (6)-(8) exists.

Our aim in this section is to prove an existence theorem for strong so-
lutions in case of an unbounded interval Ω. We begin with estimates of
solutions. Here and below, we denote by C positive constants that do not
depend on the interval Ω, on the initial value u0 and on a solution u. The
value of C may be different in different places.

Lemma 3.1 Let the interval Ω be bounded. Then the solution u(t, x) of the
equation (6)-(8) satisfies the inequalities

‖u(t)‖0,γ ≤ C‖u0‖0,γ eCt, t ∈ [0;T ], (11)

T
∫

0

‖u(t)‖2
1,γ dt ≤ C‖u0‖

2
0,γ eCT . (12)

Note that we do not have to specify whether we consider a weak or a
strong solution before Lemma 3.4 since our statements here hold for weak
solutions.
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Proof.

Fix a number ε > 0. Let us first calculate the (
0

W 1
2 (Ω))∗-derivative

∂′
t(ϕ

1/2
ε u) of the mapping ϕ

1/2
ε u corresponding to the embedding

0

W 1
2 (Ω) →֒ L2(Ω) →֒ (

0

W 1
2 (Ω))∗.

For an arbitrary function v ∈ H1([0, T ];
0

W 1
2 (Ω)) it follows from the definition

of weak derivatives and the embedding of the function ∆u − f that

T
∫

0

〈∂′
t(ϕ

1/2
ε u); v〉 0

W 1
2 (Ω)

= −

T
∫

0

〈ϕ1/2
ε u; ∂tv〉 0

W 1
2 (Ω)

= −

T
∫

0

∫

Ω

ϕ1/2
ε u∂tv

= −

T
∫

0

∫

Ω

ϕu∂t(
ϕ

1/2
ε

ϕ
v)

=

T
∫

0

〈∂tu;
ϕ

1/2
ε

ϕ
v〉H1,γ(Ω)

= −

T
∫

0

∫

Ω

(u′
x(ϕ1/2

ε v)′x + ϕ1/2
ε fv).

Hence,

〈∂′
t(ϕ

1/2
ε u); v〉 0

W 1
2 (Ω)

= −

∫

Ω

(u′
x(ϕ1/2

ε v)′x + ϕ1/2
ε fv).

After the derivative ∂′
t is calculated we apply Lemma 2.2 to the mappings

u := ϕ
1/2
ε u and v := ϕ

1/2
ε u (and spaces V :=

0

W 1
2 (Ω), H := L2(Ω)) and the

interval [0, t1] and deduce that

‖ϕ1/2
ε u(t1)‖

2
L2(Ω) − ‖ϕ1/2

ε u(0)‖2
L2(Ω)

= 2

t1
∫

0

〈∂′
t(ϕ

1/2
ε u); ϕ1/2

ε u〉 0

W 1
2 (Ω)

dt

= −2

t1
∫

0

∫

Ω

((ϕε)
′u u′

x + ϕε(u
′
x)2 + ϕεfu) dx dt. (13)
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Estimating the right-hand side of (13), we get by (4)

‖ϕ1/2
ε u(t1)‖

2
L2(Ω) + 2

t1
∫

0

∫

Ω

ϕε(u
′
x)2 dxdt (14)

≤ ‖ϕ1/2
ε u(0)‖2

L2(Ω) + Cε

t1
∫

0

∫

Ω

ϕε(|u|
2 + |u′

x|
2) dxdt + C

t1
∫

0

∫

Ω

ϕε|u|
2 dxdt,

where the constant C does not depend even on the number ε. We choose
the number ε such that 0 < ε < C−1. Then inequality (14) can be rewritten
as

‖ϕ1/2
ε u(t1)‖

2
L2(Ω)+

t1
∫

0

∫

Ω

ϕε|u
′
x|

2 dxdt ≤ ‖ϕ1/2
ε u(0)‖2

L2(Ω)+C

t1
∫

0

∫

Ω

ϕε|u|
2 dxdt.

(14′)
Applying Lemma 2.3, we get the following inequalities:

‖ϕ1/2
ε u(t)‖2

L2(Ω) ≤ C‖ϕ1/2
ε u(0)‖2

L2(Ω) · e
Ct,

t
∫

0

‖ϕ1/2
ε u′

x(τ) ‖2
L2(Ω) dτ ≤ C‖ϕ1/2

ε u(0)‖2
L2(Ω) · e

Ct.

Due to inequality (3), the estimates (11) and (12) are valid.
¤

We give some more estimates of solutions which are proved similarly.

Lemma 3.2 Let the interval Ω be bounded and let the function f be uni-
formly Lipschitz continuous in u with respect to (t, x) for all (t, x) ∈ [0;T ]×
Ω. Assume that functions u1 and u2 are solutions of equation (6) and
(8) with initial values u1|t=0 = u01 and u2|t=0 = u02, respectively, where
u01, u02 ∈ H0,γ.

Then the following inequality holds:

‖u1(t) − u2(t)‖0,γ ≤ C‖u01 − u02‖0,γ · eCt, t ∈ [0;T ].

Proof. We note that if f is uniformly Lipschitz continuous in u with respect
to (t, x) for all (t, x) ∈ [0;T ] × Ω, then f has the Sobolev derivative f ′

u ∈
L∞(R × [0;T ] × Ω).

Let us write equations (6) and (8) for the solutions u1 and u2 and sub-
tract the latter equations from the former ones:

∂t(u1 − u2)(t, x) = ∆(u1 − u2)(t, x) + (f(u1(t, x), t, x) − f(u2(t, x), t, x)),

(u1 − u2)|∂Ω = 0. (15)
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We result in an equation of the form (6)-(8) with the function

f(u, t, x) := u

1
∫

0

f ′
u(θu1(t, x) + (1 − θ)u2(t, x), t, x)dθ

for the mapping u := u1−u2 with the initial value (u1−u2)|t=0 = u01−u02.
We note that such a function f satisfies condition (9). Hence, we obtain the
required inequality from Lemma 3.1.

¤

Lemma 3.3 Let γ < −1/2 and let Ω be a bounded interval. Assume that
the function f satisfies the estimate

f(u, t, x) · u ≥ λ0|u|
2 − λ1. (16)

Then the following inequality holds:

‖u(t)‖2
0,γ ≤ C(1 + ‖u0‖

2
0,γ e−

λ0
2

t), t ∈ [0;T ],

where the constant C does not depend on T.

Proof. Fix a number ε > 0. According to Lemma 2.2 applied to the

mappings u := ϕ
1/2
ε u and v := ϕ

1/2
ε u, the function ‖ϕ

1/2
ε u(t)‖2

L2(R) is of

class W 1
1 ([0;T ]) and its Sobolev derivative ∂t‖ϕ

1/2
ε u(t)‖2

L2(R) is equal to

2〈∂′
t(ϕ

1/2
ε u); ϕ

1/2
ε u〉 0

W 1
2 (Ω)

, where the symbol ∂′
t was defined in the proof of

Lemma 3.1.
Taking into account the expression for the derivative ∂′

t(ϕ
1/2
ε u) calculated

in the proof of Lemma 3.1, we see that

∂t‖ϕ
1/2
ε u(t)‖2

L2(R) = −2

∫

Ω

((ϕε)
′u u′

x + ϕε(u
′
x)2 + ϕεfu). (17)

Estimating the right-hand side of (17) and taking into account the in-
equalities (4) and (16), we obtain the following estimate:

∂t‖ϕ
1/2
ε u(t)‖2

L2(R) + 2

∫

Ω

ϕε(u
′
x)2 dx

≤ Cε

∫

Ω

ϕε(|u|
2 + |u′

x|
2) dxdt − λ0

∫

Ω

ϕε|u|
2 dxdt + λ1

∫

R

ϕε dx, (18)

where the constant C does not depend on the number ε. We choose the
number ε such that 0 < ε < C−1 min{1; λ0/2}. Then inequality (18) can be
rewritten as

∂t‖ϕεu(t)‖2
L2(R) +

∫

Ω

ϕε(u
′
x)2 dx ≤ −

λ0

2

∫

Ω

ϕε|u|
2 dxdt + λ1

∫

R

ϕε dx.
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Applying Lemma 2.4, we deduce the inequality

‖ϕ1/2
ε u(t)‖2

L2(Ω) ≤ ‖ϕ1/2
ε u(0)‖2

L2(Ω) · e
−

λ0
2

t +
2C

λ0
(1 − e−

λ0
2

t).

The latter inequality and inequality (3) imply the required estimate.
¤

Below in this section, we assume that the initial value u0 belongs to the
space H1,γ(Ω) and consider only strong solutions of equation (6)-(8).

Lemma 3.4 Let the interval Ω be bounded. Then any solution u ∈
L∞([0;T ];H1,γ(Ω))∩L2([0;T ];H2,γ(Ω)) of equation (6)-(8) satisfies the fol-
lowing estimates:

‖u(t)‖1,γ ≤ C‖u0‖1,γ eCt, t ∈ [0;T ], (19)

T
∫

0

‖u(t)‖2
2,γ dt ≤ C‖u0‖

2
1,γ eCT , (20)

T
∫

0

‖∂tu(t)‖2
0,γ dt ≤ C‖u0‖

2
1,γ eCT . (21)

Proof. Fix ε > 0. Note that

u′
x ∈ L∞([0;T ];H0,γ(Ω)) ∩ L2([0;T ];H1,γ(Ω))

= L∞([0;T ];L2(Ω)) ∩ L2([0;T ];H1(Ω))

and
∂tu ∈ L2([0;T ];L2(Ω)).

Let us first calculate the derivative ∂′
t(ϕ

1/2
ε u′

x), where the symbol ∂′
t was

defined in the proof of Lemma 3.1. Since for any function v ∈ H1([0, T ];
0

W 1
2 (Ω))
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the equalities

T
∫

0

〈∂′
t(ϕ

1/2
ε u′

x); v〉 0

W 1
2 (Ω)

= −

T
∫

0

〈ϕ1/2
ε u′

x; ∂tv〉 0

W 1
2 (Ω)

= −

T
∫

0

∫

Ω

ϕ1/2
ε u′

x∂tv

= −

T
∫

0

∫

Ω

u∂t(ϕ
1/2
ε v)′x

= −

T
∫

0

∫

Ω

∂tu(ϕ1/2
ε v)′x

hold, we conclude that

〈∂′
t(ϕ

1/2
ε u′

x); v〉 0

W 1
2 (Ω)

= −

∫

Ω

∂tu(ϕ1/2
ε v)′x.

Now we apply Lemma 2.2 to the mappings ϕ
1/2
ε u′

x and ϕ
1/2
ε u′

x and the
interval [0; t1]. According to this lemma,

‖ϕ1/2
ε u′

x(t1)‖
2
L2(Ω) − ‖ϕ1/2

ε u′
x(0)‖2

L2(Ω)

= 2

t1
∫

0

〈∂′
t(ϕ

1/2
ε u′

x); ϕ1/2
ε u′

x〉 0

W 1
2 (Ω)

dt

= −2

t1
∫

0

∫

Ω

(∆u − f)(ϕ′
εu

′
x + ϕε∆u). (22)

We estimate the right-hand side of (22) taking (4) into account

‖ϕ1/2
ε u′

x(t1)‖
2
L2(Ω) + 2

t1
∫

0

∫

Ω

ϕε|∆u|2 (23)

≤ ‖ϕ1/2
ε u′

x(0)‖2
L2(Ω) + Cε

t1
∫

0

∫

Ω

ϕε(|∆u|2 + |u′
x|

2) + D(ε)

t1
∫

0

∫

Ω

ϕε|u|
2,
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where the constant C does not depend even on the number ε and the con-
stant D(ε) ≥ 0. Choosing the number ε such that ε < C−1, we deduce from
inequality (23) that

‖ϕ1/2
ε u′

x(t1)‖
2
L2(Ω) +

t1
∫

0

∫

Ω

ϕε|∆u|2 dxdt

≤ |ϕ1/2
ε u′

x(0)‖2
L2(Ω) + C

t1
∫

0

∫

Ω

ϕε(|u
′
x|

2 + |u|2) dxdt. (24)

We add inequalities (24) and (14′):

‖ϕ1/2
ε u′

x(t1)‖
2
L2(Ω) + ‖ϕ1/2

ε u(t1)‖
2
L2(Ω) +

t1
∫

0

∫

Ω

ϕε(|∆u|2 + |u′
x|

2) dxdt ≤

≤ ‖ϕ1/2
ε u′

x(0)‖2
L2(Ω) + ‖ϕ1/2

ε u(0)‖2
L2(Ω)+

+C

t1
∫

0

(‖ϕ1/2
ε u′

x(t)‖2
L2(Ω) + ‖ϕ1/2

ε u(t)‖2
L2(Ω)) dt.

Applying Lemma 2.3, we see that

‖ϕ1/2
ε u′

x(t)‖2
L2(Ω) + ‖ϕ1/2

ε u(t)‖2
L2(Ω) ≤

≤ C(‖ϕ1/2
ε u′

x(0)‖2
L2(Ω) + ‖ϕ1/2

ε u(0)‖2
L2(Ω)) · e

Ct

and
t

∫

0

(‖ϕ1/2
ε ∆u(τ)‖2

L2(Ω) + ‖ϕ1/2
ε |u′

x| ‖
2
L2(Ω)) dτ ≤

≤ C(‖ϕ1/2
ε u′

x(0)‖2
L2(Ω) + ‖ϕ1/2

ε u(0)‖2
L2(Ω)) · e

Ct

hold for all t ∈ [0;T ]. Due to inequality (3), we obtain the estimates (19)
and (20).

Estimate (21) is deduced in the following way:

T
∫

0

‖∂tu(t)‖2
0,γ dt =

T
∫

0

‖∆u(t, ·) − f(u(t, ·), t, ·)‖2
0,γ dt

≤ 2

T
∫

0

‖∆u(t, ·)‖2
0,γ dt + C

T
∫

0

‖u(t, ·)‖2
0,γ dt

≤ C

T
∫

0

‖u(t, ·)‖2
2,γ dt ≤ C · ‖u0‖

2
1,γ · eCT .
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¤

Lemma 3.5 Let the interval Ω be bounded and let the mapping f be uni-
formly Lipschitz continuous in u with respect to (t,x) for all (t, x) ∈ [0;T ]×Ω.
Take u01, u02 ∈ H1,γ(Ω). Then the solutions

u1, u2 ∈ L∞([0;T ];H1,γ(Ω)) ∩ L2([0;T ];H2,γ(Ω))

of equation (6) and (8) with the initial values u1|t=0 = u01 and u2|t=0 = u02

satisfy the following inequality:

‖u1(t) − u2(t)‖1,γ ≤ C‖u01 − u02‖1,γ eCt, t ∈ [0;T ].

Proof. Similar to the proof of Lemma 3.2 the statement follows from
Lemma 3.4.

¤

Theorem 3.6 (existence of solution on an unbounded interval)
There exists a solution

u ∈ L2([0;T ];H2,γ(R)) ∩ L∞([0;T ];H1,γ(R))

of equation (6)-(8) with Ω = R. This solution satisfies all estimates from
the Lemmas 2.1-2.4.

Proof. We define for any number R ≥ 1 a smooth cut-off function ΨR, such
that the following conditions are satisfied:

• 0 ≤ ΨR(ξ) ≤ 1 for all ξ ∈ R,

• ΨR(ξ) = 1 if |ξ| ≤ (R − 1)2,

• ΨR(ξ) = 0 if |ξ| ≥ R2,

• |Ψ
(k)
R (ξ)| ≤ Ck for all ξ ∈ R.

Further, we define ΩR : = (−R; R) and u0,R(x) : = ΨR(|x|2)u0(x). Let

ûR ∈ L2([0;T ];H2,γ(ΩR)) ∩ L∞([0;T ];H1,γ(ΩR))

be a solution of the equations (6)-(8) with u0 : = u0,R on the bounded
interval ΩR. Since the interval is bounded, this solution exists and is unique.

Note that ‖u0,R‖l,γ ≤ C‖u0‖l,γ (l ≤ 1). Hence, for all R ≥ 1, the norms
of the mappings ûR in the corresponding spaces

L2([0;T ];H2,γ(ΩR)) ∩ L∞([0;T ];H1,γ(ΩR))

13



are uniformly bounded with respect to R.
We define

uR(t, x) : = ΨR(|x|2) ·

{

ûR(t, x) if|x| ≤ R,
0 otherwise.

The norms of the mappings uR in the space

L2([0;T ];H2,γ(R)) ∩ L∞([0;T ];H1,γ(R))

are also uniformly bounded with respect to R. Similarly, the norms of the
mappings ∂tuR from Lemma 3.4 are uniformly bounded with respect to R. It
follows that there exists a sequence uj := uRj

, j ∈ N, such that Rj → +∞ as
j → +∞ with the following properties: the sequence {uj}j∈N is weakly con-
vergent in the space L2([0;T ];H2,γ(R)) and weak-* convergent in the space
L∞([0;T ];H1,γ(R)), and the sequences {∂tuj}j∈N and {f(uj(·, ·), ·, ·)}j∈N are
weakly convergent in the space L2([0;T ];H0,γ(R)).

We denote the limit of the sequence {uj}j∈N by u∞ = u∞(t, x). Passing
to the limit in equation (5), we see that ∂tuj → ∂tu∞ as j → +∞. Fur-
thermore, since uj → u∞ as j → ∞, we see that uj(t, x) → u∞(t, x) as
j → +∞ weakly in the space H1

loc(R × [0, T ]), and hence, strongly in the
space L2,loc(R × [0, T ]). Since the function f is Lipschitz continuous in u,
the functions f(uj(·, ·), ·, ·) also converge to the function f(u∞(·, ·), ·, ·) in
the space L2,loc(R× [0, T ]). Finally, passing to the limit in equation (6), we
obtain the equality ∂tu∞ = ∆u∞ − f(u∞(·, ·), ·, ·).

Now we prove the equality u∞|t=0 = u0. Since the sequences of mappings
{∂tuj}j∈N and {uj}j∈N are weakly convergent in the space

L2([0;T ];H0,γ(R)),

uj → u∞ weakly as j → +∞ in the space W 1
2 ([0;T ];H0,γ(R)). It follows

that the traces {uj |t=0}j∈N converge to the trace u∞|t=0 in the space H0,γ .
On the other hand, since uj |t=0 = Ψ2

Rj
(| · |2)u0, it follows from the Lebesgue

theorem, that the functions uj |t=0 converge to the function u0 as j → +∞.
Thus, u∞|t=0 = u0.

Finally, the conclusions of the Lemmas 2.1-2.4 hold for solutions on the
interval R, due to the weak upper semi-continuity of the norms in spaces
Lp([0;T ];Hl,γ(R)).

¤

Theorem 3.7 Equations (6)-(8) where Ω = R generate a semi-flow {St}t≥0

in the space H1,γ(R). If the mapping f is uniformly Lipschitz continuous
in u with respect to (t,x) for all (t, x) ∈ [0;T ] × Ω, then all the mappings
St, t ≥ 0, are continuous in this space.

14



Proof. It follows from Theorem 3.6 and Lemma 3.5 that there exist map-
pings

St : H1,γ(R) → H1,γ(R), t ≥ 0,

such that for any function u0 ∈ H1,γ(R), the mapping u(x, t) : = Stu0 is a
solution of the equations (6)-(8) in the space

L∞([0;T ];H1,γ(R)) ∩ L2([0;T ];H2,γ(R)).

The continuity of the mappings St follows from Lemma 3.5.
¤

4 Estimates of higher derivatives

Here and below, we assume that Ω = R and consider the same boundary
value problem as in Section 3:

∂tu(t, x) = ∆u(t, x) − f(u(t, x), t, x), (25)

u|t=0 = u0 . (26)

We assume that the mapping f ∈ C(R × [0;T ] × R) satisfies the estimate
(9).

Lemma 4.1 Let u be a strong solution of equation (25) (we assume nothing
about its initial value). Then for any numbers n ∈ N and t ∈ [0;T ], the
following estimates hold:

tn‖u(t)‖2
0,γ ≤ C

t
∫

0

τn−1‖u(τ)‖2
0,γ dτ, (27)

t
∫

0

τn‖u(τ)‖2
1,γ dτ ≤ C

t
∫

0

τn−1‖u(τ)‖2
0,γ dτ, (28)

tn‖u(t)‖2
1,γ ≤ C

t
∫

0

τn−1‖u(τ)‖2
1,γ dτ, (29)

t
∫

0

τn‖u(τ)‖2
2,γ dτ ≤ C

t
∫

0

τn−1‖u(τ)‖2
1,γ dτ, (30)

t
∫

0

τn‖∂tu(τ)‖2
0,γ dτ ≤ C

t
∫

0

τn−1‖u(τ)‖2
1,γ dτ. (31)
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Proof. We proceed similarly to the proofs of Lemmata 3.1 and 3.4.
For an arbitrary number ε > 0, it follows from Lemma 2.2 applied to the

mappings u := ϕ
1/2
ε u and v := tnϕ

1/2
ε u and the interval [0; t] that

tn‖ϕ1/2
ε u(t)‖2

L2(R)

=

t
∫

0

〈ϕ1/2
ε ∂tu(τ); τnϕ1/2

ε u(τ)〉 +

t
∫

0

〈ϕ1/2
ε ∂τ (τ

nu(τ));ϕ1/2
ε u(τ)〉

= 2

t
∫

0

〈ϕ1/2
ε ∂tu(τ); τnϕ1/2

ε u(τ)〉 + n

t
∫

0

〈ϕ1/2
ε τn−1u(τ); ϕ1/2

ε u(τ)〉

= 2

t
∫

0

〈ϕ1/2
ε (∆u(τ) − f(u(τ), τ, ·)); τnϕ1/2

ε u(τ)〉

+n

t
∫

0

τn−1‖ϕ1/2
ε u(τ)‖2

L2(R)

= −2

t
∫

0

∫

R

τnϕε(|u
′
x(τ, x)|2 + f(u(τ, x), τ, x)u(τ, x))

−2

t
∫

0

∫

R

τn(ϕε)
′uu′

x + n

t
∫

0

τn−1‖ϕ1/2
ε u(τ)‖2

L2(R). (32)

We estimate the right-hand side of equality (32) as follows:

tn‖ϕ1/2
ε u(t)‖2

L2(R) + 2

t
∫

0

∫

R

τnϕε|u
′
x|

2

≤ C

t
∫

0

∫

R

τnϕε|u|
2 + Cε

t
∫

0

∫

R

τnϕε(|u|
2 + |u′

x|
2)

+n

t
∫

0

τn−1‖ϕ1/2
ε u(τ)‖2

L2(R).

As usual, we choose ε < C−1 and deduce the following inequality:

tn‖ϕ1/2
ε u(t)‖2

L2(R) +

t
∫

0

∫

R

τnϕε|u
′
x|

2

≤ C

t
∫

0

τn‖ϕ1/2
ε u(τ)‖2

L2(R) + n

t
∫

0

τn−1‖ϕ1/2
ε u(τ)‖2

L2(R).
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Adding the term
t
∫

0

τn‖ϕ
1/2
ε u(τ)‖2

L2(R) to both sides of the latter inequality

gives

tn‖ϕ1/2
ε u(t)‖2

L2(R) +

t
∫

0

∫

R

τnϕε(|u
′
x|

2 + |u|2)

≤ C

t
∫

0

τn‖ϕ1/2
ε u(τ)‖2

L2(R) + n

t
∫

0

τn−1‖ϕ1/2
ε u(τ)‖2

L2(R). (33)

Finally, applying Lemma 2.3 to the functions tn‖ϕ
1/2
ε u(t)‖2

L2(R) and

t
∫

0

∫

R

τnϕε(|u
′
x|

2 + |u|2),

we deduce from inequality (33) that

tn‖ϕ1/2
ε u(t)‖2

L2(R) ≤ n

t
∫

0

τn−1‖ϕ1/2
ε u(τ)‖2

L2(R) · e
Ct,

t
∫

0

∫

R

τnϕε(|u
′
x|

2 + |u|2) ≤ n

t
∫

0

τn−1‖ϕ1/2
ε u(τ)‖2

L2(R) · e
Ct

hold for all t ∈ [0;T ].
The inequalities (27) and (28) follow from Lemma 2.1.

Now we apply Lemma 2.2 to the mappings u := ϕ
1/2
ε u′

x; v := tnϕ
1/2
ε u′

x

(they satisfy the conditions of Lemma 2.2 as was shown in the proof of
Lemma 3.4) and the interval [0; t]. We obtain the following equalities:

tn‖ϕ1/2
ε u′

x(t)‖2
L2(R)

= 2

t
∫

0

〈ϕ1/2
ε ∂tu

′
x(τ); τnϕ1/2

ε u′
x(τ)〉 + n

t
∫

0

τn−1〈ϕ1/2
ε u′

x(τ); ϕ1/2
ε u′

x(τ)〉

= 2

t
∫

0

∫

R

τn∂tu(τ, x)(ϕεu
′
x)′x(τ, x) + n

t
∫

0

τn−1‖ϕ1/2
ε u′

x(τ)‖2
L2(R)

= −2

t
∫

0

∫

R

τn(∆u(τ, x) − f(u(τ, x), τ, x))((ϕε)
′
xu′

x(τ, x) + ϕε∆u(τ, x))

+n

t
∫

0

τn−1‖ϕ1/2
ε u′

x(τ)‖2
L2(R). (34)
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We estimate the right-hand side of (34):

tn‖ϕ1/2
ε u′

x(t)‖2
L2(R) + 2

t
∫

0

∫

R

τnϕε|∆u(τ, x)|2

≤ Cε

t
∫

0

∫

R

τnϕε(|∆u|2 + |u′
x|

2) + D(ε)

t
∫

0

∫

R

τnϕε|u|
2

+n

t
∫

0

τn−1‖ϕ1/2
ε u′

x(τ)‖2
L2(R).

We choose ε < C−1 and deduce from the latter inequality that

tn‖ϕ1/2
ε u′

x(t)‖2
L2(R) +

t
∫

0

∫

R

τnϕε|∆u(τ, x)|2

≤ C

t
∫

0

∫

R

τnϕε(|u|
2 + |u′

x|
2) + n

t
∫

0

τn−1‖ϕ1/2
ε u′

x(τ)‖2
L2(R).

The addition of inequality (33) to the latter inequality gives

tn‖ϕ1/2
ε u(t)‖2

H1(R) +

t
∫

0

τn‖ϕ1/2
ε u(τ)‖2

H2(R)

≤ C

t
∫

0

τn‖ϕ1/2
ε u(τ)‖2

H1(R) + n

t
∫

0

τn−1‖ϕ1/2
ε u(τ)‖2

H1(R).

By Lemma 2.3, it follows that

tn‖ϕ1/2
ε u(t)‖2

H1(R) ≤ n

t
∫

0

τn−1‖ϕ1/2
ε u(τ)‖2

H1(R) · e
Ct,

t
∫

0

τn‖ϕ1/2
ε u(τ)‖2

H2(R) ≤ n

t
∫

0

τn−1‖ϕ1/2
ε u(τ)‖2

H1(R) · e
Ct

hold for all t ∈ [0;T ]. The estimates (29) and (30) follow now from Lemma 2.1.
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Finally, estimate (31) can be deduced in the following way:

t
∫

0

τn‖∂tu(τ)‖2
0,γ =

t
∫

0

τn‖∆u(τ) − f(u(τ), τ, ·)‖2
0,γ

≤ 2

t
∫

0

τn‖∆u(τ)‖2
0,γ + C

t
∫

0

τn‖u(τ)‖2
0,γ

≤ (C + CT )

t
∫

0

τn−1‖u(τ)‖2
1,γ .

¤

We define, for an arbitrary mapping v : [0;T ] → H0,γ(R) and a number
h > 0, a mapping vh : [0;T − h] → H0,γ(R) by the formula

vh(t) :=
v(t + h) − v(t)

h
.

Lemma 4.2 Let a mapping v ∈ Lp([0; t];Hl,γ(R)) (p ∈ [2; +∞], l ≤ 2)
satisfy the following estimates for any number h > 0:

t−h
∫

δ

a(τ)‖vh(τ)‖p
Hl,γ(R) ≤ Cv for p < +∞

and
esssup

τ∈[δ;t−h]
a(τ)‖vh(τ)‖Hl,γ(R) ≤ Cv for p = +∞ , (35)

where δ ≥ 0, the function a : [δ; t] → R satisfies the inequality A0 ≥ a(τ) ≥
a0 > 0, and the constant Cv does not depend on the number h. Then there
exists a strong derivative ∂tv ∈ Lp([δ; t];Hl,γ(R)) and the following estimates
hold:

t
∫

δ

a(τ)‖∂tv(τ)‖p
Hl,γ(R) ≤ Cv for p < +∞

and
esssup
τ∈[δ;t]

a(τ)‖∂tv(τ)‖Hl,γ(R) ≤ Cv for p = +∞ . (36)

Proof. We prove the lemma in the case δ = 0 since the remaining case is
considered similarly.
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Let w ∈ C∞
0 ((0;T ); H0,γ(R)) be an arbitrary mapping such that suppw ⊂

[h; t − 2h]. Then the following equality holds:

t−h
∫

0

〈vh(τ); w(τ)〉H0,γ(R) =

t−h
∫

0

〈

v(t + h) − v(t)

h
; w(t)

〉

H0,γ(R)

=

t−h
∫

h

〈

v(t);
w(τ − h) − w(τ)

h

〉

H0,γ(R)

+
1

h

t
∫

t−h

〈v(t); w(t − h)〉H0,γ(R)

−
1

h

h
∫

0

〈v(t); w(t)〉H0,γ(R).

The last two terms are equal to zero. Thus,

t−h
∫

0

〈vh(τ); w(τ)〉H0,γ(R) = −

t−h
∫

h

〈v(τ); wh(τ − h)〉H0,γ(R). (37)

We introduce a mapping v̂h : [0;T ] → Hl,γ(R) by the formula

v̂h(τ) :=

{

vh(τ) if τ ∈ [0; t − h],
0 if τ ∈ (t − h; t]

It follows from inequality (35) that the mappings v̂h are uniformly bounded
in the space Lp([0; t];Hl,γ(R)). Hence, there exists a sequence hk →

k→+∞
0

such that v̂hk ⇁
k→+∞

v̂ ∈ Lp([0; t];Hl,γ(R)) (i.e. converges weakly) in the space

Lp([0; t];Hl,γ(R)). It follows from (37) that

t
∫

0

〈v̂(τ); w(τ)〉 = −

t
∫

0

〈v(τ); ∂tw(τ)〉. (38)

Since equality (38) does not depend on the step size h > 0, this equality
holds for all mappings w ∈ C∞

0 ((0;T ); H0,γ(R)), i.e., the mapping v̂ is the
strong derivative of the mapping v. Inequality (36) follows from the weak
upper semi-continuity of the norm.

¤
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Lemma 4.3 Let a mapping u be a strong solution of equation (25) and
let the mapping f = f(u) be Lipschitz continuous. Then there exist the
mappings

∂tu
′
x , ∂t∆u , ∂2

t u ,

which are the corresponding strong derivatives of the mapping u on any
interval [δ; T ], where δ > 0. The following inequalities hold for any number
m ≥ 0:

tm+1‖∂tu(t)‖2
0,γ ≤ C

t
∫

0

τm‖∂tu(τ)‖2
0,γ dτ, (39)

t
∫

0

τm+1‖∂tu(τ)‖2
1,γ dτ ≤ C

t
∫

0

τm‖∂tu(τ)‖2
0,γ dτ, (40)

tm+2‖∂tu(t)‖2
1,γ ≤ C

t
∫

0

τm‖∂tu(τ)‖2
0,γ dτ, (41)

t
∫

0

τm+2‖∂tu(τ)‖2
2,γ dτ ≤ C

t
∫

0

τm‖∂tu(τ)‖2
0,γ dτ, (42)

t
∫

0

τm+2‖∂2
t u(τ)‖2

0,γ dτ ≤ C

t
∫

0

τm‖∂tu(τ)‖2
0,γ dτ (43)

for all t ∈ (0; T ].

Proof. Similarly to proof of Lemma 3.2, we show that the mapping uh

satisfies the following equation for any step size h > 0:

∂tu
h(t, x) = ∆uh(t, x) − fh(uh(t, x), t, x), (44)

where

fh(v, t, x) = v

1
∫

0

f ′
v((1 − θ)u(t, x) + θu(t + h, x))dθ.

Since all the mappings fh satisfy inequality (9), estimates of Lemma 4.1
hold for all the mappings uh.
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Now we estimate the expression
t
∫

0

τm‖uh(τ)‖2
0,γdτ :

t
∫

0

τm‖uh(τ)‖2
0,γ =

t
∫

0

∫

R

τmϕ|uh(τ)|2 =

t
∫

0

∫

R

τmϕ|

1
∫

0

∂tu(τ + θh)dθ|2

≤

t
∫

0

∫

R

τmϕ

1
∫

0

|∂tu(τ + hθ)|2dθ

≤

1
∫

0

t
∫

0

∫

R

(τ + hθ)mϕ|∂tu(τ + hθ)|2dθ

≤

t+h
∫

0

∫

R

τmϕ|∂tu(τ)|2 =

t+h
∫

0

τm‖∂tu(τ)‖2
0,γ

if t+h ≤ T . Hence, denoting t1 := t+h and applying Lemma 4.1, we obtain
the following inequalities:

tm+1‖uh(t)‖2
0,γ ≤ C

t1
∫

0

τm‖∂tu(τ)‖2
0,γ , (45)

t
∫

0

τm+1‖uh(τ)‖2
1,γ dτ ≤ C

t1
∫

0

τm‖∂tu(τ)‖2
0,γ , (46)

for all t ∈ [0; t1−h]. Further, from inequality (46) and Lemma 4.1 we deduce
that

tm+2‖uh(t)‖2
1,γ ≤ C

t1
∫

0

τm‖∂tu(τ)‖2
0,γ , (47)

t
∫

0

τm+2‖uh(τ)‖2
2,γ dτ ≤ C

t1
∫

0

τm‖∂tu(τ)‖2
0,γ , (48)

t
∫

0

τm+2‖∂tu
h(τ)‖2

0,γ dτ ≤ C

t1
∫

0

τm‖∂tu(τ)‖2
0,γ (49)

hold for all t ∈ [0; t1 − h].
We choose δ > 0. Inequalities (39) and (41) for δ < t ≤ T follow from

inequalities (45) and (47) and from Lemma 4.2. Hence, they hold for all
t ∈ (0; T ].
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Applying Lemma 4.2 we deduce from inequalities (46), (48), and (49)
that

t1
∫

δ

τm+1‖∂tu(τ)‖2
1,γ ≤ C

t1
∫

0

τm‖∂tu(τ)‖2
0,γ ,

t1
∫

δ

τm+2‖∂tu(τ)‖2
2,γ ≤ C

t1
∫

0

τm‖∂tu(τ)‖2
0,γ ,

t1
∫

δ

τm+2‖∂2
t u(τ)‖2

0,γ ≤ C

t1
∫

0

τm‖∂tu(τ)‖2
0,γ

hold for all t ∈ (δ; T ].
Inequalities (40), (42) and (43) follow now from the Lebesgue theorem.

¤

Corollary 4.4 With the assumptions of Lemma 4.3, it follows from Lemma
4.3 and Lemma 3.4 that for any strong solution u of the equation (25)-(26),
the following estimates hold:

t‖∂tu(t)‖2
0,γ ≤ C‖u0‖

2
1,γ , (50)

t
∫

0

τ‖∂tu(τ)‖2
1,γ dτ ≤ C‖u0‖

2
1,γ , (51)

t2‖∂tu(t)‖2
1,γ ≤ C‖u0‖

2
1,γ , (52)

t
∫

0

τ2‖∂tu(τ)‖2
2,γ dτ ≤ C‖u0‖

2
1,γ , (53)

t
∫

0

τ2‖∂2
t u(τ)‖2

0,γ dτ ≤ C‖u0‖
2
1,γ (54)

for all t ∈ (0; T ].

We conclude this section by proving an estimate of a different type.

Lemma 4.5 Assume that a mapping f(u, t, x) = f(u) is Lipschitz continu-
ous twice differentiable, and satisfies estimate (9) and the estimate |f ′′(u)| ≤
Cf with some constant Cf for all u ∈ R. Then, for any strong solu-
tion u of equation (25)-(26) and for any number δ > 0, the inclusion
∆u ∈ L2([δ; T ];H2,γ(R)) and the inequality

t
∫

0

τ2‖∆u(τ)‖2
2,2γ ≤ C(‖u0‖

4
1,γ + ‖u0‖

2
1,γ) (55)
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hold for all t ∈ [0;T ].

Proof. Since ∆u = ∂tu − f(u), it is sufficient to prove that

t
∫

0

τ2‖f(u(τ))‖2
2,2γ ≤ C(‖u0‖

4
1,γ + ‖u0‖

2
1,γ). (56)

Let us estimate the mapping f(u):

t
∫

0

τ2‖f(u(τ))‖2
0,2γ ≤ T 2C2

f

t
∫

0

‖u(τ)‖2
0,γ .

We estimate the derivative of the mapping f(u) as follows:

t
∫

0

τ2‖(f(u))′x(τ)‖2
0,2γ ≤

t
∫

0

τ2‖f ′(u(τ)) · u′
x(τ)‖2

0,γ ≤ T 2C

t
∫

0

‖u′
x(τ)‖2

0,γ .

Finally, we estimate the second derivative of the mapping f(u) applying the
Sobolev embedding theorem since the constant in it does not depend on
R ≥ 1:

t
∫

0

τ2‖∆(f(u))(τ)‖2
0,2γ

≤ T

t
∫

0

∫

R

τϕ2(f ′(u(τ, x))∆u(τ, x) + f ′′(u(τ, x))|u′
x(τ, x)|2)2

≤ C

t
∫

0

∫

R

τϕ|∆u(τ, x)|2 + C

t
∫

0

∫

R

τϕ2|u′
x|

4

≤ C

t
∫

0

‖u(τ)‖2
2,γ + C

t
∫

0

∫

R

ϕ|u′
x|

2 · esssup
x∈R

τ∈[0;T ]

τ |ϕ1/2(x)u′
x(τ, x)|2.
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Let Ψ1 be a cut-off function from the proof of theorem 3.6. Then the Sobolev
embedding theorem and lemma 2.1 give

t
∫

0

τ2‖∆(f(u))(τ)‖2
0,2γ

≤ C

t
∫

0

‖u(τ)‖2
2,γ

+C

t
∫

0

‖u′
x(τ)‖2

0,γ · esssup
τ∈[0;T ]

sup
y∈R

esssup
x∈[y−1,y+1]

τ |ϕ1/2(x)Ψ1(x − y)u′
x(τ, x)|2

≤ C

t
∫

0

‖u(τ)‖2
2,γ

+C

t
∫

0

‖u′
x(τ)‖2

0,γ · esssup
τ∈[0;T ]

sup
y∈R

τ‖ϕ1/2Ψ1(· − y)u′
x(τ)‖2

H1[y−1;y+1]

≤ C

t
∫

0

‖u(τ)‖2
2,γ + C

t
∫

0

‖u′
x(τ)‖2

0,γ · esssup
τ∈[0;T ]

τ sup
y∈R

‖Ψ1(· − y)u′
x(τ)‖2

1,γ

≤ C

t
∫

0

‖u(τ)‖2
2,γ + C

t
∫

0

‖u′
x(τ)‖2

0,γ · esssup
τ∈[0;T ]

τ‖u(τ)‖2
2,γ .

Now it follows from Lemma 3.4 that
t

∫

0

τ2‖f(u(τ))‖2
2,2γ ≤ C‖u0‖

2
1,γ(1 + esssup

τ∈[0;T ]
τ‖u(τ)‖2

2,γ). (57)

We estimate the last term of the right-hand side of the latter inequality
applying Lemma 3.4 and Corollary 4.4 as follows:

esssup
τ∈[0;T ]

τ‖u(τ)‖2
2,γ ≤ esssup

τ∈[0;T ]
τ‖u(τ)‖2

1,γ + esssup
τ∈[0;T ]

τ‖∆u(τ)‖2
0,γ

≤ C esssup
τ∈[0;T ]

‖u(τ)‖2
1,γ + 2 esssup

τ∈[0;T ]
τ‖∂tu(τ)‖2

0,γ

+2 esssup
τ∈[0;T ]

τ‖f(u(τ))‖2
0,γ

≤ C‖u0‖
2
1,γ + C esssup

τ∈[0;T ]
‖u(τ)‖2

0,γ

≤ C‖u0‖
2
1,γ .

Inequality (56) follows from the last inequality and inequality (57).
¤

25



5 Existence of the attractor

In this section, we consider a particular case of the boundary value problem
(6)-(8); we assume that f = f(u) and Ω = R:

∂tu = ∆u − f(u), (58)

u|t=0 = u0. (59)

We assume that the function f is Lipschitz continuous and satisfies the
dissipativity condition (10). We also assume that the initial value u0 ∈
H0,γ(R) with γ < −1/2.

As it was shown in Section 3, we can change the variable u := u + c
such that equation (58) transforms into an equation of the same type but
with the function f̃ = f(u− c) satisfying inequality (9). Since the problems
considered in this section do not depend on such a change, we assume that
the function f satisfies inequality (9). Then it follows from the results of
Section 3 that the equations (58)-(59) define a continuous semi-flow {St}t≥0

on the space H1,γ(R).
We state now some properties of the semi-flow {St} which follow from

the results of Section 3.
We introduce the shift operator Ty : H1,γ(R) → H1,γ(R) as follows:

(Tyu)(x) := u(x + y).

Then the following statement holds.

Lemma 5.1 For any t ≥ 0 and y ∈ R, the identity StTy = TySt holds.

Proof. Take a function u0 ∈ H1,γ(R). Then the mapping u(t, x) := Stu0(x)
is a solution of (58)–(59). Consider the mapping v(t, x) :=
Ty(Stu0)(x) = (Stu0)(x + y).

The following equalities hold:

∂tv(t, x) = ∂tStu0(x + y) = (∆Stu0)(x + y) − f(Stu0(x + y))

= ∆x(Stu0(x + y)) − f(Stu0(x + y)) = ∆v(t, x) − f(v(t, x)).

Hence, the mapping v is a solution of (58)-(59) with the initial value v|t=0 =
Tyu0. Thus, by uniqueness we get v = StTyu0.

¤

We define the space

H1,u(R) := {u ∈ H1,γ(R) : ‖u‖1,u < +∞ and ‖Tyu − u‖1,u →
y→0

0}

with the norm ‖u‖1,u := sup
y∈R

‖Tyu‖1,γ .
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We note that for any function u0 ∈ H1,u(R) ⊂ H1,γ(R), the solution
u(t, x) of (58)-(59) satisfies all the estimates of Lemmata 3.1 - 3.5 with the
norm ‖ · ‖1,u instead of ‖ · ‖1,γ . For instance,

‖Stu0‖1,u = sup
y∈R

‖TyStu0‖1,γ = sup
y∈R

‖StTyu0‖1,γ ≤ C sup
y∈R

‖Tyu0‖1,γ

= C‖u0‖1,u < +∞.

Hence, {St}t≥0 is also a continuous semi-flow on the space H1,u(R).
We also note that the estimates of Lemma 4.1 hold for any solution u of

(58)-(59) with u0 ∈ H1,u(R).

Lemma 5.2 The semi-flow {St} has a bounded absorbing set A1 in the
space H1,γ(R) and a nonempty, bounded, and positively invariant absorbing
set Au1 in the space H1,u(R).

Proof. By Lemma 3.3, there exists a constant R ∈ R such that the set

A := {v ∈ H1,γ(R) : ‖v‖H0,γ(R) ≤ R}

is a positively invariant absorbing set for the semi-flow {St} in the space
H1,γ(R). Similarly,

Au := {v ∈ H1,u(R) : sup
y∈R

‖Tyv‖H0,γ(R) ≤ R}

is an absorbing set in the space H1,u(R). The sets A1 := S1A and Au1 :=
S1Au are absorbing in the corresponding spaces as well. Now we claim that
these sets are bounded in the corresponding spaces.

Let u0 ∈ A1. Then u(t, x) := Stu0(x) is a solution of (58)-(59). Hence,
by Lemma 4.1 (inequalities (29) with t = 1 and n = 1) and (12) we get

‖u(1, ·)‖2
1,γ ≤ C

1
∫

0

‖u(τ, ·)‖2
1,γ ≤ C · ‖u(0, ·)‖2

0,γ ≤ CR. (60)

If u0 also belongs to the set Au1, then estimate (60) holds with the norm
‖ · ‖1,u instead of ‖ · ‖1,γ .

Thus, both sets A1 and Au1 are bounded in the corresponding spaces.
¤

We introduce the space

H2,u(R) = {u ∈ H2,γ(R) : ‖u‖2,u := sup
y∈R

‖Tyu‖2,γ < +∞}.

Lemma 5.3 The space H2,u(R) is a subspace of the space H1,γ(R), and the
embedding operator is compact.
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Proof. Consider a sequence {un}
+∞
n=1 that is bounded in the space H2,u(R),

i.e.
sup
n≥1
y∈R

‖Tyun‖2,γ ≤ M.

Let ψR be the cut-off function introduced in the proof of Theorem 3.6.
Then the functions {ψ1un}

+∞
n=1 are bounded in the space H2[−1; 1]. Since

the interval [−1; 1] is a starlike set we deduce from the Sobolev embedding

theorem the existence of a subsequence {ψ1u
(1)
n }+∞

n=1 of {ψ1un}
+∞
n=1 which is

convergent in the space H1[−1; 1].

Similarly, we can choose from the sequence {u
(1)
n }+∞

n=1 a subsequence

{u
(2)
n }+∞

n=1 such that {ψ2u
(2)
n }+∞

n=1 converges in the space H1[−2; 2]. Operat-

ing further in the same way, we obtain a sequence {u
(m)
n }+∞

n,m=1. We denote

vn := u
(n)
n for n ∈ N. Obviously, the sequence {vn}

+∞
n=1 is a subsequence of

{un}
+∞
n=1 and for any R ≥ 1, the sequence {ψRvn}

+∞
n=1 converges in the space

H1[−R; R]. Hence, there exists a function v : R → R such that for any
R ≥ 1, the sequence {vn}

+∞
n=1 converges towards the function v in the space

H1[−R + 1;R − 1].
We claim that the sequence {vn}

+∞
n=1 converges towards the function v

in the space H1(R). Fix a number ε > 0. There exists a positive number
θ such that ϕ(x) > 1/2 on the interval (−θ; θ). For an arbitrary number
k ∈ N, the following estimates follow from Lemma 2.1:

(k+1)θ
∫

(k−1)θ

ϕ(x)|vn(x)|2dx ≤ ϕ((k − 1)θ)

(k+1)θ
∫

(k−1)θ

|vn(x)|2dx

= ϕ((k − 1)θ)

θ
∫

−θ

|Tkθvn(x)|2dx

≤ 2ϕ((k − 1)θ)

θ
∫

−θ

ϕ(x)|Tkθvn(x)|2dx

≤ 2Mϕ((k − 1)θ) ≤ CMϕ(kθ);

hence,

‖vn‖
2
H1,γ(θ(2k−1);+∞) =

+∞
∫

θ(2k−1)

ϕ(x)|vn(x)|2dx ≤ CM
+∞
∑

i=k

ϕ(2iθ), (61)

and similarly,

‖vn‖
2
H1,γ(−∞;−θ(2k−1)) =

−θ(2k−1)
∫

−∞

ϕ(x)|vn(x)|2dx ≤ CM

−k
∑

i=−∞

ϕ(2iθ). (62)
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The same estimates hold also for the function v since

θ
∫

−θ

ϕ(x)|Tkθvn(x)|2dx →
n→+∞

θ
∫

−θ

ϕ(x)|Tkθv(x)|2dx

for any k ∈ N.

Since γ < −1/2, the sum
+∞
∑

i=−∞

ϕ(2iθ) is finite. Thus, there exist a

number k such that

−k
∑

i=−∞

ϕ(2iθ) +
+∞
∑

i=k

ϕ(2iθ) <
ε

4CM
.

Note that the norms of the spaces H1[−2kθ; 2kθ] and H1,γ [−2kθ; 2kθ] are
equivalent, therefore a function vn exists such that ‖vn−v‖H1,γ [−2kθ;2kθ] < ε

2 .
Thus, the following inequality is a consequence of (61) and (62):

‖vn − v‖H1,γ(R) ≤ ‖vn‖H1,γ(−∞;−2kθ) + ‖vn‖H1,γ(2kθ;+∞)

+‖v‖H1,γ(−∞;−2kθ) + ‖v‖H1,γ(2kθ;+∞)

+‖vn − v‖H1,γ(−2kθ;2kθ)

≤
ε

4
+

ε

4
+

ε

2
≤ ε.

¤

Now we apply a standard theorem of the existence of an attractor.

Theorem 5.4 Given Banach spaces Zu ⊂ Zρ, let a semi-flow {St}t≥0 sat-
isfy the following conditions:

(c1) it is translationally invariant (i.e., TySt = StTy for any y ∈ R and
t ≥ 0) and continuous in the spaces Zρ and Zu;

(c2) it has a nonempty, bounded, and positively invariant absorbing set B

in Zu;

(c3) for any B ⊂ B there exists τ > 0 such that the set Sτ (B) is precompact
in Zρ.

Then there exists a (Zu; Zρ)-attractor of the semi-flow {St}t≥0.

For a proof, see [6].

Theorem 5.5 With our conditions, the semi-flow {St}t≥0 has a
(H1,u(R); H1,γ(R))-attractor.

29



Proof. Conditions (c1) and (c2) of Theorem 5.4 are established in Lem-
mata 5.1 and 5.2.

Condition (c3) of Theorem 5.4 is also satisfied since it follows from
Corollary 4.4, that the mapping S1 maps continuously the space H1,u(R)
to the space H2,u(R). Thus, Lemma 5.3 implies that for any bounded sub-
set B ⊂ H1,u(R), the set S1(B) is precompact in the space H1,γ(R).

¤
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