Interpolation and projection operators in
weighted function spaces on the real line

Vasiliy S. Kolezhuk*

Abstract

In the study of parabolic differential equations on the real line
and their discretizations, various weighted Sobolev spaces appear. In
this paper, we establish some relations between these spaces. The
main applications of these relations are in the study of convergence of
discretized attractors towards exact ones.

1 Introduction

The study of dynamical systems generated by partial differential equations on
unbounded domains has been stimulated by Babin and Vishik who gave a def-
inition of an attractor which corresponds to a pair of spaces (see [1],[2]). The
authors of [6] proposed appropriate weighted Sobolev spaces for this purpose
and derived existence results for equations of Ginzburg-Landau type. Fol-
lowing this choice of norms, the papers [3], [5] studied attractors of parabolic
reaction diffusion equations of the line and their discretization. When analyz-
ing the convergence of discretized attractors (see [4]) it turns out that specific
properties of second order operators on these weighted function spaces are
needed.

The purpose of this paper is to derive these important properties for the
differential operator as well as for its discretization.
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2 Weighted spaces

Let us first summarize some notation and elementary properties from [3], [5].
Let d > 0 be an arbitrary number. We use the following notation: if
u={ug : k € Z} is a sequence and v(z),z € R is a function, then

(Oru)e = (ups1 —ux)/d,
(O-u)k = (ug —ug-1)/d,
(040)(z) = (v(z+d)—v(z))/d,
(0-v)(z) = (v(z)—v(z—d))/d,
(Tyu)y = Ukty, YEZL,

)

(Tyv)(z

Let v > 0 be an arbitrary number. We introduce the weight function
p(z) := (1 + 2*)77. For the forthcoming analysis, we need the following
properties of the function p cf. [5], [3]:

P (z)] < Cp(z),
plz+y) < e“p(z),
oz +y) —p(z)] < (M —1)p(a),

where C' = C(v) is a positive constant that does not depend on z.
We denote by #H,(R) the space of functions u R — R, defined for almost
all z € R, such that |p"%ullr,® = fp r)|>dz < +oo. The space

Ho(R) is endowed with a scalar product (u,v)on = [ p(x)u(z)v(z) dz.
Rk

We also use the spaces H;,(R)(I € N) of functions u € H,(R) such that
D*u € Ho,(R) for all @ < 1. The spaces H,,(R) are endowed with a scalar
product (u;v);, = Y, (D%;D)o,.
0<a<l
The uniform space Hy,, is the space of functions u € H,,(R) such that

the norm

||u||0,u ‘= Sup ”Tyu| 0,7
y€ER

is finite and
Ty = ullow =, 0.

Similarly, the uniform space ;. is the space of functions u € #H; ,(R) such
that v € Hy, and Du € Hy,. The space H,, is endowed with the norm
[ull = llull§ o + [1Dullf .-



We say that a set B C H,,, is strongly bounded if it is bounded and the
following relation holds:

sup ITyu = wllow =, 0.

Similarly, a bounded subset B C H;,, is called strongly bounded if

sup ITyu — ulliu = 0-

Lemma 2.1 (compactness criterion)
If a set B C Ho,, 15 strongly bounded, then this set is precompact in the space

Ho(R).

Proof. In the proof, we use the following notation. If A and B are subsets
of the space Ho(R), then

dev(A, B) := sup 1nf lla — bllo,-
acAb
We fix € > 0. We first reduce the problem to the case of functions with
compact support. There is a number # > 0 such that p(z) > 1/2 for all
x € [—0;60]. Hence for any function u € B and number y € R the following
inequality holds:

y+0 0 0
[ @i = [@u@ka <2 [ j@)@n et
y—o —0 -0
< 2 [ oo (Tu)(@) P < 2ull, < C 1)

where the constant C does not depend on v and y.
It follows from inequality (1) that for any number £ € Z,

— ko I
[ @iz = 3 [ poluto)is
—o0 =010
70
< CZ / p(50)|u(z 2dx<CZ
I=7% 10 J=mo0
Similarly,

oo +o0

[ s@lute) iz <€ 3 pii0)

k6 j=k



Thus, there exists a number ky = ko(B) such that both integrals
—kob 400
[ p(@)|u(z)|?dz and [ p(z)|u(z)]*dz are less than e.
—00 ko8

Let x be a continuous function with support supp x C [—kof — 1; ko8 + 1]
such that x(z) = 1 for all z € [—kob; ko] and 0 < x(z) < 1 for all z € R.
We denote By := {xu : u € B}. Then for all functions v € B; we get
supp v C [—kof — 1;kof + 1]. It follows that for any functions v € B and
v = xu € By, the following inequalities hold:

lu—vllg, = /p(x)IU(x)(l = x(x))*dz

—kob +o0
< [ sl)ut)ds g [ p()|u(z) *de < 2.

Thus,
dev(B, B;) < 2e.

On the other hand, the set B is still strongly bounded. Indeed, the
following estimates hold for all functions v € B and v = xu € B; and
numbers y,z € R, [z] < 1:

7,013, = [ plo)ute + y)xta + »)Pds < [ pla)ute+ ) = Tl

R R
and
ITy(To = )12,
= [ pla)lule+ -+ xlz + -+ 2) — ula + y)x(o -+ y)Pds
R
< Q/p(x)\u(ac +y+2)x(@+y+2) —ulz+y)x(z+y+2)|dr
R
+2 [ pla)lute + pxia + -+ 2) — ula + xa +y) o
R
< 2/p(x)|u(a: +y+2) —ulz+y)de
R
¥ sp fx(e) = x(e)- [ ot +) Pl
AR AE R



< 2Ty (Tou = w)lg,, +2 sup (@) = x(@2)|* - |1 Tyulls,,
R P

The convergence is uniform in v € B since the set B is strongly bounded
and the function x(z) is uniformly continuous on the compact set [—kof —
2; ko + 2].

Now we apply the following theorem, cf. [7], [8].

Theorem 2.2 Let Q C R be a bounded interval. Then the set M C L,(Q),
p € [1,4+00) is precompact if and only if it is bounded in the space L,(S) and
equicontinuous with respect to the shift in the space L,(Q2) that is

sup |1 Tyu — ul| L, ) ijO,

where functions u are defined as zero on the set R\(2.

We note that for a bounded set 2 C R and functions f € L,(Q2) the
norms || f||z, and ||f||#,, are equivalent. Hence the strongly bounded
set B satisfies the conditions of Theorem 2.2 and it is precompact in both
spaces L,(€2) endowed with the norm || - ||, , and Hg,(R). Consequently,
there exists a finite set By such that dev(Bs, By) < €.

Thus we obtain

dev(Ba, B) < dev(Bsy, By) + dev(By, B) < 3¢,

which implies that the set B is also precompact.
Lemma 2.1 is proved. |

Corollary 2.3 If a set B C H1,, s strongly bounded then it is precompact
in the space Hi (R).

Proof. By Lemma 2.1 both B and B’ := {u' : v € B} are precompact
subsets of the space Hg,(R) since they are strongly bounded in the space
Ho..- Then for any sequence {u,},°} C B there exist a subsequence {v,} /%
such that both sequences {v,},% and {v!}'% are convergent in the space
Ho(R). Let v and w be their limits. Then passing to the limit in the
corresponding integral identity it is easy to see that w = v'. Hence v, — v

as n — —+o00 in the space Hy,(R). O



3 Discrete weighted spaces

Consider the following discrete spaces. The Hilbert space Hy 4, is the space of

sequences u = {u }rez such that the squared norm [[ullg , := d >_ p(kd)|ux|?
k€Z
is finite. Similarly, Hilbert spaces H; 4, and Hj 4., are the spaces of sequences

u € Hy 4, endowed with the norms

g,’y + ”a-l-u”g,v

[ullf, = Ilul

and

lulls,y = llullg, + 105ull5,, + 10405ullg .

respectively.
The uniform discrete space Hy 4, is the space of sequences u € Hy 4, such
that the norm

l[ullou = sup || T,ul
YEZL

0,y

is finite. The uniform discrete spaces H;q, and Hyg4, are the spaces of
sequences u € Hy 4, such that 0,u € Hy g, (and 0;0,u € Hyq, for Hyq,)
endowed with the norms

[ullf 4 = 110l16,4,0 + 10+]15

and

| |§,d,u = ”U’”%du + [|04u |§,d,u + ”a-l-a-l—u”%,d,u’

respectively.
We embed the space Hy 4, into Ho(R) as follows. Consider k € Z and
a function wg(z),z € R, such that

(x— (k—1)d)/d, z € [(k—1)d,kd],
wr(z) =¢ (k+1)d—2x)/d, z € [kd, (k+1)d],
0 otherwise.

With these hat functions we define the interpolation operator
T : Hoay = Hoy(R) by

T{uktrez = Y wi(@)ug. (2)

kEZ

Lemma 3.1 (properties of the operator T )
Assume that d < 1. Then there exist positive constants ¢ and C independent
of d such that:



(a) for any sequence u € Hy 4.,

cllulloy < 1 Tulloy < Cllulloy;

(b) for any sequence u € Hy 4.,

cllu

lo,d.u < || Tul

(c) for any sequence u € Hy 4.,

0,u <

Cllullo,dus

cllulliy < | Tully < Cllully;

(d) for any sequence u € Hy 44,

cllu

l,du < || Tul

1,u <

Cllully,g.u;

(e) for any sequence u € Hy 4, and any number z € R, |z| < 1,

IT.Tu = Tullow < Clelllullrau;

(f) for any sequence u € Hs 4, and any number z € R, |z| < 1,

IT:Tu — Tulliu < C(l2] + 3]21) Y [ull2g,0-

Proof.

(a) We fix numbers j € Z and 0 < ¢ < 1/2. For any number
z € [(j —€)d; (j + €)d], the following inequalities hold:

w;()
wjx1()

wi ()

Hence, for the same z:

( Z ukwk> 2(36)

Vv

Y4

>
<

1—-¢,

&,
0,

|k

—jl =2

2
(Uj,1Wj,1(£E) + U;Wj (QJ) + uj+1wj+1(ac)>

2 2
U;Wj

(@) + 2ujw;(@)uj-1wj-1(2)

+2ujw;(T)wjriwi1 (T) + ugflw]{l(x) + u§+1%2'+1($)

—|—u§_1wj2
1,
3%
(1-¢)?
3 u? — 262u§_1

7

- guiwf(x) — 3u?_wi_(z)

1 (7) — 3“?4-1%2'4-1(33) + U§+1wg2'+1(33)

wjz(x) — 2u?,1wj2-,1(a:) - 2u§+1w]2-+1(x)

2,2



Finally, we estimate the norm || 7 ul|o,, as follows:

ITu, = [ @) () @

2 keZ
(j+e)d ,
> Z / p(x) ( Z ukwk> (x)dz
jeZ(j—E)d kEZ
(j+e)d
from (9) 1 —¢)2
> Z (%ui —2e%u}_, — 262u§+1) / p(z)dz.
JEZ .
(j—e)d
We rearrange terms and get
(j+e)d (j—1+e)d
2 (1-¢)? 2
ITulld, = > (= pla)dz — 2¢ pla)da
Iet (j—e)d (-1-e)d
(j+1+€)d
—2¢? / p(x)dx) u
(j+1-e)d
(j+e)d
(1-¢)? 2 2 2
= Y | (F5Fe@) -2 —d) — 2 p(a+ d))do -
JEL,;
(j—¢)d
. 0 (j+e)d
> Z (% — 4Csz> / p(x)de - u?
jer (j—2)d
1—¢)? :
> 20de<( - —4Ce?) Y plid)es
jez
1— 2
205(( 35) - 4082) lul2,. (10)

Note that in the previous estimates we may choose the constant C' inde-
pendently of d due to the inequality d < 1. We take ¢ = (1 + v/24C)~! and
deduce from estimate (10) the first inequality of (3).

Now we prove the second inequality of (3). We first estimate the value
Tu(z), x € R in the following way:



T = (Y uwl)’

1 1
Wh(@) + 50 on s (2)n(z) + ubn (2)wr()

5

1 1
+§uiwk (@) wit1(z) + §u%+1wk (x)wk+1(:r)>.

We rearrange terms and get

2(z) < Zu%wk(x) (wk_l(x) + wi () + Wi (z ) Zukwk

kEZ kEZ

We deduce from the last estimate that

ITull, = [ s@(Tup@s < [ o) 3 utonto)

R R kEZ
(k+1)d
= Y u / wi(z)de < Cd Y plkd)ui = Cllull? ..
KEZ (1 1 keZ

Statement (a) is proved.
(b) It suffices to estimate the function 7,7 u for numbers z = kd with
integer k since there exist positive constants ¢ and C such that

clolloy < 1Txvlloy < Cllvllo

0,y

holds for any function v € H,,(R) and number z, |2| < d. For the numbers
z = kd with some £k € Z, the following equality holds:

T, Tu="TT,u.

Hence, estimate (4) follows from estimate (3).
(c) Since for any number x € [kd; (k+1)d], k € Z, the derivative satisfies
(Tuw) (z) = (04+u)k, the following inequalities hold:

(k+1)d

10;ulls, = de (kd)(0;u)} <CZ / x)dz (04 u);

kEZ kEZ



(k+1)d
= oY [ s (Tw@ ) =ClTR,
(k+f;j
T, = X [ s@)(Tuy@)ds
(k+1)d

= Z / r)dz(04u)?

kezZ

< Y p(kd)(@,u)} = Cllosull,

kEZ

Therefore inequality (5) follows from the last two inequalities and inequality

(3)-

(d) Since there exist positive constants ¢ and C such that

cllvlly < I Tz0ll

17 < Cllvlh

Ly

for any function v € H; ,(R) and number z, |z| < d, inequality (6) follows
immediately from inequality (5).

(e) Let y and z be any real numbers. We consider the case z > 0 since
the proof for z < 0 is similar. Then the following estimates hold for v = Tu
and any z € R:

T, (Tov =) (@) = |p(@+y+2z)—v(z+y)

2
v'(z +y + 20)do

0

< |z\2/\v'(x+y+z9)\2d0.

Hence, we obtain estimate (7) in the following way:

IT, (T - o)|2, = / p(@)|T,(Tv — v) () Pde

1

\z|2/p(x)/\v'(m+y+20)|2d0d:p
0

R

IN

10



1
= |z|2//p(x)|v'(x+y+z0)|2d:cd9
0 R

Y R L P
= |27 | ITys20v'[[5,d0 < Clz[[|ullf g
0

(f) We denote v := Twu. We consider the case z > 0 since the proof
for z < 0 is similar. We can represent the number z as z = (j + 0)d for
some numbers j € Z,j > 0, and # € [0,1). Since for any £ € Z and
x € kd; (k + 1)d], the derivative v'(x) equals (04u)x, we proceed as follows:

IN

I(Ty(Tz0 = )5,

p(z)V' (z +y +2) — V' (z +y)|’dx

%\

(k+1-0)d—y

( / p(@)[V (z+y + 2) — (& +y) Pda

kd—y
(k+1)d—y

+ / pl)v'(z+y+2z)— v'(:r—|—y)|2dm)

(k+1—6)d—

ilng
m
N

(k+1—0)d—y
> (10— ovu [ o)
ke, ki y
(k+1)d—y
+[01 w1 — Opug? / p(m)da:)
(k+1-6)d—y
k=1 (k+1-6)d—y
Z <‘d Z 8+8+um‘ / p(z)dx
kez m=k kiy
itk (k+1)d—y
‘d Z 6+6+um / p(a:)dx)
(k+1-0)d—y
k=1 (k+1—-0)d—y
d2z ( Z 1040ty |2 / p(z)dx
ke kdy

11



itk (k+1)d—y

+D Y 100.unf [ pla)da)
m=k (k+1-0)d—y
o (k1-0)d-
= d2j2|6+8+um|2 Z / p(z)dz
meZ k=m+1-j kd—y
(k+1)d—y

G +1) S 10,0 S / p()dz. (1)

mez k=m=J(k110)d—y

Let [y/d] be the integer part of the number y/d. Then k — [y/d] is an integer
number such that (k — [y/d])d € (kd — y; (k + 1)d — y]. This means that
p(z) < Cp((k —[y/d])d) for any number = € [kd —y; (k+1)d —y), where the
constant C' depends only on v in the definition of the function p. Hence, we
deduce from inequality (11) that

I(Ty(Tev = v))'llG,

< Cd?j Y 10,0 Z d(1 = 0)p((k — [y/d))d)
meZ k=m+1—j
+CA*(j+1) > 1050 um|> > dop((k — [y/d))d)
meEZ k=m—j
khom odB( Z > p((m+ k — [y/d])d)] 0404 i
k=1—j meZ
0
O +1)0 ) Y p((m + k = [y/d))d)|040. v |”
k=—jmez
0
m:=m+k—|y/d .
LW ci1-0) Y a3 p(md)|0s 0 um—isiyal’
k=1—j mEZ
0
+CA(G+1)0 Y d > p(md)|0s 04t griy/al
k=—j mE€EZ
< Cd? <j2(1 —-0)+(+ 1)29)

Finally, we estimate

12



d? (j2(1 —0)+ (G + 1)20) = P+ (2 +1)0) <2+ (22 +1)2
= 322+2.

4 Properties of projectors

In this section, we consider the subspace V; := T (Hpay). It follows from
Lemma 3.1, (a) that V,; is a closed subspace of Hg,(R). We first prove a
useful lemma about this subspace.

Lemma 4.1 There exists a constant C' > 0 independent of d such that for
any v € Vy, the following inequality holds:

[vlly < Cd™[lloy

Proof. Assume that v € V;. Since the operator 7 is also an isomorphism
of the discrete space H; 4, and the space V; endowed with the norm || - ||1 5,
the following inequality holds:

[Vl < CIT 0llay < Cd7HI T

|0’d77 S Cd_1||v||0,7

|

We consider the following two projectors onto the space V;. The first
one is the orthogonal projector P, onto V, in the space Hg,(R). The second
projector @ is defined on the space H1,(R) by the formula:

Qdu = T{U(kd)}kez

Lemma 4.2 The mapping Qq is well-defined on the space Hi,(R) and is a
projector onto the subspace V.

Proof. Fixu € Hy,(R). It is sufficient to prove that the sequence {u(kd)}rez
lies in the discrete space Hy 4, since in this case the function 7{u(kd)}kez
belongs to the space V; and the mapping Qg is a projector since Qqu(kd) =
u(kd) for all k.

13



It suffices to prove that d . p(kd)|u(kd)|* < +oo. Let us estimate this

keZ
sum using the Holder inequality
d  p(kd)|u(kd)
ke
(k+1)d (k+1)d 2
1 1

= dY p(kd) y / u(z)dz + / (u(kd) — u(z))dz

kez kd kd

(k+1)d 2 (k+1)d o 2

2 2

< dEZp(kd) / u(z)| + dﬁz,o(kd) / /u'(xl)da:ldx
keZ o keZ [Aare
(k+1)d (k+1)d

< 2 p(kd) / () *dz +2d Y _ p(kd) / /|u'(a:1)|2dx1d:v

kez hd keZ kd  kd

(k+1)d
< QCZ / 2da:
keZ
(k+1)d
+20dY" / 20)((k + 1)d = 21) | () Pz
keZ ;o

< 20(||ullg,, + ||l ,) < +oo.
Thus, {u(kd)}rez € Hoa,y-

Lemma 4.3 (properties of the projector );)
There exists a constant C' > 0 independent of d such that the following state-
ments hold.

(a) For any u € Hy,(R), the inequalities
11 = Qa)ullo,y < Cdllully, (12)

and
1Qaull1,, < Cllulli,y (13)
hold.

(b) For any u € Hs(R), the inequalities

1T = Qa)ulloy < Ca?[lullay (14)

14



and
(I — Qa)ulliy < Cd||ulls, (15)
hold.

Proof. Let u be a function from the space H;,(R) and let w := Qqu.
Fix x = (k+6)d, where k € Z and 0 < 0 < 1. The function w can be written
as

w(z) = u(kd) + O(u((k +1)d) — u(kd)) = u(kd) + Hd/u'((k + 6,)d)do;.
Hence,
w(w) —w(@) = u((k+0)d) — u(kd) — 6d / o ((k + 0,)d)do,

0
1

[4
- d/ ((k + 0)d /u'((k + el)d)del)dog, (16)
0 0
and we deduce the following inequality:
(k+1)d
[ el - wia)Pds

kd
1

- d/p((k +0)d)u((k + 0)d) — w((k + 0)d)[%d8

1 2

(1 ((k + 02)d) - / o (K + 6,)d)d6, ) o

0
1

o ((k + 05)d) — / o (K + 0,)d)d6,

0

do

2

dbydb

IN

e / 0p((k + 0)d)

0

o\m O\%

1

20 / 0p((k + 0)d)

0

IN

' ((k + 62)d) |2dfdf

o\%

1 2

[’
+2d3/9,0 ((k + 6)d /
0

1
/u ((k+01)d)do,| db,do

15



1 6
20 / / 0p((k + 0)d)|u'((k + 62)d) [2d0do
0 0
1

1

+2d3///0p ((k + 0)d)|v'((k + 61)d)|>d6,dOsdb.
0

Therefore, using the Fubini Theorem we obtain
(k+1)d

/ (@) ul) — wiz) Pz

< o / (K + 0,)d) / 0p((k + 0)d)d6d0,

0
1

Iy / (K + 0y)d) ? / / 0p((k + 0)d)d0d0,d0;

0 0 6>
1

< od / o((k + 00)d) [ ((k + 61)d) 26,

0
(k+1)d

- o / ()1 () [2dz.
kd
Consequently, we result in the following estimate:

lu=Qalf, = [ p@ule) - wio)ds

R
(k+1)d
=3 [ @) - v s
ez
(k+1)d
< Y [ olnids = clly,
ez Py

Thus, inequality (12) is proved.
Inequality (13) follows from the fact that
1

o ((k + 0)d) = / o ((k + 6,)d)d6;

0

16



and, consequently,

lw'llG,,

(k+1)d

Z/ z)|*dx

kEZ 1a

JZ/ ((k+0)d

kEZ

2

' ((k + 6,)d)d6,| do

1

5 / / o((k + 00)d) | ((k + 61)d)|2d0,d6

keZ

Now let u be a function from the space Hs(R). For a fixed z = (k+0)d,
where k£ € Z and 0 < 0 < 1, we may continue equality (16) as follows:

u(z) — w(x)

= d

= d

1

(1 ((k + 02)d) - / o ((k + 0,)d)d9, ) o,

/ (0 (G 4 02)) = ( + 01)) )

S — L O — .

1 6>

[
:f///wm+@wmmw}
0 0

01

It follows from this equality that

(k+1)d

[ pla)ute) - wio) s

kd
1

- d/p((k +0)d) [u((k + 0)d) — w((k + 0)d) 20

0
1

~ o [

0

VAN

2

de

1 6>

//UII((k + 03)d)d03d01d02
0

01

(k+0)d

Z

0>

1 60 1
0 0 O

01

17



o\

/ / p((k + 05)d) [ ((k + 05)d) [*dB3d8; 0,

= Cd” | p((k + 03)d)|u"((k + 03)d)|*db3. (17)

O\H o\

Inequality (14) follows from inequality (17) in the same way as in the proof
of inequality (12).

Finally, we prove estimate (15). For a fixed z = (k + 0)d, where k € Z
and 0 < # < 1, the following equality holds:

W(@) (@) = o((k+0)d) — (ul((k+ 1)d) — u(kd)

— u((k+6)d) — /u'((k 4 0,)d)d6;

1 6
= d//u"((k+92)d)d02d01
0 01

Hence, the same reasoning as above proves the following estimates:

(k+1)d

/ p(@) ! (z) — ' (z) Pda

- d/p((k + 0)d) | ((k + 0)d) — w'((k + 0)d)[2d0

do

1 6

/ / " ((k + 05)d) 050,

0 61

IN

Cd / o((k + 05)d) [0 ((k + 05)d) 2B,

0
(k+1)d

= o / ol [u" (z) [Pda

kd
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and

fu=wlt, = llu=wld, + - o],
(k+1)d
— Ju-wlf,+ Y [ @) - @)l
keZ
(k+1)d
< clfult,+Cay [ p@) ()P
keZ a4
~ Cdulf,,

Lemma 4.4 (properties of the projector P,)
There exists a constant C' > 0 independent of d satisfying the following state-
ments.

(a) For any u € Hy,(R), the inequalities
I(I = Pa)ullo,y < Cdljul]y (18)

and

I(I = Pa)ull,y < Cllully (19)
hold.

(b) For any u € Hq(R), the inequalities
1T = Pa)ullo,y < Cd?|lulla, (20)

and
(I = Pa)ull1, < Cdl|ull2, (21)

hold.

Proof. Since P, is an orthogonal projector, the following inequality holds
for all u € Hy,(R):

17 = Pa)ullo,y < [[(I = Qa)ullo,y-

Hence, inequalities (18) and (20) follow immediately from inequalities (12)
and (14).
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Finally, we prove inequalities (19) and (21). Since the projector P is
orthogonal, the following estimates hold:

1Pau = Qaulloy < [|(I = Qa)ulloy < Cdljullyy, if ueHiy(R),

and
| Pat = Qaulloyy < CPllullasy, if u € Ha (R).

Next, Lemma 4.1 implies

|| Pav — Qqu

1y < Cllu

|1,7

and
| Pau — Qaull1,, < Cdllul|2,.

Now inequalities (19) and (21) follow from the last inequalities and inequal-
ities (13) and (15).

|

Lemma 4.5 Let K be a natural number. There ezists a constant C(K) > 0
independent of d such that, for all numbers k € Z, |k| < K, the following
inequalities hold:

| PaTea(I — Pao)ullo,, < Cdllullosy, (22)
| PaTka(I — Po)ulloy, < Cd?||ull1y, (23)
| PaTka(I — Po)ulloy < CdPllulf|ay. (24)

Proof. Since PyTyq4(I — Py)u € V4, we may write the following equality:
| PaTxa(I — Pa) u”O,v

P x) PyTia(I — P)u )( Yo(z)dz

\

- sup
vEVy
lIollg 7<1 R

o(z de (I - Pyu )( Yo(z)dz

\

= sup
vEVy
llllo 7<1 R

p(x — kd)(I — Py)u(z)v(x — kd)dx

\

- sup
vEVy
lIollg 7<1 R

= sup
vEVy
Iollo,<1 R

+ sup /p(x)([ — Pyu(x)v(z — kd)dzx. (25)

vEVy
lollg,,<1 R

\

(p(z — kd) — p(2))(I — Pa)u(z)v(z — kd)dz
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The second integral equals zero because v(z — kd) still belongs to the space
V;. Hence, it follows from equality (25) that

| PaTka(I — Pa)ullo
<  sup / |p(x = kd) — p(z)|[(I = Pa)u(z)||v(z — kd)|dz

vEVy
llvllg,y<1 R

< Cd sup / ()T = Pu(z)||v(z — kd)|dz
vEVy
llollo o<1 R

< Od sup |(I = Pa)ulloq||T-kav]|o,y-
veVy

lIvllg,y <1

The operators T_,4 are uniformly bounded in £ if |k| < K. Thus, we deduce
the following estimate:

| PaTra(I — Py)ullo,y < Cd||(I — Py)ullo,,- (26)

Now estimate (22) follows since the projector P, is orthogonal. Estimates
(23)-(24) follow from estimates (18),(20), and (26).
a
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