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1 Introduction

In this paper we present and discuss a first simple model for iron uptake and
iron homeostasis in E.coli. The subject is interesting from the biological point
of view, because some phenomena occuring in this context are not understood
yet. Additionally, many bacteria have the ability to store iron in special iron
storage clusters [1], which is very special and distinguishes iron from most
other minor nutritients. On the other hand, the fact that iron is at the same
time an indispensable nutritient and highly toxic for the cell indicates, that
one might find a nontrivial, extraordinarily robust regulatory system. We
were inspired by the research work [14, 2] at the Center of Biotechnology at
the University of Bielefeld that investigates the symbiosis between S.meliloti
and its host plant, where the iron supply of the symbiontic bacteroids plays
a major role.

The mathematical modelling of intracellular processes is a central issue
for several groups that work in this interdisciplinary field. For example, there
are engineers and computer scientists [12] who cooperate with biologists and
who predict by in-silico experiments which wet-lab experiment is likely to lead
to the optimal gain of knowledge. Others develop theoretical concepts [11]
in order to build tools which can assemble a model out of predefined sub-
units and simulate it. In most cases the systems are modelled by ordinary
differential equations and they are solved numerically.

It is also possible to investigate a given system from a stoichiometric
point of view. Often the systems are decomposed into so called elementary
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flux modes [13] which can be used to optimize the yield of a desired product.
Further attempts have been made to examine the stoichiometric robustness
of a system against the elimination of components and draw conclusions for
the evolution of intracellular networks [6].

This paper follows the first, more engineering-like approach. We state a
simplistic ODE based model for iron uptake and iron homeostasis. In the
discussion we will show its properties and limitations and propose impro-
vements. We will see, that in the iron related context the stoichiometry of
regulatory reactions is of an immense importance, and we will find that the
regulation processes must be of an unusually high kinetic order.

In the future we intend to take a closer look at the subsystems and to
model them on a higher detail level. Then we will try to use the relatively
modern method of piecewise linear systems for genetic regulation ([4], for
the mathematical background see [7]) that are not applicable for metabolic
reactions, because they do not describe reactions of second order properly.
Therefore we will investigate the properties of hybrid systems, which are
piecewise linear as far as gene expression is concerned and classical ODEs in
all other reactions.

2 Bacterial Iron Homeostasis from the Bio-

logical/Descriptive Point of View

Virtually all organisms are dependent on sufficient iron supply, because many
reactions (e.g. in the TCA cycle or the respiratory chain) need it as a cofactor.
The importance of iron results from its ability to adopt a redox potential
in an exceptionally wide range from -300mV to +700mV depending on the
surrounding conditions, which makes it a perfect electron acceptor and donor
respectively.

On the other hand, free iron atoms in the cell are highly toxic. They
catalyse reactions of reduced oxygen species, which are always present as a
product of the energy metabolism, and convert them into radicals that can
destroy the DNA. This means that organisms must have a very sophisticated
regulation of the intracellular iron concentration.

Although iron is the fourth most plentiful element of the earth crust,
the soluble form Fe2+ is scarce in the natural environment of bacteria. So
they must have an active high affinity iron acquisition system which in gram
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negative bacteria usually consists of receptors in the outer membrane and
ABC-transporters in the cytoplasmatic membrane [3]. Both transport pro-
cesses require energy provided by the cell. These transporters are directly
inactivated by high intracellular iron concentrations, but the mechanism of
this regulation is unknown. If the need for iron cannot be met by this me-
thod, many species excrete chelators called siderophores [10] which bind the
unsoluble Fe3+ with a high affinity and try to reimport them.

Many bacteria produce iron storage proteins, and their structure and the
way they work varies from species to species. The most prominent one is
the bacterioferritin. The iron storage complex is a hollow sphere formed by
24 bacterioferritin subunits. It takes up the soluble Fe2+ in the cytoplasma
and deposits it in its centre in the non-soluble form Fe3+. The oxidisation
may be carried out by a haem group bound to the bacterioferritin, but this
is not entirely clear. Iron storage proteins are only expressed at low growth
rates. This makes perfect sense in the natural environment of bacteria, e.g.
in the soil. If some external event causes an increase of the concentration of
nutritients and makes new growth possible, the species which already have
stored iron have a big advantage compared to those which can just start to
collect iron in the moment they sense their lack thereof.

In E.coli the global regulator for iron related processes is a protein called
Fur (ferric uptake regulator). If it binds one Fe2+-ion, it changes its confor-
mation and dimerizes with another [Fur-Fe2+]. This Fur-dimer can bind to
a DNA sequence motif called the Fur-box and acts usually as a repressor by
simply blocking the beginning of the operon. Induction of operons can be
achieved by blocking a gene that again encodes a repressor RNA or a re-
pressor protein. It has been shown in [1] that Fur-dimers do not simply bind
to their box like other repressors do, but polymerize around the DNA in a
corkscrew manner starting from the Fur box. The reason for this behaviour
is still unclear.

The Fur modulon has been well studied. In the presence of iron, Fur
represses the expression of the iron import machinery and induces the pro-
duction of iron storage proteins and enzymes which need iron as a cofactor
by derepression. This guarantees that energy and ressources are not wasted
for the production of proteins which are unnecessary under those conditions.
Fur has several other regulatory functions (see [9]) without direct impact on
the subsystem of the cell we want to examine.
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3 A basic model for iron homeostasis

The basic model features iron uptake, direct regulation of the transporters
by the intracellular iron concentration, genetic regulation of the transport
system mediated by the interior iron concentration, and the impact of iron
as an important cofactor of enzymes on growth.

We want to model a classical experiment in stirred and spatially homoge-
neous medium. Therefore it is justified to denote all quantities as concentra-
tions (mol/g dry weight, g/l for the biomass, and mol/l for the concentration
of iron in the medium). The carbonhydrate source is assumed to be constant
or rather so big that iron is the only growth limiting substrate.
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3.1 Variables

The following variables occur in our model:

Fext – extracellular iron,
Fint – free intracellular iron,
Fcat – intracellular iron which is bound in the catalytic center of en-

zymes,
Pemp – enzymes which need iron for their activity, ready to accept iron

as cosubstrate,
Tfree – free transporter, ready to accept extracellular iron,
Tocc – occupied transporter, already carrying an ion,
Tinh – inhibited transporter, blocked by a ligand dependent on intra-

cellular iron,
Gfree – an operon of genes encoding an ABC-transporter, ready to be

transcribed and translated,
Ginh – an operon of genes encoding an ABC-transporter, blocked by

an iron-dependent repressor,
M – biomass in the medium.

3.2 Constants

The constants below define a framework for the simulation. All other con-
stants are rates of the reactions described later.

µmax – maximal growth rate under fully iron saturated conditions,
µs – concentration of the limiting substrate (in this case the surplus

of catalytically active iron which is not required for the bare
survival of the cell) at which the bacteria grow with half their
maximal rate,

βfe – concentration of catalytically active iron [mol l−1] required by
unit of biomass [gl−1] for bare survival,

γ – concentration of iron dependent enzymes [mol l−1] per unit of
biomass [gl−1],

ω – number of cells [mol l−1] per unit of biomass [gl−1],
Fall – total concentration of iron in the system.
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3.3 Reactions

1. iron uptake and release into cytoplasma by a transporter

Fext + Tfree
r1

−→ Tocc

Tocc

r
−1

−→ Fint + Tfree.

2. direct downregulation of transporter activity by intracellular iron con-
centration

Tinh

r2


r
−2

Fint + Tfree.

3. insertion of free iron into enzymes

Pemp + Fint

r3


r
−3

Fcat.

4. regulation of transporter gene transcription

Gfree + Fint

r4


r
−4

Ginh.

Further we model the expression of the transporter genes

Gfree

r5

↪→ Tfree

cell growth dependent on catalytically active iron

Fcat ; M

and the decay of the various types of transporters

Tfree ↪→ Tinh ↪→ Tocc ↪→

If a transporter which carries an ion (Tinh, Tocc) decays, we assume that the
iron is released into the cytoplasma. The amount of iron accepting enzymes
(in total Pemp + Fcat) is considered as a constant part of the biomass M

and therefore to be directly controlled by cell growth. The cell growth is
modelled by an equation for one limiting substrate similar to Monod and
Michaelis-Menten kinetics.

All concentrations apart from Fext have to be scaled against the growth of
biomass. Therefore we add an extra term of the form −S Ṁ

M
to each equation

for the concentration S [mol/g].
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3.4 The system

Now we can state the model as a ten-dimensional system of ordinary diffe-
rential equations with eleven parameters:

Ḟext = −r1FextTfreeM

Ḟint = r
−1Tocc − r

−2FintTfree + r2Tinh − r4FintGfree + r
−4Ginh

−r3PempFint + r
−3Fcat + dT (Tocc + Tinh) − Fint

Ṁ

M

Ḟcat = r3PempFint − r
−3Fcat − Fcat

Ṁ

M

Ṗemp = −r3PempFint + r
−3Fcat + Fcat

Ṁ

M

Ṫfree = r5Gfree + r
−1Tocc − r1FextTfree + r2Tinh − r

−2FintTfree

−dT Tfree − Tfree

Ṁ

M

Ṫocc = r1FextTfree − r
−1Tocc − dT Tocc − Tocc

Ṁ

M

Ṫinh = r
−2FintTfree − r2Tinh − dT Tinh − Tinh

Ṁ

M

Ġfree = −r4FintGfree + r
−4Ginh + Ginh

Ṁ

M

Ġinh = r4FintGfree − r
−4Ginh − Ginh

Ṁ

M

Ṁ =
µmax (Fcat − βfe)

µs + (Fcat − βfe)
M

3.5 Justification of the model

Due to the lack of solid measurable data, of detailed insight into the iron
metabolism of the organism, and in particular of reliable kinetic parameters
it does not make sense to create a big model in the first approach. We want
to learn more about the intrinsic conditions of cellular systems by studying
this first simple model and its limitations. The whole iron uptake process
has been simplified drastically. In this first approach, we regard it as a black
box binding extracellular iron and releasing it into the cytoplasma. As the
knowledge about the effect of iron on growth is limited, we use a standard
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differential equation, which describes growth on a limiting substrate. It is
well known that the expression of many enzymes which use iron as a cofactor
is stimulated by iron and negatively autoregulated. The latter implies that
there exists an upper bound for the relative concentration of enzyme-bound
iron. Due to the fact that there is little knowledge about the kinetics of the
expression of these enzymes we regard it as a reaction in steady state, which
means that the concentration of these enzymes always achieves its upper
bound. The expression of the transporter genes is assumed to be regulated
only by a global iron binding repressor. We omit the explicit modelling of the
regulators and use a kind of book-keeping principle instead. View for example
the regulation of the transporter expression. The free operon Gfree and the
free internal iron Fint form a complex which is the repressed operon Ginh

containing the iron that is in reality bound by the global repressor. We have
completely left out the modelling of iron storages, because these molecules
are usually only expressed when the carbohydrate source is consumed and
there is still iron in the medium, which is never the case in this artificial
experimental setup.

3.6 Reduction of the model

The model describes an experiment in a closed system (e.g. a shake flask).
Hence the total concentration of iron cannot vary. Therefore we have the
conservation law

Fall = Fext + M(Fint + Fcat + Tocc + Tinh + Ginh)

where Fall is a constant. As we assume that the cells are more or less of the
same size, we can relate the biomass to the total number of operons encoding
the ABC-Transporter by

ω = Gfree + Ginh.

As described above, the iron binding enzymes are assumed to be a constant
part of the biomass. Therefore

γ = Pemp + Fcat.
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Now we can eliminate the three variables Fext, Pemp, and Ginh by substituting

Ginh = ω − Gfree,

Fext = Fall − M(Fint + Fcat + Tocc + Tinh + Ginh)

= Fall − M(Fint + Fcat + Tocc + Tinh + ω − Gfree),

Pemp = γ − Fcat.

4 Simulations

The numerical computations were tougher than we had expected. The system
still has to be scaled. We integrated the system with the radau5 solver using
extremely crude error tolerances, but even this procedure worked just for a
small selection of physically relevant initial values. We think these problems
are due to the fact that we are dealing with variables and parameters of very
different order of magnitude. A. Kremling from the Max-Planck-Institut at
Magdeburg reported that this difficulty is common. The inconveniency might
be moderated by a nondimensionalisation, which we postpone, because recent
calculations show that this model, derived from standard kinetic laws, is not
sufficiently accurate (see section 4.3.).

4.1 Constants, Parameters, and Initial Values

In the model there are some constants which can be determined easily. We
defined ω as the number of cells [mol l−1] per unit of biomass [gl−1] in
dry weight. According to E. Flaschel, one cell of E.coli has a dry weight
of 2, 8 · 10−13g. Hence a concentration of 1gl−1 implies a density of cells of
3.6 · 1012l−1, and this equals 6 · 10−12mol l−1. The constant γ symbolizes
the concentration of iron dependent enzymes per unit of biomass [gl−1]. Ac-
cording to S. Andrews [1] the concentration Fcat never exceeds 106ωM and
never drops lower than 105ωM . We think that the cell does not waste energy
for the production of enzymes which are never used, and assume that under
iron replete conditions 90 percent of the enzymes should contain all the iron
they need. This leads to γ = 100

90
106ω = 6.67 · 10−6. The lower bound for

Fcat is the minimum concentration a cell can cope with, and so by definition
βfe = 105ω = 6 · 10−7. The minimal replication time of 20 minutes for E. coli
can be found in every standard book on microbiology. This means that the
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maximal growth rate can be determined as follows:

eµmax·20min = 2 =⇒ µmax =
ln 2

20min
= 3.466 · 10−2min−1.

We developped a nice method which allows to find suitable kinetic para-
meters and initial values for the numerical integration at once: Regard the
system in the steady state, which is defined by assuming that all (fast) single
reactions are in an equilibrium. Then try to calculate by algebraic means, if
the biological data can be realized in this or a slightly perturbed state. The
main idea is that if one has an upper and a lower bound for at least one intra-
cellular concentration, these bounds define a physiologically relevant interval
[Smin, Smax]. This interval can be mapped monotonously to physiologically
relevant intervals [V min, V max] for other concentrations V simply by solving
the steady state equations, because reactions in biological systems are always
monotonous in the concentrations of their substrates. If one has more than
one substrate for which upper and lower bounds are known one must take the
intersections of the resulting relevant intervals ∩k[V

min
k , V max

k ]. If the model
represents the biological reality, it must be possible to find suitable parame-
ters by algebraic calculations such that all measured data is contained in or
is very close to these intervals. Hence comparison of the intervals and the
data gives rise to constraints on the parameters, which are easy to compute.

The problem is how to define very close and slightly perturbed. As there
are usually many parameters which cannot be estimated, i.e. more degrees of
freedom than one can handle, we propose not to allow any perturbation and
to insist that all the data must be contained in the intervals. The following
calculations illustrate this concept.

In our special case, we look at the steady state the bacteria are in before
they are put into the medium. The steady state condition implies that the
cells have used up all their iron for growth and Fcat has achieved its mini-
mum level. We denote all concentrations in this state of minimal iron supply
by Smin. In the end, these concentrations will be suitable initial values. As
explained above, it is useful to look at the system under fully iron saturated
conditions, too. In this state we denote the concentrations by Smax.

We start our experiment with 106 cells per litre which is 1.67·10−18mol l−1

or 2.9 · 10−7gl−1. The steady state condition implies

Ṁ = 0

and therefore
Fmin

cat = 105ωM = 1.68 · 10−13.
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Initial Conditions (Xmin)
Fext 10−5

Fint 5.68 · 10−18

Fcat 1.68 · 10−13

Pemp 1.7 · 10−12

Tfree 6.54 · 10−15

Tocc 0
Tinh 7.34 · 10−14

Gfree 7.99 · 10−19

Ginh 8.81 · 10−19

M 2.8 · 10−7

In the iron replete case (s.a.) we have

Fmax
cat = 106ωM = 1.68 · 10−12.

According to the conservation law

Pemp = γM − Fcat

we obtain

Pmax
emp = γM − Fmax

cat = 1.87 · 10−12
− 1, 68 · 10−12 = 1, 2 · 10−13,

Pmin
emp = γM − Fmin

cat = 1.87 · 10−12
− 1, 68 · 10−13 = 1, 7 · 10−12.

We know from experimental data [1] that the concentration of free intra-
cellular iron is about 300 atoms per cell. It was impossible to measure an
upper or lower threshold for this variable. Hence we have

Fint ≈ 300ωM = 5.04 ∗ 10−16.

Now we try to find good kinetic parameters r3, r
−3. We focus only on the

reaction Fcat ® Fint + Pemp:

0 = ˙Fcat = r3PempFint − r
−3Fcat

= r3(γM − Fcat)Fint − r
−3Fcat
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and therefore

Fmax
int =

r
−3F

max
cat

r3(γM − Fmax
cat )

= 8.84
r
−3

r3

,

Fmin
int =

r
−3F

min
cat

r3(γM − Fmin
cat )

= 9.87 · 10−2
r
−3

r3

.

Determine R := r
−3

r3

such that the sum of the errors

(Fmax
int − 5.04 · 10−16)2 + (Fmin

int − 5.04 · 10−16)2

achieves its minimum. As this defines a real quadratic function, the following
zero of the derivative is the global minimum of the upper formula:

0 = 2 · 8.84(8.84R − 5.04 · 10−16)

+2 · 9.87 ∗ 10−2(9.87 · 10−2R − 5.04 · 10−16)

⇐⇒ (9.74 · 10−3 + 78.146)R = 4.5 · 10−15

⇐⇒ R = 5.76 · 10−17.

Thus

Fmax
int = 5.09 · 10−16

≈ 303 ions per cell

Fmin
int = 5.68 · 10−18

≈ 3 ions per cell

This approach strongly emphasizes the upper bound, which is appropriate,
because too high concentrations of intracellular free iron cause cell death.

We do not have any information about the affinity of Fur to the Fur box
or estimates for the percentage of repressed operons under defined conditions.
Hence we cannot avoid to use intuitively plausible estimates of the percentage
of active ABC-transporter encoding operons:

Gmax
free =

1

100
ωM,

Gmin
free =

90

100
ωM.

The really important bound is the downregulation by high internal iron con-
centrations. Therefore we fit the kinetic rates to this value:

0 = ˙Ginh = r4FintGfree − r
−4Ginh

= r4FintGfree − r
−4(ωM − Gfree, )
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Parameters and Constants
(time in minutes)

ω 6 · 10−12

γ 6.67 · 10−6

βfe 6 · 10−7

µmax 3.46 · 10−2

µs 10−5

r1 6 · 104

r
−1 5 · 104

r2 6 · 103

r
−2 1.18 · 1022

r3 1.04 · 1019

r
−3 600
r4 1.16 · 1019

r
−4 60
r5 2 · 105

dT 2

⇐⇒ Gfree =
r
−4ωM

r4Fint + r
−4

,

and
1

100
ωM = Gmax

free =
r
−4ωM

r4F
max
int + r

−4

=⇒ r4 =
99

Fmax
int

r
−4 =

99

5.09 · 10−16
r
−4 = 1.94 · 1017

· r
−4.

This means that under low iron conditions we have

Gmin
free =

r
−4ωM

r4F
min
int + r

−4

= 7.99 · 10−19
≈

48

100
ωM

which is certainly too low, because nearly all operons should be active now.
The conservation law for DNA gives

Gmin
inh = ωM − Gmin

free = 1.68 · 10−18
− 7.99 · 10−19 = 8.81 · 10−19

According to [1] an average E.coli cell carries 1000 transporters when
saturated with iron, and up to 100000 transporters under low iron conditions.
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We denote the total concentration of transporters by Tall. Then we have

0 = ˙Tall = r5Gfree − dT Tall.

To be consistent, we look at the iron replete case for the fitting of the regu-
latory reactions:

1000 · ωM = Tmax
all =

r5

dT

Gmax
free =

r5

dT

1

100
ωM,

thus
r5 = 105dT

This means for iron starvation conditions

Tmin
all =

r5

dT

Gmin
free = 105

·7.99·10−19 = 7.00·10−14
≈ 47560 transporters per cell

This value is again definitely too low.
Finally we have to treat the direct regulation of transporters by the in-

terior iron concentration. We do not have experimental data here, but it is
clear that this regulation must be extremely strict. We assume that under
iron replete conditions, only one transporter per cell can be open. This means
that, for Topen = Tall − Tinh

0 = ˙Topen = r2Tinh − r
−2FintTopen

= r2(Tall − Topen) − r
−2FintTopen

=⇒ Topen =
r2Tall

r2 + r
−2Fint

and hence

0 = r2(T
max
all − Tmax

open ) − r
−2F

max
int Tmax

open

= r2(1000 · ωM − ωM) − 5.09 · 10−16r
−2ωM

=⇒ r2 = 5.065 · 10−19r
−2.

When iron is scarce we find

Tmin
open =

r2T
min
all

r2 + r
−2F

min
int

= 6, 54 ∗ 10−15
≈ 3893 active transporters per cell.
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This is a very bad number. Nearly all transporters should be open now. As
Tocc = 0 in the equilibrium before the cultivation, we must have

Tmin
free = Topen

and
Tmin

inh = Tmin
all − Tmin

open = 7.34 · 10−14.

Due to the fact that we determined the parameters by conditions on the
steady state we just found ratios of pairs of parameters. We obtain the real
parameters by guessing a value of the right order of magnitude resp. timescale
for one of each pair. Both r1 and r

−1 are clearly on the millisecond timescale
and can neither be calculated nor found in literature. The mechanism of
the direct regulation of the transporters is still unknown. It makes sense
to assume that it is not much slower than the iron import (in the case of
siderophore transprot it might even be quicker). The insertion of iron into
enzymes should be considerably slower, because iron is not inserted as a
single ion, but as a bigger component such as a haem group. We estimate
the movement of the repressor protein to be on the second and the decay of
the transporter proteins on the minute time scale. Choose µs such that the
duration of the cultivation is appropriate.

4.2 Numerical Simulation

As mentioned before we had problems with the integration of the data. For
this reason we had to introduce two modifications: The expression for the
growth rate (see for example the 10th component of the full system) has a
singularity at −µs. The biomass M can never reach or cross this unbiological
value, but the numerical solver might have to use this point or points beyond
for the calculation of a suitable stepsize. As µs is very small, this is likely
to happen. So we cut off the expression for the growth rate on the left of
−

1

2
µs and extended it by a straight line without changing the physiologically

relevant part on the right of −1

2
µs.

The equation was still only badly solvable. So we searched for a set of
initial values and parameters very close to the original ones which lead to
better results. This slight perturbation does not really matter, because we
have some uncertainties in these values anyway. We have used the program
’content’ for the creation of graphs of the functions. The results are the
following:
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Abbildung 2: consumption of external iron

Abbildung 3: biomass
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Abbildung 4: increase of catalytically active iron

Abbildung 5: busy transporters
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Abbildung 6: free transporters

The curves look exactly as they should. We do not have enough expe-
rimental data to calculate how good they are, but they display the right
qualitative behaviour. Although it was very difficult to find initial values for
which numerical integration was possible, we made some tests to check the
robustness of the system. After some incubation time we disturbed it by
suddenly changing an internal concentration. The system behaved exactly as
one imagines, gliding swiftly into its internal equilibrium. This is not really
surprising, because we have three feed back loops which contribute to keeping
the concentrations well-balanced.

4.3 Discussion of the Simulations

As we have seen in the calculations from which we obtained our set of para-
meters and initial conditions, the structure of the model cannot describe the
biological situation appropriately. We described the regulatory processes as
single reactions, where one ion and one active unit form an inactive complex
which can dissociate again. The trouble originates from the fact that there is
an upper and a lower bound for the concentration of Fcat in the living cell. By
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the steady state condition this physiologically relevant interval [Fmin
cat , Fmax

cat ]
is mapped more or less linearly to relevant intervals [Xmin, Xmax] for the
other concentrations, which often don’t agree with intelligent guesses and
the little experimental data we have. The calculations show that we cannot
fit the intervals [Xmin, Xmax] to the real data with such a simple model. Very
bad values occur in the number of active transporters where we see a cum-
mulative effect of suboptimal genetic regulation and a direct downregulation
of the transporters, which is by far too weak.

In order to solve these problems, we propose to pursue a more detailed
modelling of the biological phenomena. There must be highly nonlinear effects
in the regulatory reactions we have not considered so far. In the introduction
we have mentioned the polymerisation of the repressor around the DNA helix,
and we think that this polymerisation process is the source of nonlinearity
which is responsible for a high order of the downregulation.

The mechanism for the direct inactivation of the ABC-transporters is
still unknown, but our model shows that it should be of an even higher
order, because it must be extremely strict under iron replete conditions and
very relaxed when there is only few iron in the cell. For that reason it is
necessary that at least two and perhaps more ions at once are involved in
blocking one transporter. One can only speculate if they bind as ions or if
they are associated with one or more components like proteins or iron-sulfur-
clusters. If iron would bind to the transporters as single ions the reaction on
instreaming iron would be very fast and direct, but it is hard to imagine a
protein that is gradually inactivated. An iron-protein complex diffuses very
slowly and is therefore no suitable signal for this delicate regulation. Thus
it would make sense to expect iron binding components like the ubiquitous
iron-sulfur clusters.

Maybe the high kinetic order of the transporter inactivation is in reality a
spatial phenomenon. As the imported iron is localized near the cell membrane
for at least a short period of time, it is possible that the interaction of free
iron with other molecules is much stronger there than in the center of the
cell, because the ions are not homogenuously distributed. In order to check
this, one would have to integrate a reaction-diffusion system inside the cell,
which is very different from the standard reaction-diffusion systems in pure
liquid, because the cytoplasma is so packed with biomolecules.
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Abbildung 7: growth dependent on c-source and iron

5 Extensions of the Model

5.1 Structural Extensions

Once we have optimized the small model we discussed here we would like to
describe the iron homeostasis in a much more precise way. There are at least
two important points that should be improved: The growth of the biomass
should be modelled as the influx of a carbohydrate source minus the total
energy consumption. Before we can do that we need a realistic estimate for
the stochiometry of these fluxes. This is hard to determine, because we are
summing up many reactions as one. We will have to ask for the biologists’
advice again and then make a good guess for suitable coefficients. We will
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Abbildung 8: a model for the regulation of the iron storage

also have to consider the experiences of the MPI at Magdeburg, where the
modelling of the cell’s catabolism and diauxic growth has been thoroughly
investigated.

Figure 7 shows the uptake of the carbohydrate source Cext mediated by
the specific transporter T c. The iron dependent enzymes Fcat are necessary
for the energy supply reactions. We denote the energy which is then trans-
ferred to the ADP simply by E, because in this context it does not matter
what this final energy carrier looks like. The growth of biomass is then an
ATP consuming reaction (e.g. polymerisation) of the imported carbohydra-
te. There is always a decay of a certain rate of DNA, RNA, and protein.
We don’t distinguish between repair and new synthesis, because from our
point of view both processes are nothing but energy and c-source dependent
reactions.

The iron storage proteins are another interesting feature we would like
to add. The equations should be rather simple. The tricky question will be
how one can realize the genetic regulation of the bacterioferritin expression,
because it is dependent on Fur and on the growth rate. We are not sure how
the cell senses its own growth, but we hope that the biologists can help us
with this uncertainty, too. We hope that even in the shake-flask experiment
with all its limitations and the usual problem of experiments dealing with
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iron concentrations, it is possible to see the effect of the iron storage, if the
c-source is given in pulses. One should set up two experiments, one with an
E.coli wild type strain and one with a mutant without the ability to produce
iron storage proteins. The cell numbers should attain the same level after
each sugar pulse, but with different velocities. The next experiment would
be to let both strains compete in a single experiment. We expect that the
’fit’ wild type strain should displace the weaker mutant.

Figure 8 shows a possible regulation of the expression of the iron storage
proteins. It is to be interpreted as a very rough sketch of how we think this
subsystem could work. We have not drawn the self-assembly of several bac-
terioferritins into an iron storing aggregate here. Like in our current system,
the transporter genes can be blocked by Fur, but for the expression of the
genes a second signal X is required which carries the information that cell
growth is in stagnating due to the lack of a carbohydrate source. We do not
know yet, if this signal is another repressor which downregulates the activity
of these genes under normal growth conditions, or if it is an activator that
binds to the DNA in the case of a drop of the c-source concentration. In the
image we have drawn the situation where the signal is an activator.

According to [1] (personal contact) there is a partial knowledge about
the regulative mechanisms that control the expression of the genes encoding
enzymes with a need for iron. We hope that we can extract a better formula
for the amount of Pemp from this knowledge.

5.2 Qualitative Extension: Other Modelling Concepts

A relatively new approach to model genetic regulation in cells is presented
in [4]. It does not follow the chemical modelling tradition but uses an ordinary
differential equation with a piecewise linear right hand side. The discontinui-
ties arise from switch functions that either totally enable or disable the gene
expression. An easy example for this technique is a negatively autoregulated
gene that is switched off if the concentration of its product exceeds a certain
threshold. These piecewise linear systems can be regarded as a subclass of the
differential inclusions, because at the threshold no single value can be defined
for the right hand side. This means that solutions do not exist in the classical
but in the so called Filippov sense, and the only interesting dynamics occur
inside the threshold planes.

The resulting model is a strong simplification of the system obtained
by classical means, and the solutions are even less realistic than what one
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obtains by solving the classical system. On the other hand the biological data
is usually so bad, that one cannot expect to derive more than qualitative
statements. In this case, as for big systems, this method proves very useful,
because the numerical integration is easy, and a purely qualitative description
of the possible patterns of behaviour of the system can be calculated by a
quick algorithm [4].

However, as soon as one does not only look at genetic regulations but
at reactions involving two molecules such as conversions of one metabolite
into another by an enzyme, this approach is inappropriate. We hope that it
is possible to keep some of the advantages of the piecewise linear modelling,
if one sets up hybrid models by implementing the regulation of genes as
piecewise linear equations, while describing the rest of the cell in the classical
way. In artificial cases where the genetic regulation is independent of the
metabolome this is clearly true. It would be interesting to investigate what
happens in the general case where one does not have this clean separation
into genome and metabolome. We give a simple example in the next section.

We are also thinking of using the general differential inclusions to model
biological systems. The motivation for this idea is that one normally only
has relatively good information about the strong interactions between the
reactants. A modeller starts with these and ignores the weak interactions,
which might also be important to some degree. We think that it makes sense
to model these weak influences by allowing the parameters to fluctuate in a
small cuboid around a set of parameters, which seems to be the most likely
choice, at every point time. The development of a theory about the numerical
solution of such systems is still in progress, but it has been shown [5, 8] that
adaptions of some classical solution methods are successful.

5.3 A simple example of a hybrid model

In our model there occurs only one regulation on the genetic level which
switches the expression of the transporter on if the iron content of the cell is
low and off if it is high respectively. If we treat this expression as a piecewise
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linear process, the standard differential equations

Ṫfree = r5Gfree + . . .

Ġfree = −r4FintGfree + r
−4Ginh + Ginh

Ṁ

M

Ġinh = r4FintGfree − r
−4Ginh − Ginh

Ṁ

M

simplify to the single equation

Ṫfree = r5ω θ(Fint) + . . .

where θ is a switch function given by

θ(x) :=

{

1 x < θ0,

0 x ≥ θ0.
,

ω is the number of genes per unit of biomass, and θ0 is a threshold value
for the internal iron concentration Fint. For values of Fint higher than θ0, the
expression of transporters is switched off, while for lower values the expression
works with maximal speed.

The other reactions of our network are not affected by this change, but
we have eliminated equations and parameters which is very useful in big or
complicated networks including a lot of genetic regulation processes. The
whole system now looks as follows:
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Ḟext = −r1FextTfreeM

Ḟint = r
−1Tocc − r

−2FintTfree + r2Tinh − r4FintGfree + r
−4Ginh

−r3PempFint + r
−3Fcat + dT (Tocc + Tinh) − Fint

Ṁ

M

Ḟcat = r3PempFint − r
−3Fcat − Fcat

Ṁ

M

Ṗemp = −r3PempFint + r
−3Fcat + Fcat

Ṁ

M

Ṫfree = r5ω θ(Fint) + r
−1Tocc − r1FextTfree + r2Tinh − r

−2FintTfree

−dT Tfree − Tfree

Ṁ

M

Ṫocc = r1FextTfree − r
−1Tocc − dT Tocc − Tocc

Ṁ

M

Ṫinh = r
−2FintTfree − r2Tinh − dT Tinh − Tinh

Ṁ

M

Ṁ =
µmax (Fcat − βfe)

µs + (Fcat − βfe)
M

Which properties does such a hybrid system have, how much information
does the solution contain, and is the quality of this information worth the
computational effort in the non-discretized variables? We think that in this
context these questions are the right ones to ask, and we will try to answer
them in the future.
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